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The slide set referred to in this document is “GWAS 6”.

When we do a GWAS, our hope is to identify variants that point to biological mechanisms behind the
phenotypes, since by knowing those mechanisms we could understand better how each phenotype is generated
and, importantly, how harmful phenotypes could be influenced.

Often this agenda is summarized by saying that we look for causal variants, i.e., variants whose biological
functions contribute to the system that determines the phenotype of interest.

Next we look at extensions of our basic regression models that allow us to decrease the amount of both
false positives (i.e. non-causal variants labelled as interesting) and false negatives (i.e. causal variants not
labelled as interesting), by including some additional variables into the regression models. Those additional
variables, (such as sex, age or population structure), whose effects on the phenotype are not of our primary
interest, but that we may include in the analysis for other reasons, are called covariates.

To conceptually separate different settings with respect to how and why we should make use of covariates,
we define two concepts about relationships between variables:

Independence.

• Intuition: Variables Y and X are independent (in a population S) if knowing the value of one of
them does not tell anything more about the value of the other than what we can already learn by the
population distribution of the other.

• Definition: Y and X are independet (denoted by Y ⊥ X) if P (X, Y ) = P (X)P (Y ), or, equivalently,
P (Y | X = x) = P (Y ) for all values of x.

• Example: Consider a SNP and denote by A1 and A2 the 0-1 indicator of the minor allele at the
SNP in the two genomes of an individual. Assume we know that MAF is 0.3 in the population, i.e.,
P (Ai = 1) = 0.3 and P (Ai = 0) = 0.7 for i = 1, 2. The alleles in the two genomes of an individual
from the population are independent if and only if the joint probability distribution of A1 and A2 in
the population is

A1 A2 P (A1, A2) = P (A1)P (A2) X = A1 + A2

0 0 0.7 · 0.7 = 0.49 0
0 1 0.7 · 0.3 = 0.21 1
1 0 0.3 · 0.7 = 0.21 1
1 1 0.3 · 0.3 = 0.09 2

That is, the genotype X follows the Hardy-Weinberg equilibrium proportions P (X) = (0.49, 0.42, 0.09). The
independence means that even if we learned that individual i had inherited allele 1 from the father, our
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estimate of the probability that the maternal allele of i is also 1 remains 0.3, i.e., the same as it was before
we knew about the state of i’s paternal allele.

In short: Independent variables do not carry additional information about each other on top of what can be
learned from their marginal distribution in the population.

Causal relationship.

• Intuition: Variable X causally affects variable Y if a hypothetical intervention that directly changes
only the value of X but not the value of any other variable than X, will also (indirectly) affect Y .

• Example. You come home every day at 8pm and you (A) press the light switch and (B) take off your
shoes. Observation: (C) Your dark home becomes illuminated. Out of A and B, A is a causal effect
of C, since if you do everything else as usual except not hit the light switch, there will be no light.
However, B is not a causal effect of C since if you do everything else as usual except that you leave
your shoes on, there will still be light.

• Warning: Causality is a thorny concept that we can’t quite ever define precisely at the same level
of mathematical rigor as we can do with other concepts in statistics. However, “causality” is what we
would like to have in the end, for example, when we aim to build an effective medical intervention, and
therefore we need to educate our intuition and understanding about what that causality means.
Good news is that it is easy to understand how genetic variants can causally affect traits, which is
our main business here; Things get much more complicated when we wonder what should we do with
other covariates available that can have all kinds of causal and non-causal relationships between both
the genetic variants and the traits of interest.

6.1 Confounding (“correlation does not imply causation”)

Confounder (intuitive definition). When we study the relationship between a predictor X and an
outcome Y , a confounder Z is a variable that is independently associated with X and Y and can therefore
cause a spurious association between X and Y in an analysis that ignores Z.

confounder Z

X Y

Z
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The mantra “correlation does not imply causation” means that the observed association / correlation between
X and Y could be due to a third variable Z that is associated with both X and Y, and hence an X-Y association
can appear even without any causal relationship between X and Y. And indeed, this is how most correlations
are: Not causal.

Confounding in the Catalogue of Bias.

Example 6.1. If in a heart disease case-control GWAS, the cases are heart disease patients from Helsinki
and controls are population samples from the Estonian biobank, then a standard GWAS analysis comparing
allele frequencies between cases and controls would indicate statistical differences throughout the genome.
However, these associations would not be only heart disease related biologically causal signals, but also
spurious associations caused by genetic population structure. Indeed, all variants that have different allele
frequencies between Finland and Estonia would show an association with case-control status in this sample,
independent of whether the variant has anything to do with the biology of heart disease. Here population
structure (Z) between Finland and Estonia is a confounder that is associated with both the SNP frequencies
(X) and the outcome (Y). Z is associated with X because population membership affects allele frequencies
and Z is associated with Y because our case-control sample was collected in such a way that there is an
association with case status and population label (cases were from Helsinki, controls were from Estonia). This
exampe is a caricature of a badly designed case-control GWAS that suffers from the population stratification
problem (Slides 2-4).

Example 6.2. Since there is a difference (of about 1.5 cm) in average (sex and age adjusted) adult height
between East and West Finland, and there is a relatively strong allele frequency gradient between EF and
WF, any GWAS on adult height with Finnish samples that does not account for the confounding effect of
population structure, risks producing false positives. Note that since variation in height is to a large part
genetic, it my well be that some of the E-W allele frequency differences are actually causing some of the
observed height differences, but the interpretation of the results would be difficult. This is because the
known population structure would confound the results for all those variants that are not biologically linked
to height and result in false positive association, and the population structure would also bias the effect
estimates at the true height variants.

What can we do with such confounders? The idea is that the analyses should be stratified according
to the possible levels of the confounder. For example, if we have samples from Finland and from Estonia, we
should do separate analyses in both countries and combine the results. The confounder cannot confound the
results when all allele frequency comparisons are done among samples that share the level of the confounder,
e.g., the two levels of confounder could be having a Finnish background or having an Estonian background.
(But note that in Example 6.1, the study design is such that we would have no power left after adjusting for
population label because we had no controls from Finland and no cases from Estonia! See slides 6-9 for a
more realistic example.) More generally, this idea of stratifying the analysis by the levels of the confounder is
implemented by including the confounders as covariates in the GWAS regression model. Then we talk about
adjusting the analysis for the covariate. Technically, multi-level discrete confounders are expanded as
indicator variables, one per each level of the confounder, and continuous confounders are simply included as
continuous covariates in the regression model. To understand the confounding from regression model’s point
of view, let’s define it more precisely.

Confounder (mathematical definition for GWAS setting). Suppose that for fixed values of µ, β and
γ and a joint distribution of the random variables X, Y and Z in a population, the phenotype Y truly follows
the regression model M:

Model M: Y ∼ µ + Zγ + Xβ.

We call the covariate Z a confounder of the association between X and Y , if β = 0 in model M, but, when
the covariate Z is omitted and the association between X and Y is described by a simpler model M’:

Model M’: Y ∼ µ′ + Xβ′,

then β′ ̸= 0.

Essentially, this definition says that a confounder is a variable whose omission from a GWAS regression
model will cause a spurious association between the genotype and the phenotype. For example, when the
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population structure (Z) is included as a covariate in a height GWAS in Finland (Example 6.2), it explains
away some of the east-west difference in height in Finland. Consequently, those genetic variants (X), whose
apparent association with height (Y) is only through their geographic allele frequency differences, will not
show association in this model (of type M) where population structure is already explicitly included as a
covariate. However, when the population structure variable is omitted from the model (of type M’), then all
variants that have east-west difference in allele frequency, will also show a statistical association with height,
even if their height-association is only through the link between population structure and height and not
through a direct biological effect. Thus, population structure is a confounder, and we must include it as a
covariate or otherwise we get false positives.

Note that a more general definition of confounding could say that a confounder of X-Y association is any
variable that when omitted from the model will change the effect estimate of X on Y (i.e. β′ ̸= β). Our
GWAS-motivated definition is narrower: We are only worried about cases where there is no true effect
(β = 0), but where a regression model without appropriate covariates will mislead us by producing an effect
(β′ ̸= 0).

(A word of warning: Even though we always want to avoid confounding, we still shouldn’t always include
covariate Z in the model simply because Z is associated with both X and Y ! There is a possible problem of
collider bias there, that we will study later.)

6.1.1 Detecting confounding The large scale of data in GWAS provides us with an opportunity to assess
whether a genome-wide confounding effect seems to be present. We should be worried, if there is a too large
a number of apparent associations throughout the genome. A traditional way to assess this has been to look
at the QQ-plot at the middle point of the distribution (at the median of the test statistic values) and compare
it to the corresponding value under the null hypothesis that there are no true associations at all. The ratio
of the median of the observed distribution to the theoretical median of the null distribution is called the
genomic control parameter λ. The test statistic used in this QQ-plot is often the chi-square statistic of
association, but also -log10(P-value) is used. If λ is much > 1, that could indicate that we have a problem
with some omitted confounder (such as population structure) that causes elevated signals across the genome.
Unfortunately, this approach is not that useful anymore with very large and statistically powerful GWAS,
since there λ can elevate substantially from 1 already because of a true polygenic signal distributed across
the genome. Instead, LD-score regression (that we will discuss later) is a better way to indicate whether we
seem to have missed some important confounders.

Genomic control (GC). Many GWAS have used genomic control to adjust for observed inflation (i.e. too
many too large values) of the test statistic distribution. The procedure is to divide each chi-square test
statistic value by the GC parameter λ (defined above) and this way force the observed test statistic dis-
tribution to match the null expectation at the median value. Such method can reasonably adjust for a
confounder only if that confounder affects all variants in a similar way. However, considering population
structure as an example confounder, some variants are much more geographically stratified than others and
hence an adjustment of all variants by the same constant λ is unlikely to be an appropriate solution. GC
also keeps the order of the variants the same before and after its application, which seems a too inflexible
property to properly model that confounders can work differently with different variants. Furthermore, GC
can give a misleading impression that there is no confounding left because the “corrected”” distribution has
λ = 1, whereas in reality GC may have severely undercorrected the most biased variants and overcorrected
the less biased variants. Sometimes GC has also been applied to the standard error estimates by multiplying
them with

√
λ, which has the same effect on the test statistic as dividing the chi-square statistic by λ. This

approach again reveals the inflexibility of GC: The effect size estimates are not adjusted at all even though
it feels that they should be adjusted according to each variant’s correlation with the confounders.

As opposed to GC, regression models that include a confounder as covariate allow each variant to be adjusted
according to how correlated the variant is with the covariate.

6.1.2 Avoiding confounding How can we know that we have adjusted for all the relevant confounders?
Unfortunately, we can’t ever be sure about this in an observational study. But we can at least avoid the
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common pitfalls causing typical confounding effects in GWAS:

• Population structure that is associated with the phenotype will cause inflated P-values across the
genome and this can be dealt with by including population structure as a covariate or by using mixed
models (that we will talk about later).

• Sample ascertainment that has been done based on phenotype causes a risk that different phenotypic
groups may not match well each other with respect to their genetic backgrounds, because different
phenotypic groups may have been collected from different places/times/circumstances. Case-control
sampling is the most prominent example of this potential problem. This does not mean that case-
control sampling is not a good strategy. It just means that it opens up possible problems that must be
taken care of. In GWAS setting, confounding due to sample ascertainment can be seen as a subcategory
of general confounding by population structure.

• Genotyping of the samples has been done in batches that are not independent of the phenotype,
which causes a risk that errors and biases in sample handling and genotyping process lead to spurious
genotype-phenotype associations, because such biases may affect differently different batches, and
different batches have different phenotype distributions. For example, if cases have been genotyped
in Lab 1 in 2009 and controls in Lab 2 in 2015 then technical differences in genotyping process could
lead to spurious genotype-disease associations. Often genotyping batches are used as covariates, which
adjusts the analysis for the differences in the phenotypic means of the batches, but this strategy cannot
be followed if the case-control status is to a large part associated with batches. In those cases, one
simply needs to do particularly careful quality control between the genotyping batches. To avoid the
batch problem, ideally, one should randomise the samples to genotyping batches, because then the
batch could not be associated with the phenotype. Unfortunately, this is rarely possible in practice,
since studies tend to combine many sources of existing genotyping data rather than genotyping all
samples anew.

Example 6.3. Confounding by population structure. Let’s assume that our individuals are geograph-
ically spread around the line from Turku (in Southwest Finland) to Kajaani (in Eastern Finland) that is the
gradient of the major population structure in Finland. Each individual i has a coordinate ui ∈ [0, 1], where
0=Turku, 1=Kajaani. For each variant k, we determine its allele 1 frequency on the line by first sampling a
Turku-Kajaani difference dk ∼ Uniform(−0.5, 0.5), and then sampling Turku frequency tk ∼ Uniform(0.5, 1),
if dk < 0; and tk ∼ Uniform(0, 0.5), if dk ≥ 0. Now allele 1 frequency at position u ∈ [0, 1] is tk + u · dk. So
allele frequency changes smoothly from tk in Turku to tk + dk in Kajaani.

Let’s simulate p = 1000 such variants for n = 1000 individuals randomly picked along the line from Turku
to Kajaani.

n = 1000 #individuals
p = 1000 #SNPs
u = runif(n, 0, 1) #coordinates of inds
d = runif(p, -0.5, 0.5) #allele freq difference btw T and K
tu = runif(p, 0, 0.5) #when d>=0 then tu is in (0,0.5)
tu[ d < 0 ] = 1 - tu[ d < 0 ] #when d<0 then tu is in (0.5,1)
X = matrix(NA, nrow = n, ncol = p) #SNP data matrix, rows individuals, columns SNPs
for(k in 1:p){

f = tu[k] + u*d[k] #allele 1 frequency for each individual
X[,k] = rbinom(n, size = 2, prob = f) #genotypes from varying frequencies

}

Here we have a set of genotypes that carry a population structure effect.

Let’s assume that we study a phenotype Y that depends on the environment described by u as Y = u + ε,
where ε ∼ N (0, 1), but there is no direct effect of any of our p variants on the phenotype.
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y = u + rnorm(n) #phenotype has a geographical cline but no genetic effect from X
y = scale(y) #standardize trait to have mean = 0 and var = 1 for convenience
#Check how it looks like
plot(u, y, xlab = "Location from Turku to Kajaani", ylab = "phenotype", pch = 3, col = "gray")
abline( lm(y ~ u), col = "brown", lwd = 2 ) #add the regression line to plot
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So we have a cline in the phenotype where the mean increases as we move from Turku towards Kajaani.

Let’s do a “GWAS” of phenotype Y on our p = 1000 variants. We collect only P-values from this GWAS.

#collect only P-values, i.e., element [2,4] of lm's summary()
pval.1 = apply(X, 2, function(x){summary(lm(y ~ x))$coeff[2,4]})
summary(pval.1) #median of P-values should be 0.5 under the null

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000001 0.0232523 0.1213125 0.2608591 0.4376539 0.9980830

plot(1:p, -log10(pval.1), xlab = "variant", ylab = "-log10 P-value.1", col = "red")
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We have clearly inflated P-values compared to the null hypothesis as our median P-value is 0.12 while under
the null the median should be 0.5. Additionally, with 1000 null variants, we would not expect many P-values
< 0.001, but here we have a lot of those (in the picture, seen as rising above -log10 = 3).

Let’s next draw a QQ-plot to compare the observed association statistics with those expected under the
null hypothesis. We could use -log10 P-values to make the QQ-plot, but since it is traditionally done using
chisq-statistics, let’s also do it like that here. We can turn the P-values to the chi-square test statistics by
chisq = qchisq(pval, df = 1, lower = F).

#Under NULL p-values are Uniformly distributed between 0 and 1,
#hence chisq-stats are expected to be:
expect.stats = qchisq(ppoints(p), df = 1, lower = F)
obs.stats = qchisq(pval.1, df = 1, lower = F)
lambda = median(obs.stats) / median(expect.stats) #GC lambda = ratio at medians
qqplot(expect.stats, obs.stats, xlab = "chisq expected", ylab = "chisq observed",

sub = substitute(paste(lambda, "=", lam), list(lam = signif(lambda,3))),
cex = 0.8, col = "red")

abline(0,1)
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If observed P-values were an independent sample from the null distribution, then the QQ-plot would follow
the diagonal line y=x. Here it deviates strongly from the diagonal throughout the distribution, as also
measured by λ > 5. This means that there are hugely more association
in the genome than we would expected under the null. This type of an inflated QQ-plot points to confounding
by some variable omitted from the model. (Here the confounder is the geographical location).

Before we adjust the analysis for the location, let’s update our phenotype slightly so that it is also affected
by one of our SNPs.

snp.id = sample(1:p, size = 1) #Randomly choose one SNP to have an effect

#We'll make this SNP to explain about p.eff of the trait variance
p.eff = 0.015 #target variance explained
f.mean = tu[snp.id] + 0.5*d[snp.id] #allele frequency at mid point
b = sqrt(p.eff/(2*f.mean*(1 - f.mean))) #effect size corresp. to var explained = p.eff
y = scale(y + X[,snp.id]*b) #new trait is the old one added by the single SNP effect

Let’s do the association test for the updated trait and make a Manhattan plot and QQ-plot. We mark by
green ‘X’ the SNP that has the effect.

pval.2 = apply(X, 2, function(x){summary(lm(y ~ x))$coeff[2,4]})
summary(pval.2) #median would be 0.5 under the null

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000001 0.0258836 0.1335911 0.2653399 0.4517021 0.9997591

par(mfrow = c(1,2))
plot(1:p,-log10(pval.2), xlab = "variant",

ylab = "-log10 P-value.2", col = "indianred1")
#Mark the effect SNP by a green cross
points(snp.id, -log10(pval.2[snp.id]), pch = "X", col = "limegreen", cex = 1.3)
#Make a QQ-plot
obs.stats = qchisq(pval.2, df = 1, lower = F)
lambda = median(obs.stats) / median(expect.stats) #GC lambda = ratio at medians
qqplot(expect.stats, obs.stats, xlab = "chisq expected", ylab = "chisq observed",

sub = substitute(paste(lambda, "=", lam), list(lam = signif(lambda,3))),
cex = 0.8, col = "indianred1")

points(expect.stats[p + 1 - rank(obs.stats)[snp.id]],
obs.stats[snp.id], pch = "X", col = "limegreen", cex = 1.3)

abline(0,1)
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Not only do we have a lot of false positives but also the true association, having a P-value ~1e-4, is masked
by the false associations due to the genetic population structure.

Let’s then use the geographical position as a covariate in the analysis.

pval.3 = apply(X, 2, function(x){summary(lm(y ~ x + u))$coeff[2,4]})
summary(pval.3) #median would be 0.5 under the null

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000143 0.2431451 0.4843497 0.5031942 0.7666718 0.9979641

par(mfrow = c(1,2))
plot(1:p,-log10(pval.3), xlab = "variant",

ylab = "-log10 P-value.3", col = "navy")
#Mark the effect SNP by a green cross
points(snp.id, -log10(pval.3[snp.id]), pch = "X", col = "limegreen", cex = 1.3)
#Make a QQ-plot
obs.stats = qchisq(pval.3, df = 1, lower = F)
lambda = median(obs.stats) / median(expect.stats) #GC lambda = ratio at medians
qqplot(expect.stats, obs.stats, xlab = "chisq expected", ylab = "chisq observed",

sub = substitute(paste(lambda, "=", lam), list(lam = signif(lambda,3))),
cex = 0.8, col = "navy")

points(expect.stats[p + 1 - rank(obs.stats)[snp.id]],
obs.stats[snp.id], pch = "X", col = "limegreen", cex = 1.3)

abline(0,1)
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What a beautiful class room example we have here! The confounder correction in the regression model gave
us:

• P-value distribution that follows the null, except for the true effect.
• Ability to see the true effect more clearly (here leading to lower P-value) after the confounding effect

has been explained away from the phenotype.

And what if we did not know each individual’s geographic location u in the first place? Then we would
adjust the analysis for the principal components (PCs) of the population structure! In practice, first 10 PCs
are often included in GWAS as the first one alone might not yet capture the relevant structure. In general,
one should check how many PCs explain the phenotype and consider including them into the model, as we
do below.
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pca = prcomp(X, scale. = T) #Make PCA
summary(lm( y ~ pca$x[,1:10] ) )$coeff

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.861268e-17 0.030824224 -9.282531e-16 1.000000e+00
## pca$x[, 1:10]PC1 2.659184e-02 0.003919903 6.783800e+00 2.012343e-11
## pca$x[, 1:10]PC2 -1.043886e-02 0.015930062 -6.552928e-01 5.124316e-01
## pca$x[, 1:10]PC3 -4.017938e-02 0.016021508 -2.507840e+00 1.230640e-02
## pca$x[, 1:10]PC4 7.878589e-04 0.016046023 4.909995e-02 9.608496e-01
## pca$x[, 1:10]PC5 2.200017e-02 0.016098531 1.366595e+00 1.720629e-01
## pca$x[, 1:10]PC6 1.604440e-02 0.016211901 9.896681e-01 3.225784e-01
## pca$x[, 1:10]PC7 -8.147639e-03 0.016241908 -5.016430e-01 6.160303e-01
## pca$x[, 1:10]PC8 -1.452559e-02 0.016300806 -8.910967e-01 3.730940e-01
## pca$x[, 1:10]PC9 2.004513e-02 0.016319913 1.228262e+00 2.196409e-01
## pca$x[, 1:10]PC10 -3.392253e-02 0.016378707 -2.071136e+00 3.860498e-02

Let’s use the first 3 since also PC3 seems to have some predictive power in addition to PC1.

[What exactly was the logic of choosing 3 PCs? As PCs are orthogonal to each other, their individual
P-values from the joint model with 10 PCs indicate whether they seem better predictors than just random
noise. As it does not harm to include some more PCs even if they are not predictive, we don’t need to be
particularly strict here with the inclusion criteria. Since someone might say that P-value of 0.01 for the 3rd
PC suggests that it is important, we just include it here. And when we include PC3, then we also include
PC2 because PC2 is expected to capture more of the genetic structure than PC3. What about PC10? Well,
we can run the analysis also with PCs 1-10 and see that the results don’t change.]

Let’s do the GWAS using PCs 1-3 as covariates and make a Manhattan plot and QQ-plot as above (sup-
pressing code from the document).
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Results are almost identical to those of the perfect location information.

Let’s check how well PC1 captures the location information u.

plot(u, pca$x[,1], xlab = "u", ylab = "PC1", col = "gray", pch = 3,
main = substitute(paste(rˆ2," = ",r.val),

list(r.val = signif(cor(u,pca$x[,1])ˆ2,2))))
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PC1 captures u very accurately, and hence here we can control for confounding by population structure
simply by adding PC1 as a covariate in the regression model.

We have seen above that we should always include potential confounders in the GWAS regression model or
otherwise we risk getting false positive genotype-phenotype associations. But what if we have a covariate
that is not a confounder? Should we include that in the model? Unfortunately, there is no simple answer to
this question and we will next look at some prominent cases.

6.2 Collider bias

Wouldn’t it be interesting if we had an autosomal variant that were associated with biological sex? In other
words, a variant in autosomal genome would have different allele frequencies in males than in females. We
don’t know of any such variant but here we keep on trying to find it with some help from a “collider” variable.

Consider a variant with MAF 0.5 in population and whose distribution is independent of biological sex. Let’s
test its effect on sex.

f = 0.5 #MAF
N = 50000 #sample N males and N females from population
y = rep(c(0,1), each = N) #"phenotype" = biological sex (0 = female, 1 = male)
x = rbinom(2*N, size = 2, prob = f) #genotypes in males and females
summary( glm(y ~ x, family = "binomial") )$coeff[2,]

## Estimate Std. Error z value Pr(>|z|)
## -0.013417702 0.008963701 -1.496893124 0.134421070

No association, as expected.

Suppose then that this genetic variant had an effect on height. Let’s say that the allele 1 increases height
by 1cm and the SD around the genotype means is 5cm. The mean height is 175cm in males and 165cm in
females. Let’s repeat the test for the genotype-sex association but let’s include height as covariate.
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z = 164 + x*1 + 10*y #mean is 164,165,166 for females with genotype 0,1,2; and +10 for males
z = z + rnorm(2*N, 0, 5) #variation with SD=5cm around the sex + genotype means for each individual
summary( glm(y ~ x + z, family = "binomial") )$coeff[2:3,]

## Estimate Std. Error z value Pr(>|z|)
## x -0.4139522 0.013596669 -30.44512 1.390148e-203
## z 0.4010095 0.002454253 163.39373 0.000000e+00

This test shows that, unsurprisingly, height is highly predictive of sex, but also, surprisingly(?), the genotype
x has now become strongly associated with sex. This raises two questions: What has just happened? and Is
that a problem?

What? A way to think about GWAS for a binary phenotype (here sex), that has been adjusted for a
covariate, is that the test is asking whether the phenotype groups (here males and females) have different
genotype distributions within a fixed level of the covariate value (here among individuals who have the same
height), and then takes a weighted average of those results over all possible levels of the covariate, where
the “weights” represent the accuracy of the results reflecting the effective sample size at each value of the
covariate.

Let’s demonstrate how the sex-specific allele 1 frequency varies by the height of the individuals, and, as a
comparison, what is the allele 1 frequency in ALL individuals. Let’s use three bins for height values, each of
length 1 cm.

cut.points = matrix(c(160,161,
170,171,
180,181),

byrow = T, ncol = 2) #bins for height
par(mfrow = c(1,4))
for(ii in 1:(1 + nrow(cut.points))){

if(ii <= nrow(cut.points)){ #this is a height stratified plot
ind.m = (y == 1 & z > cut.points[ii,1] & z <= cut.points[ii,2]) #males
ind.f = (y == 0 & z > cut.points[ii,1] & z <= cut.points[ii,2]) #females
title.txt = paste0("height in (",cut.points[ii,1],",",cut.points[ii,2],")")

}else{ #this last plot is for ALL individuals, independent of height
ind.m = (y == 1) #males
ind.f = (y == 0) #females
title.txt = "ALL"

}
barplot(matrix(

c(sum(x[ind.m])/2/sum(ind.m), # male allele 1 frequency
sum(x[ind.f])/2/sum(ind.f)), ncol = 2), # female allele 1 frequency

ylim = c(0,0.7), col = "khaki", ylab = "A1 freq",
main = title.txt, cex.main = 1.3, cex.lab = 1.3, cex.axis = 1.3, cex.names = 1.3,
names.arg = c("M","F"))

abline(h = 0.5, col="red")
}
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We see that even though the allele 1 frequency is 0.5 for ALL males and ALL females (4th panel), in every
height-stratified comparison, the allele 1 frequency is higher in females than in males.

Consider the middle bin (170,171). Males in that bin are a bit shorter than average male, so their allele 1
frequency is a bit less than the average of 0.5. On the other hand, the females in this bin are a bit taller
than average female and hence their allele 1 frequency is a bit higher than the average of 0.5.

Consider then the first bin (160,161). Not many males belong to this bin, but those who do are clearly
shorter than the males on average and hence they tend not to have height increasing alleles. Consequently,
the allele 1 frequency is much lower for these males than its population frequency. Even though also the
females in this bin are shorter than average, for them the deviation from the mean height is not that large
as for the males in this bin, and hence the drop from the population allele frequency is also less for these
females than it is for the males in this bin.

And similar argument can be made for the 3rd bin that only contains very tall women, who therefore have
a high frequency of allele 1, whereas males are only a bit above the male average.

All in all, even though there is no association between allele 1 and sex in the population, still, for any
fixed level of height, females have higher relative frequency of allele 1 than males. This creates a positive
statistical association between the height increasing allele and being female in an analysis that adjusts for
height. Given that there is no association with the variant and sex in the general population, we consider
this association misleading. This phenomenon, called collider bias, was also demonstrated in practice with
the UK Biobank data by Day et al. 2016 (slide 11).

Collider bias can create an association between uncorrelated variables X and Y if both X and Y are
causally affecting Z, and Z is used as a covariate in the regression model Y ∼ X + Z. (slide 10)
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collider Z

X Y

Z

Collider bias in the Catalogue of Bias.

This shows that when studying the association between X and Y , we shouldn’t blindly adjust for all covariates
that are associated both with X and Y , but think also what the model means in terms of what could be
causing what. We must adjust for confounders to avoid false positives but we (most likely) do not want to
adjust for colliders because such associations are not causal for the phenotype Y we are studying.

6.3. Mediation

Suppose that we study Type 2 Diabetes (Y) and we have BMI information (Z) available. We know that high
BMI is a risk factor for T2D. For now, let’s suppose that high BMI is a causal risk factor for T2D.

Let’s generate data for n = 500, 000 individuals where each unit of BMI is increasing logOR of T2D by 0.15
and where we have two variants X1 and X2 with MAF 0.5 of which X1 has a causal effect on T2D of logOR
of 0.15 and X2 has an effect on BMI of one unit per allele 1, but X2 has no direct effect on T2D.

n = 5e5 #large n to get accurate frequencies in BMI bins later
f = 0.5 #MAF
preval = 0.15 #population prevalence of T2D
mean.bmi = 27
x = replicate(2, rbinom(n, size = 2, prob = f)) #genotypes at two variants
z = rnorm(n, mean.bmi, 3) + x[,2]*1 #bmi values in the sample affected by x2
log.odds = log(preval/(1-preval)) + (z - mean.bmi)*0.15 + (x[,1] - 2*f)*0.15 #logodds of T2D depend on BMI and x1
p.t2d = exp(log.odds)/(1 + exp(log.odds)) #probability of T2D for each individual
y = rbinom(n, size = 1, prob = p.t2d) #simulate binary T2D status
table(y)/n #check that sample prevalence is reasonably close to given 'preval'

## y
## 0 1
## 0.819632 0.180368
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#Let's do association test for the variants
summary( glm(y ~ x, family = "binomial") )$coeff[2:3,]

## Estimate Std. Error z value Pr(>|z|)
## x1 0.1422925 0.005217518 27.27207 9.097332e-164
## x2 0.1461203 0.005213999 28.02461 8.147087e-173

#Let's do association test for the variants by ADJUSTING for BMI
summary( glm(y ~ x + z, family = "binomial") )$coeff[2:4,]

## Estimate Std. Error z value Pr(>|z|)
## x1 0.1467049640 0.005297922 27.6910378 8.952148e-169
## x2 0.0006037135 0.005425930 0.1112645 9.114066e-01
## z 0.1507729575 0.001284674 117.3628021 0.000000e+00

In the first model Y ∼ X1 + X2, that does not adjust for BMI, we see associations for all risk SNPs of T2D,
even for those that affect T2D risk only through their effects on BMI.

In the second model Y ∼ X1 + X2 + Z, that adjusts for BMI, we see association only for those SNPs whose
effect on T2D does not (completely) go through BMI.

Here BMI is mediating the effect of SNP2 on T2D while the T2D effect of SNP1 is independent of BMI.

mediator Z

X Y

Z

Which one is the correct model to use? Both models are correct for answering their respective questions,
which are different from each other. It is for the analyst to decide which question is more relevant: SNPs that
affect T2D, no matter which way, or SNPs that affect T2D through something else than BMI? In practice,
if we apply both models, we can learn which variants seem to mainly affect BMI and which affect T2D risk
also independent of BMI.
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Importantly, if two GWAS on T2D (or on any other trait) are compared or combined, one must pay attention
to whether same/similar covariates have been used in them. For some SNPs (like SNP2 above), the effect
on T2D is very different when it has been adjusted for BMI from when it has not been so adjusted, and
combining β̂s from such analyses risks comparing apples to oranges.

It is instructive to think how the distribution of allele 1 of SNP2, that is completely mediated through BMI,
behaves as a function of BMI, as compared to its marginal distribution. Let’s repeat the barplot that we
used above to demonstrate the collider effect, but now we use T2D case-control label as the binary phenotype
and BMI stratified by the cutpoints as the covariate. (We used large n in this example so that the allele
frequencies are accurate even within narrow BMI bins.)

cut.points = matrix(c(26,26.2,
27,27.2,
28,28.2),

byrow = T, ncol = 2) #cutpoints
par(mfrow = c(1,4))
for(ii in 1:(1 + nrow(cut.points))){

if(ii <= nrow(cut.points)){ #this is a BMI stratified plot
ind.s = (y == 1 & z > cut.points[ii,1] & z <= cut.points[ii,2]) #cases
ind.r = (y == 0 & z > cut.points[ii,1] & z <= cut.points[ii,2]) #controls
title.txt = paste0("BMI in (",cut.points[ii,1],",",cut.points[ii,2],")")

}else{ #this last plot is for ALL individuals, independent of BMI
ind.s = (y == 1) #cases
ind.r = (y == 0) #controls
title.txt = "ALL"

}
barplot(matrix(

c(sum(x[ind.s,2])/2/sum(ind.s), # case allele 1 frequency
sum(x[ind.r,2])/2/sum(ind.r)), ncol = 2), # control allele 1 frequency

ylim = c(0,0.7), col = "cornflowerblue", ylab = "A1 freq",
main = title.txt, cex.main = 1.3, cex.lab = 1.3, cex.axis = 1.3, cex.names = 1.3,
names.arg = c("CAS","CTR"))

abline(h = 0.5, col = "red")
}
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We see that, for a fixed value of BMI, there is no difference in allele 1 frequencies in cases and controls, but
the allele 1 frequency increases with increasing BMI. However, when we ignore BMI information (4th panel),
then allele 1 is more frequent in cases than in controls because it is more frequent in high BMI individuals
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and high BMI individuals are relatively more frequent among cases than among controls. This is exactly
how effects that are mediated through a covariate behave: the effect is observed only when the analysis has
not been adjusted for the mediator.

Summary of covariates Z associated with X and Y

confounder Z

X Y

Z

ADJUST

collider Z

X Y

Z

DON'T ADJUST

mediator Z

X Y

Z

DEPENDS

6.4 Covariates independent of genetic variants in population samples

First, if a variable is not associated with the phenotype, then we have no reason to include it in the model.
So in what follows, we consider covariate W , that is associated with phenotype Y , but is not associated
with SNP X at the population level, and hence is not a confounder, collider or mediator at the population
level. Omission of such a covariate W from a linear or logistic regression model cannot create a false positive
association between X and Y (although it can change the effect size being estimated in logistic regression).
Thus we will have a choice to make between two valid models M and M’, where the first adjust for W and
the latter does not adjust for W

Model M : Y ∼ µ + Wγ + Xβ,

Model M’ : Y ∼ µ′ + Xβ′.

We want to know how models M and M’ differ

• in effect size estimates β and β′

• in SEs of β and β′

• in statistical power to detect non-zero genetic effects.

Note on notation: we used Z for covariates associated with X and now we use W for a covariate independent
of X.

Ascertained case-control studies will have their own section below and this section 6.4. is about random
population samples.

Explaining away noise in linear model The main intuition about X-independent covariate W is that
it explains away some of that variation of the (quantitative) phenotype Y that is not associated with the
SNP X. Thus, from X’s point of view, the phenotypic variance explained by W is random noise: variation
without any pattern that could be explained by X. When we get rid of this noise, the effect of X on the
remaining, noise-reduced, variation of Y , can be more clearly seen.
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Let’s demonstrate this with an example of a GWAS on height (Y ) where sex (W ) is a highly predictive
covariate which is not associated with any autosomal SNP (X).

Example 6.4. We study genetics of height by a sample of 10,000 males and 10,000 females. Distribution of
height (in cm) in males is N (175, 52) and in females N (165, 52). Let’s assume that there is a genetic variant
(with MAF f = 0.5) that increases height by 1cm in both sexes.

In this case, adjusting the linear regression for sex is the same as to subtract the sex specific mean height
(either 165cm or 175 cm for females and males, respectively) from each individual’s height value before the
regression. It has an effect of shifting the male and female heights around a common mean value of 0 and
shrinking the variance compared to the original population height distribution that had two separate modes
(for two sexes) located 10 cm apart. The unadjusted model is equivalent to fitting a linear regression to the
height values that have been mean centered by population mean height (170 cm) and that have the same
variance as the original height values.

Let’s generate the data and make two plots of the genotype phenotype relationship where the first one does
not account for sex and the second adjusts for sex.

f = 0.5
b = 1
N = 1e4 #N males and N females
var.expl = 2*f*(1-f)*bˆ2 #variance explained by the SNP.
w = rep(c(0,1), each = N)
x = rbinom(2*N, size = 2, p = f) #genotypes for females and males
y = 164 + x*b + w*10 #mean height 164,165,166 in geno 0,1,2 in females; +10 in males
y = y + rnorm(2*N, 0, sqrt(5ˆ2 - var.expl)) #variation around mean height for each ind.
y = y - mean(y) #mean center in population by shift of about -170

cols = c("dodgerblue", "navyblue")
par(mfrow = c(1,2))
y.stat = matrix(NA, ncol = 3, nrow = 3)
for(ii in 0:2){y.stat[ii+1,] = as.numeric(quantile(y[x == ii],c(0.025,0.5,0.975)))}
plot(0:2, y.stat[,2], col = cols[1], pch = 19, cex = 1.3,

ylim = c(-20, 20), xlim = c(-0.3, 2.3), xaxt = "n",
xlab = "genotype", ylab = "height from mean (cm)", main = "Y ~ X")

axis(1, at = 0:2, labels = 0:2)
arrows(0:2, y.stat[,1], 0:2,y.stat[,3], code = 3, angle = 90,

lwd = 1.5, length = 0.05, col = cols[1])
lm.all = lm(y ~ x)
abline(lm.all, col = cols[1], lwd = 1.5)

#Let's adjust the phenotype for sex
y.adj = residuals( lm(y ~ w) ) #this subtracts the sex-specific mean from height
y.stat = matrix(NA, ncol = 3, nrow = 3)
for(ii in 0:2){y.stat[ii+1,] = as.numeric(quantile(y.adj[x == ii],c(0.025,0.5,0.975)))}
plot(0:2, y.stat[,2], col = cols[2], pch = 19, cex = 1.3,

ylim = c(-20, 20), xlim = c(-0.3, 2.3), xaxt = "n", main = "Y ~ X + W",
xlab = "genotype", ylab = "height from mean (cm)")

axis(1, at = 0:2, labels = 0:2)
arrows(0:2,y.stat[,1],0:2,y.stat[,3], code=3, angle = 90,

lwd = 1.5, length = 0.05, col=cols[2])
lm.adj = lm(y.adj ~ x)
abline(lm.adj, col = cols[2], lwd = 1.5)
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We see that the variation in height within the genotype groups is larger in the unadjusted analysis (left
panel) than in the adjusted analysis (right panel). Let’s see the effect estimates and P-values.

summary(lm.all)$coeff[2,] #unadjusted for W

## Estimate Std. Error t value Pr(>|t|)
## 1.010223e+00 7.038656e-02 1.435250e+01 1.749226e-46

summary(lm.adj)$coeff[2,] #adjusted for W

## Estimate Std. Error t value Pr(>|t|)
## 9.936359e-01 4.918877e-02 2.020046e+01 7.638074e-90

Both models are estimating the correct effect β = β′ = 1, i.e., models are unbiased. However, the accuracy
measured by SE is different in the two cases. For linear model, SE= σε/

√
2nf(1 − f), where σε is the error

standard deviation, that is, SD of the residuals after the covariates and the SNP effect have been accounted
for. By using a covariate W that explains some of the error variance, we can make the SE of the SNP effect
smaller, and hence increase the precision of the SNP effect’s estimator, and also increase power to detect a
non-zero SNP effect.

Let’s confirm we have all the pieces to understand the difference between the SEs of the two models. We
known that after sex is accounted for, SD in the data should be 5 cm (since it is 5 cm in each of the sexes
separately). Thus, we expect that the ratio of the error SDs of the adjusted model/unadjusted model is
about

5/sd(y)

## [1] 0.705417

This should correspond to the ratio of observed SEs between the models:
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summary(lm.adj)$coeff[2,2]/summary(lm.all)$coeff[2,2]

## [1] 0.6988375

as seems to be the case.

We conclude that the covariate improves precision of the estimate of the SNP effect by explaining away some
of the variance in phenotype. This increase in precision will also lead to higher statistical power. Thus, one
should always adjust for W in linear model.

Binary phenotype in population samples A way to think about a GWAS of a binary phenotype with
covariate W , such as sex, is that we first split the data into males and females, then we do the logistic
regression in each sex separately, and finally we combine the results by weighting each of them with the
effective sample size of the corresponding sex.

By splitting the data into groups we will increase SE of the final combined estimate compared to the SE of a
single combined analysis that ignores the covariate except when the proportion of cases is exactly the same
among the groups, in which case SE does not change between the analyses. Thus, in practice, SE of genetic
effect will increase when we include the covariate in the model.

The effect β estimated by the covariate-adjusted model is larger in magnitude than β′ of the unadjusted
model, but if the prevalence of disease in population is low enough (say, a few percent or less), then this
change in effect size is tiny. So in typical disease studies, the estimated genetic effect does not change much
between the two possible regression models.

It can be shown that the combined effect of these changes in βs and SEs is always such that the power of the
covariate-adjusted model is higher than that of the covariate-ignoring model in logistic regression analysis of
population samples. However, for a low-prevalence disease, the difference in power between the two models
is very small.

As a conclusion, inclusion of such a covariate W , that is independent of X and does not interact with the
effect of X,

• increases the statistical power to detect a non-zero effect of X both in linear and logistic regression
model of population samples,

• does not change the effect of X that is being estimated in linear model, but does increase the absolute
value of the effect in logistic model,

• increases the precision of effect estimator in linear model, but decreases the precision in logistic model.

Thus, one should always adjust for W in linear model and typically also in logistic model; the exception
is if the effect size for the unadjusted logistic regression model is specifically needed for some downstream
applications. (Such as, e.g., to combine results with other studies that have also used the unadjusted model.)
For GWAS discovery, where we want to maximize power, one should always adjust for W also in logistic
regression of population samples.

The above holds for the analysis of a random sample from the population where X and W are indepen-
dent and do not have interaction effects. But typically in GWAS we use highly ascertained case-control
sampling from a population and then, in our ascertained sample, X and W are not anymore independent
and some less intuitive behavior occur.

6.5. Covariates in ascertained case-control GWAS

We want to study whether a SNP X is associated with a disease (or other binary trait) Y and we have
available a covariate W , such as age or sex or carrier status of some well-known large effect mutation, which
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is independent of X in the general population. We collect S cases and R controls from the population.
The proportion of cases in our sample is ϕ = S/(S + R) while the prevalence of the disease in general
population is K. Typically, K is 1% or less whereas ϕ is in range of 20% to 50%. Thus, K ≪ ϕ and the
relationship between X and W will be different in our sample than it is in the population.

We will apply logistic regression and the question is whether we should use

Model M: Y ∼ µ + Zγ + Xβ + Wα,

or the simpler, unadjusted
Model M’: Y ∼ µ′ + Zγ′ + Xβ′,

where Z represents possible confounders, such as population structure, that we must always adjust for.

This issue has been studied by Pirinen, Donnelly, Spencer (2012), and here is a summary of the main points:

• When W is independent of X in the general population, then W is not a confounder oy X-Y association
and therefore also model M’ is a valid model to test for X-Y association, and this is true also in an
ascertained case-control study. This means that if the effect β of X is 0 in model M, then also the
effect β′ of X is 0 in model M’, and no spurious association will be created by ignoring W from the
logistic regression model. Both models are valid and we have a choice to make.

• The effect sizes estimated by the two models are different: |β′| ≤ |β|.

• The precisions of the two models are also different: SE(β′) ≤ SE(β).

• Therefore it is not directly evident which model has more power since the above two properties favor
the opposite models in terms of maximizing the non-centrality parameter (β/SE)2.

• It can be shown that which model is more powerful to detect nonzero genetic effect of X depends
(mainly) on the prevalence K of the disease in the population. In typical cases, where K < 1%, the
model M’ is often more powerful than M. The opposite is true only for prevalent diseases, say, with
K > 5%. When ϕ = K, i.e., when we are considering a population sample, then model M is always
more powerful than model M’, but for low prevalence diseases this difference in favor of M is small.

• There are real examples (e.g. a GWAS on Ankylosing Spondylitis) where an application of model M
would have led to over 50% reduction in the non-centrality parameter compared to model M’. (See
example below and slides 17) Such situations can come up with relatively rare risk factors with very
strong effects on the disease (such as an HLA-B27 allele in Ank. Spond.).

To evaluate more specifically the parameters and power of each model, we can use R-functions from: https:
//www.mv.helsinki.fi/home/mjxpirin/log_regression_covariate_functions.R. For binary covariates, such as
sex or carrier status of an HLA-allele, we use the function

binary.covariate(K, freq.G, or.G, freq.X, or.X, ncases, ncontrols, population.controls = FALSE)
#INPUT
#K, the (target) prevalence of the disease
#freq.G, frequency of risk allele in general population
#or.G, odds-ratio for each copy of the risk allele
#freq.X, frequency of the risk factor of binary exposure
#or.X, odds-ratio of the risk factor
#ncases, number of cases in the case-control sample
#ncontrols, number of controls in the case-control sample
#population.controls, if TRUE then controls have general population frequencies,

otherwise controls have proper control frequencies.
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In the parameters of this function G refers to the tested genetic variant (that we have called X in this
document) and X refers to the covariate (that we have called W ).

source("https://www.mv.helsinki.fi/home/mjxpirin/log_regression_covariate_functions.R")
#Ankylosing Spondylitis with HLA-B27 as binary covariate X
K = 0.0025
freq.X = 0.08 #carriers of HLA-B27 in population
or.X = 49 #OR of B27 on AS risk
binary.covariate(K, freq.G = 0.3, or.G = 1.2, freq.X, or.X,

ncases = 2000, ncontrols = 2000, population.controls = FALSE)

## $K
## [1] 0.002499752
##
## $ncases
## [1] 2000
##
## $ncontrols
## [1] 2000
##
## $pop.a
## [1] -7.664
##
## $case.freq
## [,1] [,2] [,3]
## [1,] 0.08461555 0.08702497 0.02237533
## [2,] 0.35259474 0.36104528 0.09234413
##
## $control.freq
## [,1] [,2] [,3]
## [1,] 0.45171766 0.38715024 0.082951425
## [2,] 0.03841463 0.03277942 0.006986627
##
## $population.controls
## [1] FALSE
##
## $marg.or.G
## [1] 1.195934
##
## $joint.or.G
## [1] 1.2
##
## $marg.or.X
## [1] 48.98191
##
## $joint.or.X
## [1] 49
##
## $marg.se.G
## [1] 0.04792256
##
## $joint.se.G
## [1] 0.0707024
##
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## $NCP.GX.G
## [1] 0.4770184

The output tells what are the case or control distribution of genotypes (3 cols) and risk factor (1st row is
for non-risk group and 2nd row is for risk group). marg.or.G is the marginal odds-ratio for each copy of the
risk allele (i.e. effect of G omitting X from the model) and joint.or.G is the odds-ratio for each copy of
risk allele when adjusted for covariate X.

marg.or.X is the marginal odds-ratio for risk factor X = 1 (i.e. effect of risk factor omitting genotype from
the model). joint.or.X is the marginal odds-ratio for risk factor X = 1 when model has adjusted for
genotype G. marg.se.G is SE of marg.or.G and joint.se.G is SE of joint.or.G. NCP.GX.G is the ratio of
the non-centrality parameters between models M (both G and X) and M’ (only G not X).

We see that, with these parameters, NCP drops over 50% if GWAS of Ankylosing Spondylitis is adjusted
for the HLA-B27 carrier status. Powerwise it corresponds to discarding over half of the valuable samples!
More generally, HLA-alleles can have large effects on autoimmune diseases, and adjusting these analyses
for HLA-allele should not be the main GWAS strategy because of power loss. On the other hand, these
large HLA-effects have a potential to lead to identification of interaction effects between HLA and other
genetic variants and such interaction analyses should be pursued after the basic GWAS. For example, both
in Ankylosing Spondylitis and in Psoriasis, there is an interaction effect between HLA alleles on chr 6 and
ERAP1 locus on chr 5 (slide 18), where ERAP1 variants only affect disease risk for individuals carrying
certain HLA-alleles but not at all for individuals without these HLA-alleles.

Let’s see how the NCP ratio between models M and M’ depends on the prevalence of the disease while other
disease parameters than prevalence are kept fixed to their values in the Ankylosing Spondylitis example.
Let’s apply the function to a grid of prevalence values from 0.1% to 20% and plot the results:

Ks = seq(0.001, 0.2, 0.005)
res = sapply(Ks,function(K){binary.covariate(K, freq.G = 0.3, or.G = 1.2, freq.X = 0.08,

or.X = 49, ncases = 2000, ncontrols = 2000,
population.controls = FALSE)$NCP.GX.G})

plot(Ks, res, type = "l", xlab = "K", ylab = "NCP.GX.G", lwd = 1.5)
abline(h = 1, lty = 2)
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This shows that model M’ has more power than model M for prevalences below 5%, after which model M
starts to have more power. This is a general pattern of covariate adjustment in ascertained case-control
studies, but the exact changepoint depends on the parameters of the disease model.

Summary of covariate W independent of genetic variant X in population

covariate W

X Y

W

ADJUST in population samples
DEPENDS in case−control samples
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