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META-ANALYSIS

Suppose that we have two independent estimates X; = 1.0 and
X, = 2.0 of some unknown quantity x.

Additionally, we are told that the “precision” of the first estimate
is twice that of the second one.

We combine the two estimates by weighting the first one twice
as much as the second and hence our combined estimate is

c R=(2%, + %)/ (2+1)=(20+20)/3 =133
This is the fixed-effects meta-analysis approach

» “Precision” is |/SE2, that is, the inverse of the variance of the estimator




INVERSE VARIANCE WEIGHTED (IVW)
FIXED-EFFECT (F) ESTIMATOR

wupfy + ... + wiiPg

wi + ... + wWgy
1

SE;r = (wy+ ... +wg;) 2, where the weight

1
——— 1s the inverse-variance of study k.

studies I,...,K

PLF

Wkl =

* Each study is weighted by its precision ( = inverse of the variance)

* Precision of the combined estimate is the sum of the precisions of the
contributing estimates

> For binary outcomes, 3 is on the log-odds scale as in logistic
regression output, not on the odds-ratio scale
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Forest plot for the meta-analysis of the
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left ventricular diastolic internal
dimension (LVDD)
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IS FIXED-EFFECTS ASSUMPTION
REASONABLE?

Suppose we have two estimates.

One is highly significant while
the other is not.

We want to compare the same
effect model with a model
where the effect is present only

0.0643 in one of them.
p=0.

How can we do that properly?
These P-values alone cannot tell
whether the effects are similar
or different!
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IS FIXED-EFFECTS ASSUMPTION

Suppose we have two

We write each of the
possible explanations of the
data in terms of a statistical
model and compare how
well each of the models
describes the data by using

comparison framework.

REASONABLE?
p=3.8e-08 estimates.
i ——
| p=0.0643
: :
| a Bayesian model
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effects



In GWAS 4
we compared
model E

and

model N

for one SNP.

BUILDING MODELS FOR 2 EFFECTS

N: (null model)
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Here we have
two SNPs and
build joint
models for them.
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HOW WELL THE MODELS EXPLAIN THE DATA!?

In our example the
estimates were similar

1.0
1.0

\ but SE of 8, was much larger.
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Same effect model is a
better explanation here.
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density

RELATED EFFECTS MODEL

Example data from REL model
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ISCHEMIC STROKE AND HDAC9 SNP

Type Cases

LVD 844 1.42 (1.28-1.57) 2e-11

SVD 580 1.13 (1.00-1.28)  0.06

CE 790 1.10 (0.98-1.23) 0.12

LVD = large vessel disease
SVD = small vessel disease
CE = cardioembolic stroke
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CHR X DOSAGE COMPENSATION

One of the female's X chrs in each cell is inactivated

To balance difference in chr X number between the sexes
(dosage compensation)

Inactivation is not complete, 15%-25% of genes escape
from it to some degree

Code female genotypes as 0,1 and 2 and male genotypes as 0

B MALE
0.05 0.10 0.15

and 2
If there is full dosage compensation (FDC) i.e. complete X , I ,
inactivation, then effect size in males and females is equal 0‘05[3 FEMALE

If there is no dosage compensation (NDC) i.e.no X
inactivation, then the effect size in females is twice the
effect size in males
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Tukiainen et al. 2014 PLoS Gen

We have 3 chr X associations with
Insulin levels or with height.

One of them (in ITM2A gene) seems
to escape dosage compensation while
the other two seem to follow FDC.
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COVID-19 HOST GENETICS INITIATIVE

COVID 19-HGI Nature 2022
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— = SUSCEPT. / Question:

Which variants affect susceptibility to infection

and which severity of the disease?

Basis for inference are differences between effect sizes
from infection GWAS and hospitalization GWAS.
Figure defines line models for susceptibility and severity
variants, and variants that affect both.
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COVID-19 HGI effect sizes from hospitalization (HOS) GWAS and infection (INF) GWAS for 23 variants with 95%
confidence intervals. Three line models with 95% regions are shown by coloured lines. Variants with posterior probability
>95% in one of the models are coloured according to the corresponding model. Three variants are

labelled and posterior distributions of their assignment probabilities are shown in panel B.



POLYGENIC SCORES

Polygenic score, “PGS” @%%
Polygenic risk score,“PRS” : Q%QQ%Q@ N
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Use GWAS results to predict external individuals’ risk for a disease from his/her genotypes.
Figure: NIH



(FUTURE) USES OF GENETIC SCORES

From birth:
Risk prediction

Early symptoms,
prodromal phase

Help in prevention
* lifestyle change
* screening programmes

To support
diagnosis

Prognosis:

prediction of
Treatment disease course
decision-making and outcome

How best to treat this person?

Lewis & Vassos, Genome Medicinel 2: 44 (2020)



https://genomemedicine.biomedcentral.com/
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a. Distribution of PGScap in the UK Biobank testing dataset (n = 288,978).The x axis represents PGScap, with values

scaled to a mean of 0 and a standard deviation of | to facilitate interpretation.

Shading reflects the proportion of the population with three-, four-, and fivefold increased risk versus the remainder of
the population.The odds ratio was assessed in a logistic regression model adjusted for age, sex, genotyping array, and
the first four principal components of ancestry. b, PGScap percentile among CAD cases versus controls in the UK
Biobank testing dataset. Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box
reflect the interquartile range, and the whiskers reflect the maximum and minimum values within each grouping.

¢, Prevalence of CAD according to 100 groups of the testing dataset binned according to the percentile of the PGScap.
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GENERATING
POLYGENIC SCORES JEE

e Summary statistics e Individual-level genotype and
o Betas/ORs weights in PRS phenotype data
( calculation » Often small sample size
* Take allelic effect estimates ( ) from ac

Both data sets QCed as standard in GWAS

* Some QC requires special care in PRS (e.g., sample overlap, relatedness
and population structure)

\.* Retain set of SNPs that overlap between base and target data

GWAS

* ldeally causal effects estimated by multiple
regression but often marginal effects used

M Processing { Data

* Take target individual’s genotypes (gil) at / LD adjustment \ / Beta shrinkage \ / P value thresholding\
thelocil=1,..L -

* Compute PRS for individual i as sum
#Loci K- e.g., clumping / K- e.g., LASSO/ridgy k PRS at muItipIer

D BMI PRS
101 24.10.43 Generate PRS
102 28.3 1.61 +

103)31.2 0.5 Perform association testing
104 19.4/3.54

................................

PRS calculation

Out-of-sample PRS testing

* K-fold cross-validation
* Test in data separate from base/target

Validate 4 Test 4

Choi et al. 2020 Nat Protocols




STANDARD PRS METHOD:
CLUMPING & THRESHOLDING

* Consider only SNPs with GWAS P-value < P, where P, is a
threshold

* From two SNPs that are in LD > r?, choose the one with a
smaller GWAS P-value

* This forms “clumps” of “significant” SNPs in LD with each other and only
picks the most “significant” ANP as the only representative of the clump

* A light version of conditional analysis where no joint regression is used
but r? value alone determines whether two SNPs have “independent
signals™

* Use marginal allelic effect estimates in PRS calculation

* Tune parameters P, and r?in a validation set to optimize
performance



CHOOSING THRESHOLDS

0.100 A

0.4

5

» o

(v l\+\°‘) . e
K ~logyo model
A¥ A P —value
5 |
4
3
2 .
T T T T T
-4 -2 0 2 4
PRS
Figure 2. Density distribution of polygenic risk score (PRS) in European
first-episode psychosis case and control subjects. PRS represents the
standardized residuals of PRS after adjustment for the 10 principal
components. Blue line indicates control subjects; red line, case subjects.
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Vassos et al. Biological Psychiatry, 2017; 81:470-477 r? threshold was fixed to 0.1 (not tuned).

Computed using PRSice software.



LDPRED
(VILHJALMSSON ET AL.AJHG 97:576-592)

(N ( 0, Z—Z ) , with prob. 6

0, with prob.1 — 6

* Assume prior A;~ 1

where h? is heritability and p is #SNPs

> Given marginal GWAS effects B = (5;) and SEs, LDpred computes

posterior expectation of the causal effects E(A |8, R, h?, 0), where R is
the LD matrix.

* In practice, LD-matrix is considered only within a certain window
* h? could be estimated externally using LMM or LDSC

* Grid of 0 values are evaluated and the best performing model is chosen

* These estimated causal effects are used as weights in PRS computation



Prediction R? Nagelkerke’s R?>  Nagelkerke’s R?

Prediction R?
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Ge et al. Nat Comm
2019



BIASES

* If PGS is used to predict phenotypes of individuals who
were included in the base GWAS, the prediction will be
dramatically over optimistic

* Make sure there is no overlap between GWAS and target sample

* Even if there is no overlap, relatedness and population
structure can cause biases

* PGS based on European ancestry GWAS do not work
equally well in other ancestries




Main pop. structure

Kerminen et al. 2019
AJHG

PREDICTING HEIGHT IN FINLAND
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COMPARING PREDICTIONS

Kerminen et al. 2019

AJHG
Predicted WF-  Observed WE-EF
EF HG HG-PS
Source GWAS Finnish Variants Adjusted Difference(cm; Difference (SD
GWAS Ancestry N Samples in PS R? 95% CI) unit; 95% CI)
GIANT European 253,288 ~23,000 27,066 14% 3.52(3.14,3.90) 1.51(1.45,1.5)
GIANT  European 230,794 0 25660  17% 1.78 (1.53,2.05)  0.70(0.62, 0.79)
NOFINNS
UK British 337,199 0 113,079  22% 0.64 (0.39,0.89)  0.23(0.14, 0.32)
Biobank
FINRISK Finnish 24919 24919 50,536 15% 1.35(1.14,1.58)  0.59(0.51, 0.67)

True East-West height difference is 1.6 cm, and these PGS should only predict < 1/3 of it.



Kerminen et al.
2019 AJHG
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“RANDOM” PGS
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. To test the suspiciously large East-West differences in predicted genetic height,
Kerminen et al. 2019 |¢jyde only SNPs that have P > 0.5, and should not be associated with height.
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RANDOM SCORES
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LACK OF TRANSFERRABILITY BTW POPULATIONS

1.00 - -

Prediction accuracy
(relative to Europeans)
o
o)

o

0.25 -

0.00 -

Martin et al. 2019 Nat Gen: Clinical use of current polygenic risk scores may exacerbate health disparities



EAS

SOME CAUSES FOR DISPARITIES
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DIVERSITY CURRENTLY LACKING IN GWAS DATA

Martin et al. 2019
Nat Gen
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Accurate Genomic Prediction of Human Height

Louis Lello, Steven G. Avery, Laurent Tellier, Ana |. Vazquez,
Gustavo de los Campos and Stephen D. H. Hsu

GENETICS October 1, 2018 vol. 210 no. 2 477-497; https.//doi.org/10.1534
/genetics.118.301267

* Start with 650,000 genetic variants and 420,000 individuals
with height measurements

* Use LASSO method for building the predictive model

* A first screening based on standard univariate regression on
the training set to reduce the set of candidate predictors from
645,589 to the top p = 50k and 100k by statistical significance

* Age and sex were regressed out from the outcome variable
(=height) and predictors and outcome were standardized



Predictive Correlation

PGS DEVELOPMENT
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Uses 22,000 non-zero coefficients Achieves r = 0.58,i.e.,R2 = 0.34 in UKB test data set

for SNPs across genome

and r = 0.54,i.e., R2 = 0.29 in ARIC data that are
independent of UKB.
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* Allele effects from CARDIloGramplusC4D GWAS (n=60,000 cases/ 120,000

controls)

* Target individuals from the UK Biobank

* l|dentifies 8% of population with 3-fold risk compared to rest

* Severe hypercholesterolemia mutations have similar risk but are <0.5% in population

Odds ratio versus
remainder of population
[ > threefold (8.0%)
B > fourfold (2.3%)
B > fivefold (0.5%)
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Prevalence of atrial fibrillation (%)

Prevalence of inflammatory bowel disease (%) ©
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PGS AND
PREVALENCE

100 groups of the testing dataset were
derived according to the percentile of the
disease-specific PGS. a—d, Prevalence of
disease displayed for the risk of

atrial fibrillation (a),

type 2 diabetes (b),

inflammatory bowel disease (c),

and breast cancer (d)

according to the PGS percentile.

Khera et al. 2018 Nat Gen



PRS AND DISEASE
ONSET

Mean difference
in years (95% CI)

* FinnGen data (N=135,000)

* PRS could inform screening
practices for cancers and other
diseases where prevention is
possible

Mars et al. 2020 Nat Medicine

CHD

<2.5
2.5-20
20-80
80-97.5
>97.5

T2D

<25
2.5-20
20-80
80-97.5
>97.5

AF
<25
2.5-20
20-80
80-97.5
>97.5

Breast cancer
<25

2.5-20

20-80

80-97.5

>97.5

Prostate cancer
<25

2.5-20
20-80
80-97.5
>97.5

68

Age at disease onset

2.13 (1.73, 2.54)
1.36 (1.20, 1.52)
0
-1.43 (-1.60, -1.27)
-4.35 (-4.84, -3.86)

4.63 (4.35, 4.91)
2.65 (2.49, 2.81)
0
-3.14 (-3.33, -2.95)
-8.81 (-9.38, -8.24)

2.48 (2.18, 2.78)
1.57 (1.43, 1.71)
0
-2.04 (-2.19, -1.88)
-6.64 (-7.15, -6.13)

2.42 (2.06, 2.77)
1.37 (1.19, 1.56)
0
-1.90 (-2.12, -1.68)
-4.89 (-5.62, -4.16)

2.14 (1.83, 2.45)
1.41 (1.24, 1.58)
0
-1.76 (-1.96, -1.56)
-5.53 (-6.18, -4.88)

1.95x10-18
2.97x10-%4
7.43x1074
2.64x10-%3

1.62x10-64
<1.00x10-100
<1.00x10-100
<1.00x10-100
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<1.00x10-100

4.49x10-13
8.95x10-32
1.55x10-85
1.18x10-"
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3.50x10-36

4.07x10-88
<1.00x10-100



UTILITY OF PRS IN CLINICAL DECISIONS
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Torkamani et al. 2018
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The number of individuals treated or
screened relative to the number of
individuals receiving a benefit from the
intervention is broken down by polygenic
risk score (PRS) tier (top 20%,

from the 20% to the 80%

~and bottom 20% of genetic risk).
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Coronary artery disease

(left — number needed to treat with

statins to prevent a heart attack

Breast cancer (middle — number of

women screened to detect incident breast
cancer)

Prostate cancer (right — positive predictive
value of prostate-specific antigen (PSA)
testing). Blue are healthy, black are unhealthy
individuals.
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Latest release: April 12, 2023

The Polygenic Score (PGS) Catalog

An open database of polygenic scores and the relevant metadata required for accurate application and evaluation.

Search the PGS Catalog

Examples: breast cancer, glaucoma, BMI, EFO_0001645

New tool!

We just released pgsc_calc: a reproducible workflow to calculate both PGS Catalog and custom polygenic scores. > See more information

Explore the Data

In the current PGS Catalog you can browse the scores and metadata through the following categories:

Polygenic Scores Traits Publications

X 3,503 P 600 (1451

Provides the SNP weights of thousands of published PGSes in a standardized format



