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Intro to statistical power

Let’s return to the setting of Lectures 2 & 3: n pairs of same-sex twins discordant for psoriasis and in x of
the pairs the psoriatic individual has larger BMI than the non-psoriatic one.

Let’s see how the sample size n affects our inference on the population-level proportion p of twin pairs where
the psoriatic twin has a higher BMI than the non-psoriatic one. Let’s consider two data sets with sample
sizes of 20 and 100, and let’s assume that the point estimate for the proportion in both cases is 70%. (That
is, we have observed 14 and 70 successes from the data sets of sizes 20 and 100, respectively.) Let’s do the
binomial test in both data sets.

p.est = 0.70 #our point estimate, x/n, is 70% in both cases
n = c(20, 100) #two sample sizes
x = n*p.est #two observations, one for each sample size, both giving a point estimate of 70%
x #14 and 70

## [1] 14 70

binom.test(x[1], n[1])

##
## Exact binomial test
##
## data: x[1] and n[1]
## number of successes = 14, number of trials = 20, p-value = 0.1153
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.4572108 0.8810684
## sample estimates:
## probability of success
## 0.7

binom.test(x[2], n[2])

##
## Exact binomial test
##
## data: x[2] and n[2]
## number of successes = 70, number of trials = 100, p-value = 7.85e-05
## alternative hypothesis: true probability of success is not equal to 0.5
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## 95 percent confidence interval:
## 0.6001853 0.7875936
## sample estimates:
## probability of success
## 0.7

We see that the confidence interval around the point estimate 0.70 shrinks as the sample size n grows. This is
because with larger n we have more information about where exactly the value of the population proportion
parameter p is, and this is reflected in a smaller standard error and a narrower CI. With more information
there is less uncertainty about the value of p. This is why statisticians always want to have a larger sample
size.

There is also a striking difference in P-values (0.12 vs 8e-5). Let’s try to understand why the sample size
affects statistical testing and P-value.

The null hypothesis is that BMI and psoriasis are independent. This is equivalent to the assumption that
the observed value x follows distribution Bin(n,p = 0.5), that is, x is distributed like the total number of
heads in n tosses of a fair coin. Let’s plot in the same figure the probability mass functions under the null
hypothesis for possible point estimate values p̂ = x/n for the two sample sizes.

p.range = seq(0, 1, 0.05) #values at which density will be evaluated at steps of 1/20=0.05
n = c(20, 100)
y.1 = dbinom(p.range*n[1], size = n[1], p = 0.5) #null distribution when n = 20
y.2 = dbinom(p.range*n[2], size = n[2], p = 0.5) #null distribution when n = 100
#renormalize so that both distributions sum to 1 and are thus comparable
y.1 = y.1 / sum(y.1)
y.2 = y.2 / sum(y.2)
plot(p.range, y.2, col = "darkblue",t = "l", lwd = 2,

xlab = "point estimate of proportion", ylab = "probability")
lines(p.range, y.1, col = "orange",t = "l", lwd = 2) #add line for n=20
legend("topright", legend = paste0("n=",n), col = c("orange","darkblue"), lty = 1, lwd = 2)
abline(v = 0.7, col = "red") # Mark observation 70% in red
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We see that the null distribution for the larger sample size n = 100 is more concentrated near the null
hypothesis value 0.5 than the distribution with n = 20. By looking at the probability mass to the right
of the red line, we can conclude that if the true association between BMI and psoriasis in the populaiton
was such that in 70% of discordant twin pairs the psoriatic one had a larger BMI, then, with the sample
size n = 100, we would expect to distinguish that association from the null hypothesis with clear statistical
evidence (small P-value because observation is so improbable under the blue null distribution), but, for
n = 20, we might not distinguish it clearly (P-value can well be > 0.05 because the observation near 70%
could happen also under the orange null distribution every now and then). We say that the larger sample
size gives larger statistical power to detect a true deviation from the null hypothesis.

This logic is verified by the binomial tests above, where we saw that the P-values corresponding to the point
estimate 70% in these two sample sizes are quite different: 0.12 for n = 20 but less than 1e-4 for n = 100.

Example 5.1. Suppose that the biomarker B is distributed according to N(1,1) in the healthy population
and according to N(2,1) in the diabetes cases. Generate a random set of n samples from the healthy
population and another sample of the same size from the diabetics. We know that the distributions have
different means (namely, 1 and 2), and we want to see how statistically clearly we could detect that difference
with different sample sizes. Test whether the means are different using a t-test when

(i) n = 5

(ii) n = 25

(iii) n = 50

Do the means look statistically different based on the P-values in these three scenarios?

ns = c(5, 25, 50)
for(n in ns){ #With for-loop we do not need to copy-paste the code separately for each value

x.1 = rnorm(n, 1, 1) #healthy
x.2 = rnorm(n, 2, 1) #diabetics
print(paste("n =",n))
print(t.test(x.1, x.2)) #Needs "print()" inside for-loop to print out the result of t-test.

}

## [1] "n = 5"
##
## Welch Two Sample t-test
##
## data: x.1 and x.2
## t = -2.2419, df = 7.0118, p-value = 0.05985
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.09460386 0.05545062
## sample estimates:
## mean of x mean of y
## 0.857512 1.877089
##
## [1] "n = 25"
##
## Welch Two Sample t-test
##
## data: x.1 and x.2
## t = -2.3704, df = 43.329, p-value = 0.02229
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## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.3441528 -0.1085158
## sample estimates:
## mean of x mean of y
## 1.297058 2.023392
##
## [1] "n = 50"
##
## Welch Two Sample t-test
##
## data: x.1 and x.2
## t = -5.4251, df = 97.976, p-value = 4.185e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.522608 -0.707022
## sample estimates:
## mean of x mean of y
## 1.041062 2.155877

Here the P-values get smaller with increasing sample size, reflecting that we will detect the same magnitude
of true difference in means with more statistical evidence using a larger sample size than using a smaller
sample size.

P-values and Type I error rate

So far we have observed data and computed the P-value of observing such kind of data under the null
hypothesis. The idea has been that if P-value is small, then the observed data seem unlikely to rise under
the null hypothesis and hence we have a reason to suspect the null hypothesis.

We can also imagine a statistical testing procedure where, before seeing data and computing a P-value, we
set a significance level (α, “alpha”, e.g. 0.05, 0.01 or 0.001) and if the observed data reach that significance
level (i.e. the computed P-value ≤ α), we “reject” the null hypothesis because it seems implausible. The
motivation for pre-defining the significance level is that then the testing procedure has the following property:
If the null hypothesis was true, then in repeated experiments we would falsely “reject” the null hypothesis
for a proportion α of the experiments. By controlling α, we can control the level of false rejections of the
null hypothesis. If α = 0.05, then we would make a false call in about 1 out of every 20 of those experiments
where the null hypothesis was actually true; if α is 0.001, then about 1 out of every 1000 cases where the
null hypothesis is true were falsely rejected etc. The significance level α of the testing procedure is also
called Type I error rate, since a false rejection of the null hypothesis is called a type I error. “Type I error:
Falsely declaring an effect found when there truly is no effect.”

Let’s draw a picture of the null distribution of 100 flips of a fair coin, (analogous to twin pairs where higher
BMI an psoriasis status go together), and mark the two-sided significance thresholds for values of α = 0.05,
0.001 and 1e-8.

n = 100 # twin pairs
p0 = 0.5 # null hypothesis value for proportion
x = 0:n # plotting range 0,...,n
#Plot the null distribution
plot(x, dbinom(x, n, p0), t = "l", lwd = 2, main = "null distribution Bin(100,0.5)",

xlab = "observed count", ylab = "probability", xaxs = "i", yaxs = "i")
#Plot thresholds corresponding to different significance levels using different colors
sig.threshold = c(0.05, 0.001, 1e-8)
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cols = c("blue", "green", "orange")
for(ii in 1:length(sig.threshold) ){ #goes through all sig.thresholds

abline(v = qbinom(sig.threshold[ii]/2, n, p0),
col = cols[ii], lwd = 2, lty = 2) #mark left cutpoint

abline(v = qbinom(1-sig.threshold[ii]/2, n, p0),
col = cols[ii], lwd = 2, lty = 2) # mark also right cutpoint

}
legend("topright", col = cols, legend = sig.threshold, lwd = 2, lty = 2)
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We see that in order to get a significant deviation from the null hypothesis at significance level 0.05, we need
to have either <40 or >60 successes. On the other hand, to get statistical significance at level 1e-8, we would
need as extreme a result as <22 or >78 successes. This reflects the fact that we need much more evidence
against the null in order to reject the null hypothesis at level 1e-8 than we need to reject the null at level
0.05. Consequently, we will make less Type I errors if our significance level is 1e-8 than if it is 0.05. But at
the same time, at level 1e-8, we will miss some real deviations from the null hypothesis that we would detect
at level 0.05. That is, we do more Type II errors at a lower significance level than at a higher significance
level. “Type II error: Not rejecting the null hypothesis when it does not hold.”

Typically, a significance level is chosen purely by Type I error rate, that is, by our tolerance for false rejection
of the null hypothesis. This tolerance varies between contexts. In clinical trials, the significance level could
be 0.05, but, for example, in genome-wide analyses we get excited about a new association between a genetic
variant and a disease only when it reaches a significance level 5e-8 = 0.00000005! As another example,
in 2012, the physicists claimed that they had “found” the Higgs’ boson after they had gathered statistical
evidence that reached their “5 sigma rule” (observation is 5 standard deviations away from the null hypothesis
value) that corresponds to a significance level of 6e-7.

Rationale for such differences could be that, in a clinical trial, we only study one hypothesis (a therapy
works) that possibly already has some prior evidence why it has been developed in the first place. Thus, we
do not require a lot of additional statistical evidence at that point to get to the next step of the process,
and we do not want to make a Type II error and miss a promising new therapy. In genome-wide analyses,
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we are starting with a fishing experiment where we have millions of genetic variants and no prior evidence
of any real association with diseases. Thus, we need a lot of statistical evidence to start believing that this
one variant (out of millions of possible ones) is truly associated with the disease. Finally, with the Higgs’
boson, we again have only one hypothesis to test, but here the price of making a wrong claim (Type I error)
is large: Physicists don’t want to publish a result about existence of a new particle unless they are (very)
certain. Hence, they require much more statistical evidence from their experiment than clinical trials do.

Examples 5.2.

1. Your null hypothesis is that a coin is fair (p = 50%). If you toss the coin n times and count the number
of heads, what are the critical points below and above the null value 50% at which the outcome starts
showing statistically significantly that the coin is biased, when

(i) n = 10, α = 0.05

(ii) n = 100, α = 0.05

(iii) n = 10, α = 0.0001

(iv) n = 100, α = 0.0001.

p = 0.5
ns = rep(c(10, 100), 2)
a = rep(c(0.05, 0.0001), each = 2)
for(ii in 1:length(ns)){ #for-loop over 4 sets of parameters n and alpha

print(paste("n =",ns[ii],"alpha =",a[ii],": at most",
qbinom(a[ii]/2, ns[ii], p) - 1,"or at least",
qbinom(1 - a[ii]/2, ns[ii], p) + 1))

}

## [1] "n = 10 alpha = 0.05 : at most 1 or at least 9"
## [1] "n = 100 alpha = 0.05 : at most 39 or at least 61"
## [1] "n = 10 alpha = 1e-04 : at most -1 or at least 11"
## [1] "n = 100 alpha = 1e-04 : at most 30 or at least 70"

We see that, for n = 10, no observation can ever reach the significance level of α = 0.001 as the critical
points are outside the range 0,. . . ,10.

2. Compute these critical points for a fixed α = 0.05 as n goes through 10, 50, 100, 200, . . . 1000.
Compute which proportions they correspond to and show the results on screen.

a = 0.05
ns = c(10, 50, seq(100, 1000, 100))
res = c() #empty vector that will be filled to be a matrix with 3 columns:
#1st col = n; 2nd col = lower critical point; 3rd col = upper critical point
for(ii in 1:length(ns)){

res = rbind(res,
c(ns[ii], qbinom(a/2, ns[ii], p) - 1, qbinom(1 - a/2, ns[ii], p) + 1))

}
res[,2:3] = res[,2:3]/res[,1] #propotions are columns 2 and 3 divided by column 1
res #show results on screen
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## [,1] [,2] [,3]
## [1,] 10 0.1000000 0.9000000
## [2,] 50 0.3400000 0.6600000
## [3,] 100 0.3900000 0.6100000
## [4,] 200 0.4250000 0.5750000
## [5,] 300 0.4400000 0.5600000
## [6,] 400 0.4475000 0.5525000
## [7,] 500 0.4540000 0.5460000
## [8,] 600 0.4583333 0.5416667
## [9,] 700 0.4614286 0.5385714
## [10,] 800 0.4637500 0.5362500
## [11,] 900 0.4666667 0.5333333
## [12,] 1000 0.4680000 0.5320000

We see that in order to get a significant result at significance level 0.05, with the sample size of 10, we need
<20% or >80% success rate, while with the sample size of 1000, it is enough if we get a success rate <47% or
>53%. The sample size really matters when it comes to determining which point estimate value is significant
at a fixed significance level!

Statistical Power

Statistical power is a probability of detecting a given effect size, with a given sample size at a given significance
level.

Typical context where statistical power comes up is the following. Let’s say that in order to be convinced
that there is an association between psoriasis and BMI we want to see a P-value of 0.001 (or less) if true
parameter value is p = 0.70 (or larger), when we compare the observed twin-pair data to the null hypothesis
value of p = 0.50. How large a study should we collect in order that the power with these parameters is at
least 90%?

Before computing the power, let’s add to our picture of the significance regions also the distribution of
the alternative hypothesis that is defined by a non-null value of the parameter p. Here we consider the
alternative hypothesis to be Bin(100, 0.7).

n = 100 #twin pairs
p0 = 0.5 #null hypothesis value
x = 0:n #plotting range 0,...,n
#Plot the null distribution
plot(x, dbinom(x, n, p0), t = "l", lwd = 2, main = "null Bin(100,0.5); altern Bin(100,0.7)",

xlab = "observed count", ylab = "probability", xaxs = "i", yaxs = "i", ylim = c(0,0.09))
#Plot thresholds corresponding to different significance levels using different colors
sig.threshold = c(0.05, 0.001, 1e-8)
cols = c("blue", "green", "orange")
for(ii in 1:length(sig.threshold)){

abline(v = qbinom(sig.threshold[ii]/2, n, p0),
col = cols[ii], lwd = 2, lty = 2) #add left cutpoint

abline(v = qbinom(1 - sig.threshold[ii]/2, n, p0),
col=cols[ii],lwd = 2, lty = 2) #add also right cutpoint

}
legend("topright", col = cols, legend = sig.threshold, lwd = 2, lty = 2)
# and add the distribution under alternative hypothesis in magenta.
p1 = 0.7
lines(x, dbinom(x, n, p1), lwd = 2, col = "magenta")
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Let’s illustrate how the power calculation proceeds. For a fixed sample size n (=100), a significance level α
(=0.001) and an effect size (null p = 0.50, alternative p = 0.70) we need to

1. Find the set S of possible observations that would give a P-value smaller than α under the null
hypothesis. (Here this set consists of the values outside of the green lines.)

2. Find which proportion of the observations under the alternative hypothesis falls in set S (and hence
would give a P-value < α under the null hypothesis).

n = 100
a = 0.001
#Cutpoints for significant results at level 0.001 under the null value p = 0.5
left.cut = qbinom(a/2, n, 0.5) - 1
right.cut = qbinom(1-a/2, n, 0.5) + 1
#For observations 0...left.cut and right.cut...100 we would thus have P<0.001 for n=100 and p=0.5.
S = c(0:left.cut, right.cut:100) #Set of observations which give small enough P-value

#What is a probability of observing a value in set S, under the alternative?
#Let's sum the probabilities over the set S:
sum(dbinom(S, size = n, p = 0.7))

## [1] 0.7792578

Thus we have a power of about 80%, (more accurately 78%), to discover a deviation from the null hypothesis
(50% success rate), at significance level 0.001 (that is, with a P-value < 0.001), when the sample size is 100
and the true success rate in the population is 70%.

Let’s compare this to a ready-made function. For that we need to install.packages("pwr") as you may
have done already at Learn R part of the course material.
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#install.packages("pwr") #if you haven't done this yet, do it now
library(pwr) #load package "pwr"
#Compute power for binomial test at alpha = 0.001 and n = 100
#ES.h(0.5, 0.7) gives the "effect size" between null (0.5) and alternative (0.7) hypotheses
pwr.p.test(ES.h(0.5,0.7), sig.level = 0.001, n = 100)

##
## proportion power calculation for binomial distribution (arcsine transformation)
##
## h = 0.4115168
## n = 100
## sig.level = 0.001
## power = 0.7952125
## alternative = two.sided

This package gives power of ~80%, which agrees well with our manual calculation above. The h value in the
output is the transformed effect size that corresponds to the difference between values 50% and 70%, and it
was given by the ES.h(0.5,0.7) function call above.

We can leave also some other parameter than power away from the call to pwr.p.test and R will then
compute the missing value for us. For example, we may want to know what n should be to get power of 90%
at significance level 0.001.

#Compute n for given power by leaving out n from the parameters
pwr.p.test(ES.h(0.5,0.7), sig.level = 0.001, power = 0.9)

##
## proportion power calculation for binomial distribution (arcsine transformation)
##
## h = 0.4115168
## n = 123.4389
## sig.level = 0.001
## power = 0.9
## alternative = two.sided

The answer is that n = 124 would give power of 90% in this setting.

We can also ask values for several parameter values at a time. Let’s compute power at three significance
levels 0.05, 0.001 and 1e-8.

#Compute power for three significance levels at once
pwr.p.test(ES.h(0.5,0.7), sig.level = c(0.05, 0.001, 1e-8), n = 100)

##
## proportion power calculation for binomial distribution (arcsine transformation)
##
## h = 0.4115168
## n = 100
## sig.level = 5e-02, 1e-03, 1e-08
## power = 0.98442708, 0.79521249, 0.05309469
## alternative = two.sided

We see that we have almost full power (98%) at significance level 0.05, but little power (5%) at significance
level 1e-8.
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Ingredients of statistical power

One-sample t-test power with pwr.t.test() Let’s consider continuous data. We have a biomarker
whose mean value in the population studied (e.g. men aged 40-50 years) is 6.7 (sd = 1.0). We want to
evaluate whether this biomarker is elevated in a particular subset of men (e.g. smokers). What is the power
to detect 0.5 standard deviation unit difference from the population mean at the significance level of 0.01 if
we had collected 20, 50 or 100 individuals from the target population?

#We assume that SD in the target population is the same as in the general population.
# (While not necessarily true, but how could we know otherwise before collecting data.)
#Effect size for pwr.t.test is given as the difference in the means divided by
# the standard deviation that is assumed the same in both groups
# type="one.sample" means that we collect one sample and compare that to a KNOWN mean value.
pwr.t.test(d = 0.5/1.0, sig.level = 0.01, n = c(20, 50, 100),

type = "one.sample", alternative = "two.sided")

##
## One-sample t test power calculation
##
## n = 20, 50, 100
## d = 0.5
## sig.level = 0.01
## power = 0.2973461, 0.7993369, 0.9903473
## alternative = two.sided

So when both the effect size (difference between the means of the two populations) and the significance level
(here 0.01) are kept fixed, we see that as n grows, it is easier to detect that the subpopulation is different
from the overall population with the statistical significance required.

We can use pwr package to plot a figure of the sample size and power by applying plot.power.htest() to
the output of pwr functions.

plot.power.htest(pwr.t.test(d = 0.5/1.0, sig.level = 0.01, power = 0.9,
type = "one.sample", alternative="two.sided") )
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Here the “optimal sample size” corresponds to the value of 90% given above in the function call.

If we keep n and the significance level fixed and increase the effect (the difference between the means of the
populations), then power will increase because larger effects will generate data sets that look more and more
extreme under the null, and hence will more easily lead to smaller P-values and more significant results than
smaller effects.

pwr.t.test(d = c(0.5, 1.0), sig.level = 0.01, n = 20,
type = "one.sample", alternative = "two.sided")

##
## One-sample t test power calculation
##
## n = 20
## d = 0.5, 1.0
## sig.level = 0.01
## power = 0.2973461, 0.9324954
## alternative = two.sided

Finally, if we keep n and the effect size fixed and ask for more and more stringent statistical significance,
that is, results that would be more and more unlikely to appear under the null hypothesis, then power will
decrease because we will consider only more and more extreme observations as being statistically significant.

pwr.t.test(d = 1.0, sig.level = c(0.01, 1e-6), n = 20,
type = "one.sample", alternative = "two.sided")

##
## One-sample t test power calculation
##
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## n = 20
## d = 1
## sig.level = 1e-02, 1e-06
## power = 0.93249537, 0.04705335
## alternative = two.sided

Examples of power calculations with pwr package

Let’s go through some settings that pwr package can handle. https://cran.r-project.org/web/packages/pwr/
vignettes/pwr-vignette.html

Two sample proportion test with pwr.2p.test() We expect that a new treatment might reduce the
proportion of recurrent infections from about 20% (which is the current rate) to about 10% in a specific
hospitalized group of individuals. How large a randomised trial should we run in order to have good power
to detect this difference at a significance level of 0.05? (Note that here we do not expect 20% to be the exact
value but we will estimate the proportion also in the placebo group. This is a different scenario from an earlier
one-sample proportion test that compared the data against a fixed null value of 50% using pwr.p.test.)

pwr.2p.test(h = ES.h(0.2, 0.1), power = 0.90, sig.level = 0.05)

##
## Difference of proportion power calculation for binomial distribution (arcsine transformation)
##
## h = 0.2837941
## n = 260.9272
## sig.level = 0.05
## power = 0.9
## alternative = two.sided
##
## NOTE: same sample sizes

So we would need about 261 individuals in both the treatment and in the placebo group.

What if we had a fixed size of the treatment group of n1 = 230 set by the available resources, but could
collect a larger placebo group. How large would the placebo group need to be for 90% power at significance
level of 0.05?

pwr.2p2n.test(h = ES.h(0.2, 0.1), n1 = 230, power = 0.90, sig.level = 0.05)

##
## difference of proportion power calculation for binomial distribution (arcsine transformation)
##
## h = 0.2837941
## n1 = 230
## n2 = 301.4638
## sig.level = 0.05
## power = 0.9
## alternative = two.sided
##
## NOTE: different sample sizes

We would need about n2 = 302 individuals in the placebo group.
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Chi-square test for contingency table with pwr.chisq.test() Suppose that patients are treated
with certain therapy and the outcome is recorded as Good, Satisfactory or Bad. It is observed that about
20% of people fall into Bad category and about 40% to Good category. MD expects that the treatment works
better for men than for women and assumes that the proportion of men in Bad is 30% while for women it
is only 10%. However, the doctor expects that the Good category seems similar in both sexes. How large a
sample (with equal number of men and women) would one need to see this effect at significance level 0.01
using a Chi-square test for a 2x3 table?

#Let's generate 2x3 matrix of probabilities for the alternative hypothesis.

p.alt = matrix(c(0.5*0.4, 0.5*(1-0.1-0.4), 0.5*0.1, #1st row is for women
0.5*0.4, 0.5*(1-0.3-0.4), 0.5*0.3),
dimnames = list(c("M","F"), c("Good","Satisf","Bad")),
byrow = TRUE, ncol = 3, nrow = 2)

p.alt

## Good Satisf Bad
## M 0.2 0.25 0.05
## F 0.2 0.15 0.15

# Effect size for chi-square test is given by ES.w2 function applied to p.alt.
# Degrees of freedom of the chi-square test is (Rows-1)x(Cols-1), here (2-1)x(3-1)
pwr.chisq.test(ES.w2(p.alt), df=(2-1)*(3-1), sig.level = 0.01, power = 0.90)

##
## Chi squared power calculation
##
## w = 0.2738613
## N = 232.3559
## df = 2
## sig.level = 0.01
## power = 0.9
##
## NOTE: N is the number of observations

We would need about 240 individuals, 120 males and 120 females. Let’s see the power curve.

plot.power.htest(pwr.chisq.test(ES.w2(p.alt), df = (3-1)*(2-1), sig.level = 0.01, power = 0.90))
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Chi squared power calculation

effect size w = 0.273861278752583 
df = 2 
alpha = 0.01

optimal sample size 
N = 233
N is the number of observations

One sample t-test with pwr.t.test( ,type = "one.sample") We want to test whether a target pop-
ulation treated with medication M shows a decrease in risk factor R. Suppose that the mean in the general
population is 4.1 (sd 0.8) and we measure a group treated with M 12 months after starting the therapy.
How large the group needs to be in order to have 90% power to find a difference in mean of 0.3 at 2-sided
significance level of 0.05?

#NOTE: use "one.sample" to compare a target population to a fixed reference value (here mean of 4.1)
# and give the effect size parameter d in units of SD of the general population (here 0.8)
pwr.t.test(d = 0.3 / 0.8, sig.level = 0.05, alternative = "two.sided",

power = 0.9, type = "one.sample")

##
## One-sample t test power calculation
##
## n = 76.66599
## d = 0.375
## sig.level = 0.05
## power = 0.9
## alternative = two.sided

Two sample t-test with equal sample sizes with pwr.t.test(, type = "two.sample") We do the
same comparison but collect equal sized groups from the general population and from the treated population.
How large groups do we need?

#NOTE: use "two.sample"" to compare groups from two populations
pwr.t.test(d = 0.3 / 0.8, sig.level = 0.05, alternative = "two.sided",

power = 0.9, type = "two.sample")
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##
## Two-sample t test power calculation
##
## n = 150.4057
## d = 0.375
## sig.level = 0.05
## power = 0.9
## alternative = two.sided
##
## NOTE: n is number in *each* group

Note how we need double the sample size in each group compared to the one-sample test above. This is
because now we need to estimate means of two populations and they both come with some uncertainty that
further accumulates in the calculation of the difference between the populations. Hence, we need larger
sample sizes in this case than when we compared an estimated mean of one population against a fixed
reference value.

Two sample t-test with unequal sample sizes with pwr.t2n.test() What if we had a fixed set of
200 individuals from the general population measured and we need to collect a sample from the treatment
population. How large a sample?

#NOTE: We use "pwr.t2n.test to have different n in the two samples
pwr.t2n.test(d = 0.3 / 0.8, sig.level = 0.05, alternative = "two.sided", power = 0.9, n1 = 200)

##
## t test power calculation
##
## n1 = 200
## n2 = 120.4432
## d = 0.375
## sig.level = 0.05
## power = 0.9
## alternative = two.sided

plot.power.htest(
pwr.t2n.test(d = 0.3 / 0.8, sig.level = 0.05, alternative = "two.sided", power = 0.9, n1 = 200))
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t test power calculation

tails = two.sided 
effect size d = 0.375 
alpha = 0.05 
n1/n2 =  0.62

optimal sample size 
n = 200 + 120.443181038295 = 320.443181038295

Example 5.3. Selective laser trabeculoplasty versus eye drops for first-line treatment of ocular hypertension
and glaucoma (LiGHT): a multicentre randomised controlled trial in Lancet 2019 compares two treatments
(laser trabeculoplasty and eye drops) for patients with open angle glaucoma or ocular hypertension and no
ocular comorbidities. The primary outcome was health-related quality of life at 3 years, assessed by EQ-5D.
They write: “We calculated that a sample size of 718 patients was needed to detect a difference of 0.05
in EQ-5D between the two groups using a two sample t test at the 5% significance level with 90% power,
assuming a common standard deviation of 0.19 and 15% attrition.”

Let’s see if we agree. Here the mean difference should be input in the units of SD and is d = 0.05/0.19.

pwr.t.test(d = 0.05/0.19, power = 0.9, type = "two.sample",
alternative = "two.sided", sig.level = 0.05)

##
## Two-sample t test power calculation
##
## n = 304.4178
## d = 0.2631579
## sig.level = 0.05
## power = 0.9
## alternative = two.sided
##
## NOTE: n is number in *each* group

Thus, each sample should have 305 individuals and hence, in total, we would need 2 · 305 = 610 individuals.
If we take into account that 15% of the recruited individuals may leave the study (15% attrition rate), then
we need to recruit even a larger sample n for which 0.85 · n = 610. Thus, we need
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ceiling(610 / 0.85) #ceiling function rounds up the values to next integer

## [1] 718

individuals, just like they reported.

Power in designing an experiment

If the experiment does not have enough power to answer the question of interest, then we are unlikely to learn
much from it. And even worse, if we do not understand that a reason for our test not reaching statistical
significance may be small power of the study, then we may wrongly conclude that it has been “statistically”
shown that the effect does not exist (see below). We should avoid designing underpowered studies.

Power when interpreting the results

In a cohort of 200 female apendicitis cases a new scoring system was found to predict the severity of the
condition: difference between the means of the groups of severe and benign cases were 10 (95%CI: 5.2,. . . ,14.0)
with a P-value of 0.001. You collected 30 male cases and the corresponding values were 7 (-5.0,. . . ,20.4)
with P = 0.56. Does this mean that the apendicitis scoring system works well for women but not for men
because in women the difference was statistically significant at level 0.001 but in men it was not significant
even at level 0.05?

If our experiment is underpowered to answer the question of interest, then a negative result (the one that
does not find a statistically significant difference between groups/treatments) does NOT prove that there is
no difference. “Absence of evidence is not evidence of absence.” http://www.bmj.com/content/311/7003/
485.full

If we have designed an experiment with high power to detect an effect, but still we don’t see a statistically
significant effect, then we can conclude that the effect of that size does probably not exist. However, it is
still possible that some smaller effects may exist.

If we have really large studies, we can find statistically significant effects between almost any two populations.
The more relevant question is that which sizes of effects have any practical importance. For example, even
if we can show by using very large samples that the prevalence of MS-disease in people born in April (say
risk of 11/10000) is statistically significantly higher than those born in October (say risk of 10/10000) this
does not have much practical importance since the increase in absolute risk is tiny. Scientifically though,
such observations may be interesting and open up new avenues for understanding the disease.
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