GWAS 1: What is a GWAS?

Matti Pirinen, University of Helsinki

Last updated: 2-March-2023

This document is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The slide set referred to in this document is “GWAS 1”.

This course is about statistical/computational ideas and methods that are used in genome-wide
association studies (GWAS). (Note that on these notes ‘GWAS’ is both singular and plural while other
texts may use ‘GWASSs’ or ‘GWASes’ for plural.) More generally, these same methods are useful for analyzing
large data sets of many other types, but, on this course, we will approach these from the angle of GWAS.

A GWAS quantifies statistical association between genetic variation and phenotypes. A phenotype, also
called a trait, can be any measured or observed property of an individual. Examples of phenotypes are
quantitative traits like standing height or concentration of cholesterol particles in circulation, or binary
traits like diagnoses of multiple sclerosis or schizophrenia.

Why do we do GWAS? (slides 2-7) We do GWAS because a statistical association between a particular
physical region of the genome and the phenotype

e can point to biological mechanisms affecting the phenotype,
o can allow prediction of the phenotype from genomic information.

These results may further benefit

« medicine by leading to molecular or environmental interventions against harmful phenotypes,

e biotechnology by improving the ways we utilize microbes, plants or animals,

e forensics by more accurate identification of an individual from a DNA sample,

e biogeographic ancestry inference of individuals, populations and species,

e our understanding of the role of natural selection and other evolutionary forces in the living
world.

The genome of an individual remain (nearly) constant throughout the individual’s lifetime. This is a truly re-
markable property compared to, e.g., other molecular sources of information (such as metabolomics, metage-
nomics, transcriptomics, proteomics or epigenomics) or environmental factors that may vary widely across
time. Therefore, the genome seems an ideal starting point for scientific research: it needs to be measured
only once for an individual and there is no reverse causation from the phenotype to genome (with cancer as
an important exception).

Ethical aspects As with any powerful technique, the utilization of results from GWAS also raises many
new and difficult ethical questions and the legislation of utilization of genome information is under active
development around the world. For example, we need concrete answers to

o who can access an individual’s genetic information and for which purpose: individual himself/herself?,
researchers?, medical professionals?, insurance companies?, employers?, school system?, everyone?
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o what kind of information should be returned back to an individual: genetic risk for a disease for which
some preventive measures exist vs. a disease with no actionable measures known?, genetic prediction
of sensitive traits such as IQ?, genetic ancestry or family information that does not match prior
expectations of the individual, for example, due to false paternity?

o what kind of information, if any, should be returned to a relative of a tested individual given that the
relative may also have some of the same genetic variants?

e when is gene editing allowed: to cure severe disease?, to prevent a severe mutation to be passed on to
next generation?, to design the next generation to have some favorable genetic variants?

When working with human genome data, we should always keep it clear in mind that there are such profound
questions related to these data, and that the data we handle will likely turn out to be more powerful than most
of us can imagine today. Human genome data are never ‘just data’ but include highly personal information,
and they need to be handled with high respect and care. Access to genetic data requires a written agreement
between the researcher and the data provider about how and for which purpose the data can be used.

Contents of this course (slides 30-31) The plan is to discuss the following topics (in varying level of
detail):

1. What is a GWAS?

2. Statistics of GWAS (regression coefficients, P-values, statistical power, Bayes factors)

Genetic relatedness and population structure

Ll

Confounding and covariates in GWAS

ot

Haplotypes, linkage disequilibrum, imputation, fine-mapping
Linear mixed models and heritability
Summary statistics and meta-analysis

Polygenic scores
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Success and critisism of GWAS

10. Human genetics research at FIMM

1.1 Genetic variation (slides 8-13)

We all carry two nuclear genomes (i.e. genomes located in cell nucleus), one inherited from each of our two
parents. Additionally, we have a small mitochondrial genome, assumed to be inherited exclusively from the
mother, but on this course the term ‘genome’ refers to the nuclear genome.

Human genome is 3.2 billion nucleotides (or base pairs or DNA letters A,C,G,T) long sequence (see
yourgenome.org), that is divided into separate physical pieces called chromosomes (see yourgenome.org).
There are 22 autosomal (non-sex related) chromosomes and two sex chromosomes (X chromosome and
Y chromosome). Normally, humans have two copies of each autosome and individuals with one copy of X
and one of Y are males whereas individuals who have two copies of X are females. Abnormal number of
autosomal chromosomes (called autosomal aneuploidies) typically cause severe consequences or an early
death if present in all cells of an individual. The most common non-lethal exception is the Down syndrome (3
copies of chr 21). While autosomal aneuploidies are often lethal, there are several non-lethal sex chromosomal
aneuploidies. Mosaicism, where some cells have abnormal chromosome numbers are also possible and are
often present in cancer cells.

There are three types of pairings that come up when we analyse genomes.
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o First, the DNA is most of the time a double-stranded molecule whose two strands (i.e. the two DNA
molecules) are glued together by the chemical base pairings A-T and C-G. This base pairing is a key
to the copying mechanism of the DNA that is needed before any cell division (see yourgenome.org)
and the DNA molecules that are linked through base pairing carry exactly the same information, just
written in the alternative language where we habe swapped A with T and C with G. To make a
distinction between the two DNA molecules, it has been agreed that, based on chemical properties,
one of the two DNA strands is called the forward strand (or positive (+) strand) and the other
the reverse strand (or negative (-) strand). Thus, for example, when the + strand contains base
A, the corresponding base on the - strand is T and vice versa.

e Second, the two homologous choromosomes of an individual (e.g. paternal chr 13 with maternal
chr 13, or in a male, maternal X and paternal Y) can be thought of as a pair. Thus, we say that
the human genome consists of 22 autosomes + X / Y, but each individual has two copies of each
homologous chromosome, which sums to 46 unique chromosomes that are divided into 23 pairs of
homologous chromosomes.

e Third, before any cell division each of the 46 unique chromosomes of an individual copies itself and the
two copies (called sister chromatids) are paired with each other physically to make an X-like shape that
is often used to illustrate chromosomes in pictures. Such pictures actually contain 92 chromosomes
since each unique chromosome is duplicated in it, but we typically say that there are 46 replicated
chromosomes rather than that there are 92 chromosomes. This pairing of sister chromatids after the
copying mechanism is important in cell division so that the resulting two offspring cells will receive
the correct set of choromosomes. In mitosis (ordinary cell division), each of the two new cells has one
set of the 46 unique chromosomes. In meiosis (cell division creating sex cells), the gametes (sperm
and eggs) are formed to have only one copy of each homologous chromosome and thus have 23 unique
chromosomes. During meiosis, the process of recombination shuffles the homologous copies of the
paternal and maternal chromosomes in such a way that each of the offspring’s chromosomes will be a
mixture of its grandparental chromosome segments.

Terms

e Gene. The most obvious way how genetic variation can affect phenotypes is through variation in
how genes function. Genes are segements of DNA that code for proteins (see yourgenome.org) and
variation in the physical structure of the protein or in the time and place where the protein is made can
have phenotypic consequences. Therefore, we are very interested in how genetic variation can affect
the function of genes, and a lot of this is still unknown. Protein coding genes cover less than 2% of the
whole human genome, but the remaining 98% can affect the regulation of genes in many ways.

o Locus (pl. loci). A continuous region of the genome is called a locus (plural loci). It can be of any
size (e.g. a single nucleotide site of length 1 bp or a region of 10 milion base pairs, 10 Mbp). GWAS
loci are regions that include a clear statistical association with the phenotype of interest.

1.1.1 Genetic variants

At any one position of the genome (e.g. nucleotide site at position 13,475,383 of chromosome 1, denoted
by chrl:13,475,383) variation can exist between the genomes in the population. For example, my paternal
chromosome can have a base A and maternal chromosome can have a base G (on the +strand of the DNA)
at that position. (slide 11). Such a one-nucleotide variation is called a single-nucleotide variant (SNV)
and the different versions are called alleles. So in the example case, I would be carrying both an allele A
and an allele G at that SNV, whereas you might be carrying two copies of allele A at the same SNV. My
genotype would be AG and yours AA. An individual having different alleles on his/her two genomes is
heterozygous at that locus, and an individual having two copies of the same allele is homozygous at that
locus. If neither of the alleles is very rare in the population, say, the minor allele frequency (MAF) is
> 1% in the population, the variant is called a polymorphism, single-nucleotide polymorphism (SNP).
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There are over 10 million SNPs in the human genome. More complex genetic variation (slide 10) include
structural variation (SV) such as copy number variants (CNVs), that include duplications or deletions of
genomic regions, or rearrangements of the genome, such as inversions or translocations of DNA segments
(see yourgenome.org).

A predefined set of 500,000 - 1,000,000 SNPs can be measured reliably and fairly cheaply (< 50 euros/sample)
by DNA microarrays, which has been the single most important factor making GWAS possible (slide 12;
Tlustration). On this course, we consider SNPs as the canonical type of genetic variation. Typically, the
SNPs are biallelic, i.e., there are only two alleles present in the population and this is what we assume in
the following. In principle, however, all four possible alleles of a SNP could be present in the population.

Ambiguous SNPs. If the two alleles of a SNP are either C,G or A, T we call the SNP ambiguous because
the strand information must be available and correct in order to make sense of the genotypes at this SNP.
This is because allele C on +strand would be called allele G on -strand and if this SNP is reported with
respect to different strands in different studies, the results get mixed up. The same problem does not happen
with the other SNPs, e.g., a SNP with alleles A,C, because this SNP contains alleles T,G on the opposite
strand and we could unambiguously match A to T and C to G between the studies. Note that we can resolve
most ambiguous SNPs reliably based on the allele frequencies as long as the minor allele frequency is not
close to 50%. If we are combining several studies, we should always start by plotting the allele frequencies
between the studies after the alleles should be matching each other in order to see that the frequencies indeed
approximately match across the studies.

Genome builds. Our map of the human genome is constantly improving as gaps in the reference genome are
being closed, sequencing errors corrected and more structural variation detected. A consequence is that the
coordinates of certain SNV /SNP will get updated whenever a new build of the human genome is published.
The current build is called GRCh38 for Genome Reference Consortium human build 38 and also nicknamed
as hg38 for human genome build 38. It was published in 2013 and its predecessor, GRCh37, confusingly also
called hgl9, is still in use in some of the data sets. Thus, when communicating genomic coordinates with
others, you should always specify which build is to be considered. For example, a SNV rs121964904 causing
aspartylglucosaminuria is located at position 4:177,438,764 in build 38 whereas its position in build 37 was
4:178,359,918. The mapping between builds can be attempted via LiftOver tools

Some catalogues of genetic variation A large part of the genetics research over the last 30 years have
been driven by international projects aiming to catalogue genetic variation in public domain.

e The Human Genome Project 1990-2003 established a first draft of a human genome sequence.
e The HapMap project 2002-2009 studied the correlation structure of the common SNPs.

e The 1000 Genomes project 2008-2015, expanded HapMap to genome sequence information across the
globe and currently remains a widely-used reference for global allele frequency information. 1000G
project was able to characterize well common variation in different populations, but missed many
rare variants of single individuals because the costs of very accurate sequencing were too high. The
tremendous impact of the 1000G project stems from the fact that everyone can download the individual
level genome data of the 1000G samples from the project’s website and use it in their own research.

o Exome Aggregation Consortium (ExAC) 2014-2016 concentrated only on the protein coding parts of
the genome, so called exons, that make up less than 2% of the genome and was able to provide accurate
sequence data for the exomes of over 60,000 individuals. This effort has been particularly important
for medical interpretation of rare variants seen in clinics that diagnose patients with severe disease.
ExAC provides summary level information through browser and downloads but individual level data
cannot be downloaded.

o Genome Aggregation Database (gnomAD) is expanding the ExAC database and also includes additional
whole genome sequencing information. It is the current state-of-the-art among the public genome
variation databases. Note that gnomAD v2 uses human genome build 37 but v3 uses build 38.
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1.1.2 Genotypes and Hardy-Weinberg equilibrium

Let’s consider one SNP in the population. The SNP has two alleles that could be called by their nucleotides,
but with quantitative analyses in mind, we name the alleles in such a way that the minor allele (the one
that is less common in the population) is called allele 1 and the major allele (the one that is more common
in the population) is called allele 0. (There is no general rule that GWAS results are reported as allele
1 corresponding to the minor allele, and even if there was, the minor allele could differ between two data
sets/populations, so consistency across studies needs always to be checked.) Let’s denote the minor allele
frequency (MAF) by f. Since each individual has two copies of the genome, there are individuals with
three possible genetic types (called genotypes) at this SNP. We denote each genotype by the number of
copies of allele 1 that the genotype contains (i.e. genotype can be 0, 1 or 2). If we assume that, at this SNP,
the two alleles in one individual are sampled at random from the population, then the relative genotype
frequencies in the population follow the binomial distribution Bin(2, f):

genotype expected frequency from Bin(2,f)

0 (1-f)?
1 2f(1—-f)
2 12

These frequencies are called the Hardy-Weinberg equilibrium (HWE) genotype frequencies (or HW
proportions) and they define the theoretical equilibrium genotype frequencies given the value of f in an ideal
randomly mating population without selection, migration, or genetic drift (=statistical fluctuations due to
finite population size). In practice, most variants in human populations do approximately follow HWE.
Clear deviations from HWE could point to, for example, recent population structure (e.g. two populations
have admixed), assortative mating (individuals tend to mate with partners of their kind) or natural selection
(e.g. genotype 1 is very advantageous whereas genotype 2 is lethal and hence completely absent from the
population). On the other hand, technical problems in genotype calling (i.e. in determining genotypes from
the intensity measures from a genotyping chip) can also cause deviations from HWE, either because of
bad quality data or because the variation is not a biallelic SNP and has more than two alleles (slide 13).
Therefore, often variants which do not follow HW frequencies are excluded from many GWAS analyses as
part of the quality control (QC) procedure.

Testing HWE. To test for (deviations from) HWE a one degree of freedom chi-square test can be used
where the expected counts are derived assuming HWE given the allele frequencies.

Suppose that among N individuals from a population we have observed genotype counts ng,ni,ns for
genotypes 0,1 and 2, respectively, with N = ng +n; +ng. Our estimate for population frequency of allele 1 is
f=(n1+2n2)/(2N), and the expected genotype counts under HWE are hg = N(1— f)?, hy = 2N f(1— f)
and ho = N fz The test statistic measures the deviation between the observed counts and the expected

counts:
2 2

lawe = Z W
=0
If HWE holds, then tgw g follows approximately a chi-square distribution with 1 degree of freedom, which
is used for deriving a P-value. If the theoretical chi-square distribution is used, the test is asymptotic and
hence not necessarily valid for a small sample size or very rare variants, and a test statistic distribution
based on permutations should be used, e.g., by using the R package HardyWeinberg.

Example 1.1. Look up the SNP rs429358 from the Ensmbl browser https://www.ensembl.org/. Choose
‘Human’ and type ‘rs429358’; you’ll see the variant’s chromosome (19), position (44,908,684 in the genome
version GRCh38 mentioned at top left) and the two alleles, T and C, of which C is predicted to be the
‘ancestral’ that is, the older allele, and C is also the minor allele with an average MAF of 15% across human
populations. Next click ‘Population Genetics’ to see allele and genotype frequencies in different human
populations. (Familiarize with given populations by hovering mouse above them.) Scrolling down, in the
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1000 Genomes project Phase 3 (1000G) Finnish data, the minor allele C has frequency 37/198 ~ 18.7%
and the observed genotype counts are 66 (TT), 29 (TC) and 4 (CC) individuals. Let’s use these values to
visualize the genotype distribution and apply the standard test for HWE.

geno = c(66, 29, 4)

N = sum(geno) # number of individuals

f = sum(geno * c(0,1,2)) / (2xN) #(66%0 + 29+1 + 4*2) / (2*(66+29+4))
f # MAF

## [1] 0.1868687

hwe.prop = c( (1-£f)°2, 2*f*(1-f), £°2) # these would be the genotype freqs under HWE
rbind( geno/N, hwe.prop) # print the observed genotype freqs and HWE exzpectations

#it [,1] [,2] [,3]
## obs 0.6666667 0.2929293 0.04040404
## hwe 0.6611825 0.3038976 0.03491991

# For testing HWE we use chi-square test even though counts are quite small in last cell:
hwe.test = sum( (geno - Nxhwe.prop) 2 / (N * hwe.prop)) # HWE test statistic

hwe.p = pchisq(hwe.test, 1, FALSE) # P-value from the test
barplot(geno, paste("rs429358 FIN in 1000G Phase3; HWE P=", signif(hwe.p, 3)),
c(0, 1, 2), "genotype", "skyblue")

rs429358 FIN in 1000G Phase3; HWE P=0.72
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To get familiar with how to generate realistic genotype data, let’s also make example genotype data for
n = 1000 additional Finns at this variant, both by sampling from the genotype frequencies and by sampling
from the allele frequencies (assuming HWE). Since this variant seems to follow HWE, we do not expect
qualitative differences between the two simulation approaches.



set.seed(19) #setting seed guarantees the same simulation results every time this code is rTun

n = 1000

sample.from.geno = sample(c(0,1,2), prob = geno, size = n, replace = T) #sample from genotype frequenct
# replace = TRUE means sampling with replacement, that s,

# each genotype can be sampled many times, always with the same probabilities given in 'prodb'

tab = table(sample.from.geno) # table() counts how many times each value is present

counts.from.geno = rep(0, 3) # How many carriers of each genotype?

counts.from.geno[ 1 + as.numeric( names(tab) )] = as.numeric(tab) #works even if some count is O

# To sample from HWE frequencies, we could use:

# sample. from.hwe = sample(c(0, 1, 2), prob = c( (1-f)°2, 2*xf*(1-f), f°2), size = n, replace = T)

# but a simpler way is to sample n genotypes directly from Bin(2,f) distribution:

sample.from.hwe = rbinom(n, size = 2, p = f)

counts.from.hwe = rep(0, 3) #Let's count how many carriers of each genotype

for(ii in 0:2){ #this is another way to do the counting compared to table() abowve
counts.from.hwe[ii+1] = sum(sample.from.hwe == ii)}

rbind(geno = counts.from.geno / n, hwe = counts.from.hwe / n)

##t (,11 [,21 [,3]
## geno 0.651 0.313 0.036
## hwe 0.672 0.298 0.030

barplot (cbind(counts.from.geno / n, counts.from.hwe / n),
names = c("geno","HWE"), beside = F, horiz = T)

HWE

geno
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They look pretty similar but to do statistical inference we should also quantify the uncertainty of the estimates
(e.g. by 95% intervals). For small counts, a Bayesian credible interval called Jeffreys interval behaves more
consistently than the standard 95% confidence interval, whereas for larger counts the two approaches agree.
Details of the two approaches are here.

Let’s make Jeffreys intervals for the estimates of each genotype frequency in both of the data sets.
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interval.from.geno = matrix(NA, 2, 3) #empty matriz

interval.from.hwe = matrix(NA, 2, 3)

for(ii in 1:3){ #find intervals while looping over 3 genotypes
interval.from.geno[ii,] = gbeta(c(0.025, 0.975), counts.from.geno[ii] + 0.5, n-counts.from.geno[ii] +
interval.from.hwe[ii,] = gbeta(c(0.025, 0.975), counts.from.hwe[ii] + 0.5, n-counts.from.hwe[ii] + O.

}

Now we can print out the observed genotype frequency (1st col) and its 95% interval (2nd and 3rd cols)
for both data sets and compare whether the estimates seem similar given the uncertainty described by the
intervals:

cbind( counts.from.geno / n, interval.from.geno,
counts.from.hwe / n, interval.from.hwe )

## geno.est hwe.est

## [1,] 0.651 0.62105469 0.68007266  0.672 0.64243720 0.70056879
## [2,] 0.313 0.28483127 0.34224942  0.298 0.27026622 0.32690115
## [3,] 0.036 0.02576052 0.04891794  0.030 0.02074395 0.04196844

All estimates are within other data set’s 95% credible interval and we have no reason to suspect frequency
differences between the two data sets.

A standard two-sample chi-square test can also be carried out to quantify the frequency difference using a
P-value:

chisq.test(rbind(counts.from.geno, counts.from.hwe)) # tests whether rows have same distribution

##

## Pearson’s Chi-squared test

##

## data: rbind(counts.from.geno, counts.from.hwe)
## X-squared = 1.247, df = 2, p-value = 0.5361

Unsurprisingly, this does not indicate any frequency difference between the two data sets as P-value is large
(0.5361). We’ll come back to interpretation of P-values later.

1.2 What is a genome-wide association study?

Let’s look at some recent examples of GWAS (slide 14-15). Two main types of GWAS are studying quanti-
tative traits or disease phenotypes.

Example 1.2. QT-GWAS (slides 16-20) GWAS on body-mass index (BMI) by Locke et al. (2015)
combined data of 339,000 individuals from 125 studies around the world to study the association of SNPs
and BMI. It highlighted 97 regions of the genome with convincing statistical association with BMI. Pathway
analyses provided support for a role of the central nervous system in obesity susceptibility and implicated
new genes and pathways related to synaptic function, glutamate signalling, insulin secretion/action, energy
metabolism, lipid biology and adipogenesis.

Example 1.3. Disease GWAS (slides 22-24) GWAS on migraine by Hautakangas et al. (2022) com-
bined genetic data on 102,000 cases (individuals with migraine) and 771,000 controls (individuals with no
known migraine) originating from 25 studies. Genetic data was available on millions of genetic variants.
At each variant, the genotype distribution between cases and controls were compared. 123 regions of the
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genome showed a convincing statistical association with migraine. Two of the 123 regions contained genes
(namely CALCA/CALCB and HTRIF) that are targets of recent molecular therapies for migraine (namely
CGRP-antibodies and ditans), which raises hopes that the remaining 121 could provide other clues for drug
development. Downstream analyses combined the genes into pathways and cell types and highlighted en-
richment of signals near genes that are active in vascular system but also those in central nervous system.
This gives biological evidence that migraine is a neuro-vascular disorder, rather than only vascular or only
neuronal.

Terms:

o Monogenic phenotype is determined by a single gene/locus.

« Oligogenic phenotype is influenced by a handful of genes/loci.

o Polygenic phenotype is influenced by many genes/loci.

o Complex trait is a (quantitative) phenotype that is not monogenic. Typically polygenic and also
influenced by many environmental factors.

o Common disease is a disease/condition that is common in the population (say, prevalence of 0.1%
or more). Examples: MS-disease (prevalence in the order of 0.1%), schizophrenia (~1%) or Type 2
diabetes (~10%).

o Common variant has frequency of at least 1%.

o Low-frequency variant has frequency of at least 0.1% and lower than a common variant.

e Rare variant has frequency lower than a low-frequency variant.

GWAS have shown us that, very generally, complex traits and common diseases are highly polygenic, and
many common variants with each showing only a small effect size influence these phenotypes. We don’t yet
know which are the exact causal variants for each phenotype because of the correlation structure among
genetic variants (this is the fine-mapping problem we’ll look later). We also don’t yet know very accurately
how rare variants affect each phenotype because that would require very large sample sizes being studied by
genome sequencing techniques, not only by SNP arrays.

1.2.1 Quantitative traits

Let’s mimick the data we see on slide 4. The phenotype is LDL-cholesterol level and we assume that the
trait distributions of individuals with 0, 1 or 2 copies of allele T at SNP rs11591147 are Normal distributions
with SD=1 and with means of 0.02, -0.40 and -2.00, respectively. Allele T frequency is 4% in Finland. Let’s
simulate n = 10,000 individuals and boxplot them by genotype.

n 10000

f 0.04

mu = c(0.02, -0.40, -2.00) #mean of each genotype
sigma = c(1, 1, 1) #SD of each genotype

x = rbinom(n, 2, f) #genotypes for 'n' individuals assuming HWE
table(x)/n #(always check that simulated data s ok before starting to work with it!)

## x
## 0 1 2
## 0.9212 0.0772 0.0016

y = rep(NA,n) #make empty phenotype vector
for(ii in 0:2){ #go through each genotype group: 0, 1, 2.

ylx == ii] = rnorm(sum(x == ii), mul[1+ii], sigmal[1+ii]) } #generate trait for group %%
boxplot(y ~ x, "Simulated rs11591147 in Finns", "LDL",
"Copies of T", "limegreen")
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We see that the phenotype varies with genotype in such a way that each additional copy of allele T decreases
the level of LDL.

Additive model The simplest way to analyze these data statistically is to use an additive model, that
makes the assumption that the means of the groups depend additively on the number of allele 1 in the
genotype, and that the SDs of the genotype groups are constant. Thus, we fit a linear model y = p+ x5 + ¢,
where y is the phenotype, x is the genotype (0,1 or 2) and parameters to be estimated are

e 1, the mean of genotype 0 and
e [, the effect of each copy of allele 1 on the mean phenotype.

2

The error terms ¢ are assumed to have an identical Normal distribution N (0, 0?) where o2 is not known and

will be estimated from the data. Let’s fit this linear model in R using 1m().

Im.fit = Im(y ~ x)
summary (1m.fit)

##

## Call:

## 1lm(formula = y ~ x)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.7634 -0.6652 -0.0119 0.6759 3.8529

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.01358 0.01032 1.316 0.188
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## x -0.44553 0.03570 -12.480 <2e-16 *x*x

## ——

## Signif. codes: O ’**x> 0.001 ’*x> 0.01 ’%’ 0.05 ’.” 0.1 7 > 1
##

## Residual standard error: 0.9915 on 9998 degrees of freedom

## Multiple R-squared: 0.01534, Adjusted R-squared: 0.01524
## F-statistic: 155.7 on 1 and 9998 DF, p-value: < 2.2e-16

The summary (1lm.fit) command produced

o parameter estimates (or Coefficients) /i and B,

o their standard errors (SE) (estimates for square root of the sampling variance of the parameter esti-
mators),

o t-statistic (estimate/SE) and

e P-value under the null hypothesis that the parameter is 0 and the errors are uncorrelated and follow
the distribution N (0, 0?).

Under the assumptions of linear model, the sampling distribution of the t-statistic is ¢-distribution and hence
level ¢ confidence intervals are determined as S+a x SE, where a is the (1—¢)/2 quantile of the ¢-distribution
with n — 2 degrees of freedom. When o2 is known, the ¢-distribution is replac/e\d by a Normal distribution,
and same is approximately true when n becomes large, even if the estimate o2 is used for computing SE.
In these cases, we often talk about z-statistic instead of t-statistic. In GWAS analyses, we typically have
thousands of samples and use z-scores and the Normal approximation by default.

The last paragraph in the output tells about the full model fit. We can measure how much variation in y is
left unexplained by the model by computing residual sum of squares (RSS):

RSS =Y (i -f-wf) .
i=1

R? is the proportion of variance explained by the linear model, that is, one minus the proportion left
unexplained:

RSS
R?=1- 2L
Var(y)
An adjusted version of R? penalizes for additional predictors and is defined here as
RSS
RZ, =1- 22
Y Var(y)

Note that if there is only the intercept parameter p in the model, then R? = Rgdj = 0, and if the model
explains data perfectly (RSS = 0), then R? = dej = 1. In other cases, R? values are between 0 and 1 and

larger values mean more variance explained by the model.

R? should not be the only measure used to judge how suitable the model is for the data. One should also
plot the data and the model fit in different ways to assess this question. (Of course not for all variants in
GWAS, but for the most interesting ones.) For this simple linear model, a scatter plot and a regression line
is a good way to assess whether we observe any deviations from the assumption of additivity. Additionally,
the differences in residual variation between the genotype groups could indicate interaction effects between
the genetic variant and some other genetic or environmental variable.

plot( x + runif(n, -0.05, 0.05), vy, "genotype", "LDL", D@

3, 0.5, "gray")
#runif() adds some jitter to x so that all points are not on top of each other
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axis(1, 0:2, 0:2)

points(0:2, c(mean(y[x==0]), mean(y[x==1]), mean(y[x==2])), "red", MR
abline(lm.fit, "orange", 2)
legend("topright", "X, "group means", "red")

q- —

X group means
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><
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I I I
0 1 2
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Conclusion: We see a statistically highly significant association between the genotype and phenotype where
a copy of allele T decreases LDL levels by 0.45 units. This variant explains about 1.5% of the variation in
LDL-cholesterol levels. We also see that individuals homozygous for allele T (genotype 2) have on average
lower levels of LDL than the model predicts, which indicates a deviation from the additivity assumption.
Let’s next fit a full 2-parameter model to quantify this deviation.

Full model Let’s add a new parameter v to the model to describe the residual effect for group 2 after the
additive effect 8 has been accounted for. The model is y = p + 8 + 2y + €, where z is the indicator of
genotype 2, i.e., z; = 1 if individual ¢ has genotype 2 and otherwise z; = 0. This is the full model, where the
means of each of the three genotype groups can be determined freely as we have 3 free parameters (genotype
0: p; genotype 1: p+ (8 and genotype 2: u+ 25 + 7).

z = as.numeric( x == 2 ) #z is indicator for genotype group 2
Im.full = Im(y ~ x + 2 )
summary (1m.full)

##

## Call:

## Im(formula = y ~ x + z)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.8095 -0.6675 -0.0128 0.6760 3.8548

##

## Coefficients:

#t Estimate Std. Error t value Pr(>ltl)
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## (Intercept) 0.01165 0.01032 1.129 0.259

## x -0.39750 0.03711 -10.711 < 2e-16 *x*x

## z -1.20614 0.25789 -4.677 2.95e-06 *x*x

## ——-

## Signif. codes: O ’**x’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1’ > 1
#t

## Residual standard error: 0.9905 on 9997 degrees of freedom
## Multiple R-squared: 0.01749, Adjusted R-squared: 0.01729
## F-statistic: 88.97 on 2 and 9997 DF, p-value: < 2.2e-16

It seems that also the new variable is useful (large effect compared to SE and small P-value). Now the
interpretation of coefficients is that genotype 1 has average phenotype of —0.38 and genotype 2 has average
phenotype 0.01 — 0.398 - 2 — 1.206 = —1.99.

Note also that the full model gives the same model fit and is simply a different parameterization of the linear
regression model that treats the genotype as a factor with three levels.

Im.full2 = Im( y ~ as.factor(x) )
summary (1m.full2)

##

## Call:

## 1m(formula = y ~ as.factor(x))

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.8095 -0.6675 -0.0128 0.6760 3.8548

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) 0.01165 0.01032 1.129 0.259

## as.factor(x)1 -0.39750 0.03711 -10.711 < 2e-16 **x*

## as.factor(x)2 -2.00115 0.24784 -8.074 7.56e-16 **x*

## -

## Signif. codes: O ’*%x’ 0.001 ’*x> 0.01 ’%’ 0.05 ’.” 0.1 7 > 1
##

## Residual standard error: 0.9905 on 9997 degrees of freedom

## Multiple R-squared: 0.01749, Adjusted R-squared: 0.01729
## F-statistic: 88.97 on 2 and 9997 DF, p-value: < 2.2e-16

This second parameterization treats group 0 as the baseline and reports the deviations between the other
two groups and the baseline as effect estimates. If we, instead, are interested to quantify how much deviation
the data show from additivity, then the coefficient v from the first parameterization is the most suitable.

The second parameterization is also the same model as the traditional Analysis of Variance (ANOVA). But
here we want to work within the regression model framework rather than ANOVA framework for reasons
that become clear once we start considering covariates and confounders.

Note that all these models make the same assumption that SD is constant across the genotype groups.

Current approach to quantitative phenotypes in GWAS Almost all GWAS analyze quantitative
traits using the additive model, i.e., a linear regression model with a single parameter for genetic effect. The
full model is typically used only for a small group of interesting variants identified by the additive model to
check if they show deviations from additivity. The main reason for this is that the additive model is usually
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almost as powerful to find associations as the full model even when deviations from additivity are present in
the data, since typically one of the genotype groups is much smaller than the other two and hence does not
affect much the statistical model fit. Additionally, our current understanding is that most associations follow
well the additive model and the additive model has more power than the full model when the additivity
assumption is approximately true. (But note that our current understanding may be biased in favor of the
additive model since we do not usually look very carefully for non-additive effects.) It would seem useful to
run both the additive and full model in GWAS, but this is often not done because with millions of variants
to be analyzed, there are a lot of results to handle already when only the simplest model is applied.

Quantile normalization (QN). Often in large GWAS the quantitative phenotype is forced to follow a
Normal distribution by a procedure called quantile normalization or inverse-Normal transformation. This
adds robustness to the analysis since possible phenotypic outliers have a smaller effect on the coefficients
while we still keep in the data all the information provided by the ordering of the original trait values. This
also harmonizes the trait distributions across multiple cohorts by forcing them to look similar.

To apply QN to a set of n trait values, we first regress out from the trait values the central covariates (such
as sex and age) using a linear model. “Regressing out” means that we fit a linear model predicting the trait
value using the covariates and collect the residuals from that model; the interpretation of the residuals is
what remains from the trait values once the covariate effects have been removed. Then we order the residuals
of the regression in ascending order 71y < ... < 7(,). Now the QN’ed trait values for the sample is taken
from the inverse of the cumulative distribution function of the Normal distribution at n equally spaced values
between 0 and 1, and the resulting values ¢; < ... < g, are matched to the individuals so that the value
q; becomes the trait value for individual who corresponds to residual 7(;). Advantage of QN is robustness
to outliers and to systematic differences in measurements between studies. A disadvantage is that we lose
some information of the phenotype distribution, which could have been useful if it were modeled properly.

For an example, let’s do QN for 100 males and 100 females where the phenotype in males follows 2 +
Gamma(shape = 1.5,scale = 1.5) and in females 6 + Gamma(shape = 1.5,scale = 1.5).

n = 200 #males + females

fem = rep( c(0,1), n/2) #who s female

y = 2 + rgamma(n, 1.5, 1.5) #males have shift of 2

ylfem == 1] = 4 + y[fem == 1] #females have shift of 6 = 2 + 4

hist(y, 30, "khaki") #shows some outliers compared to mizture of 2 Normals

Histogram of y
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#regress out sex and take residuals
Im.fit = 1m(y ~ fem)
r = residuals(lm.fit)

#find GN'ed tratt values from gqnorm = inverse of cumulative distribution of Normal
inv.normalise <- function(x) { #this would also tolerate NAs
return( gnorm( (rank(x, "keep") - 0.5) / sum(!is.na(x))))}
q = inv.normalise(r)
#Let's plot y and q (after scaling to mean=0, var=1)

par( c(1,2))
plot(density(scale(y)), "black", 2, c(-4,4), c(0,0.5),
Htraitﬂ s nn )
lines(density(scale(q)), "darkgreen", 2)
plot(y, q, c("cyan","gold") [1+fem])
legend("bottomright", c("cyan","gold"), 1, c("male","female") )
TR ™
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We see that (right plot) the outliers on the original scale (x-axis) are still the most extreme values in QN-scale
on y-axis, but they are now close to the other values and not anymore outliers. The QN’ed trait, obviously,
looks perfectly Normal (green curve on left plot) while in the original trait we see outliers on right tail. We
also see that sex caused original y to have a two modal distribution with peaks roughly at -1 and +1 on
standardized scale, but that the effect of sex was removed by the regression step before QN was applied.

1.2.2 Binary phenotypes

How do we look for the association between a genotype and a binary disease status? Here the phenotype
is 0-1 indicator whether an individual is a case (y=1; has the disease) or a control (y=0; does not have a
disease). If we take a practical approach, we could just apply the linear regression model to binary outcome
variable but, conceptually, this does not feel right because the error terms cannot be assumed to be normally
distributed. Instead, we will use a generalized linear model called logistic regression. To derive the model,

let’s first define the effect size parameter for binary outcomes.
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Relative risk and odds ratio To measure whether a genotype associates with disease status, we consider
a relative risk (RR) parameter for genotype 1

PrY =1]X =1)

Pr(Y =1|X =0)’

A =

Thus A; tells how many times larger the risk of getting the disease is for individuals with genotype 1 compared
to individuals with genotype 0. If

e A} =1, there is no association with disease,
e A1 > 1, genotype 1 confers risk for disease,
e A1 < 1, genotype 1 confers protection from disease.

Similarly we define relative risk Ay as the factor by which genotype 2 multiplies the disease risk of genotype
0.

Relative risk is an intuitive measure but it turns out not to be very easy to estimate in the regression setting,
particularly in the typical GWAS setting. However, if we modify the parameter slightly from comparing
risks to comparing odds, we will get a measure that can be estimated in practice. The odds corresponding
to a probability value p are defined as p/(1 — p), i.e., the odds tell how many times as probable the event
is to occur than it is to not occur. If probability of a disease is p = 50%, then the odds of disease are 1,
if p = 1% then odds are 1/99 = 0.0101 and if p = 99% then odds are 99. Just like with RR we measured
the relative increase in risk between two genotypes, with odds we use a relative measure called odds ratio
(OR) to describe relative increase in odds between genotypes. Thus, the odds ratio for genotype 1 is

Pr(Y =1|X=1) Pr(Y =1|X=0) Pr(Y =1|X =1)Pr(Y =0|X =0)

ORl:Pr(Y:0|X:1) "Pr(Y=0]X=0) Pr(Y =1/ X=0)Pr(Y =0|X =1)’

By Bayes formula we can swap the roles of Y and X in the above formula, e.g., by writing Pr(Y = 1| X =
)=Pr(X=1]Y=1)Pr(Y =1)/Pr(X =1). By applying this to all 4 terms, we get

Pr(X =1]Y = 1)Pr(Y = )Pr(X = 0)Pr(X =0|Y =0)Pr(Y =0)Pr(X =1) _ Pr(X =1]Y = 1)Pr(X =0]Y =

—0 -1
Pr(X=0|Y=1)Pr(Y =1)Pr(X=1)Pr(X=1|Y=0)Pr(Y =0)Pr(X =0) Pr(X=0|Y=1)Pr(X=1|Y =

OR; =

This shows that we can estimate our target odds ratio for the disease between different genotypes equally
well by collecting individuals based on disease status and observing their genotype distributions. This is
the important property why odds ratios are possible to measure in a typical disease GWAS that collects
individuals by disease status and then measures the genotypes.

Example 1.4. OR and risk. Suppose that we know that there is a strong risk variant for Alzheimer’s
disease (AD) with OR=3.0 (for one copy of the risk allele). Suppose that non-carriers of the risk allele have
a lifetime risk of 15% of AD. How large is the lifetime risk for carriers of one or two copies of the risk variant?

Let po = 0.15 be the risk in non-carriers. We know that odds of carriers of one copy are pi1/(1 —p1) =
3.0-po/(1—pp) =3.0-0.15/0.85 = 0.5294. Hence the risk is p; = 0.5294 /(1 +0.5294) = 0.346. That is, 35%.

For carriers of two copies, pa/(1—p2) = 3.0-p1/(1—p1) = 3.0-0.5294 = 1.5882 and py = 1.5882/(1+1.5882) =
0.61363. That is, 61%.

Inference for OR based on counts In practice, GWAS analyses for disease studies are done using
regression models since they have a possibility to account for confounding covariates. However, sometimes it
is also useful to be able to quickly estimate OR parameters and their uncertainty using count data without
access to regression models. But remember that such estimates cannot be adjusted for covariates and
therefore can be biased by confounding factors.

Suppose we have observed the following genotype counts:
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group  genotype 0 genotype 1 genotype 2

cases So S1 Sy
controls Ry Ry Ry

Then the estimates for odds-ratio between genotype 1 and genotype 0, its logarithm and the standard error
of the logOR are

an SR — S1Rg — 1 1 1
OR; = 222, log (ORy) =1 d SE(log (ORy)) =/ + -+ ¢ + 5
! S()Rl o8 ! o8 (S()R1 an 8 ! Rl + RO + Sl + SO
In particular, standard error can only be calculated for logOR and not for OR because only the sampling
distribution of logOR is approximately Normal.

The 95% confidence interval for logOR is, naturally, (logOR — 1.96 - SE, logOR + 1.96 - SE), and 95% CI for
OR is (exp(logOR — 1.96 - SE), exp(logOR + 1.96 - SE)). Thus, the endpoints of the 95%CI must always be
computed on the log-odds scale and then transformed to the OR scale.

Similar inference can be done for the ORs parameter measuring the odds-ratio between genotypes 2 and 0
by substituting the counts of genotype 1 with the counts of genotype 2 in the formulas above.

If any counts are very small, or even 0, the SE is not reliable. One can add a value of 0.5 to each of the
observed counts to get an OR estimate even in these case, but one shouldn’t rely on the SE estimate.

Logistic regression Logistic regression model takes the place of linear regression as the basic GWAS
model when the phenotype is binary. It explains the logarithm of the odds of the disease by the genotype.
The simplest model is the additive model:

Pr(Y =1|X =2)
lo <Pr(Y:O|X:x)

>u+xﬂ.

Thus, p is the logarithm of odds (‘log-odds’) for genotype 0 and § is the log of odds ratio (logOR) between
genotype 1 and 0 (and exp(f) is the corresponding odds ratio). Similarly, 23 is the logOR between genotypes
2 and 0. This model is additive on the log-odds scale and hence multiplicative on the odds scale. Due to this
duality, it is sometimes called additive model and sometimes called multiplicative model, which is a source
of confusion. In these notes, it is called the additive model. In R, such a logistic regression model can be
fitted by command glm(y ~ x, family = "binomial").

To try out logistic regression, we should learn how to simulate some case-control data that follow the logistic
regression model.

Example 1.5. Let’s assume that our risk allele A has frequency 13% in controls, and that it is in HWE in
controls. If the risk model is additive on log-odds scale with odds-ratio 1.43 per each copy of allele A, what
are the genotype frequencies in cases?

Let’s denote case frequencies by fy, f1, fo and control frequencies by qo, g1, g2. From formulas above, we get
that

_ _ 1) Pr(A=1|Y =0) _ 4y q1.fo
fl_Pr(A_HY_l)_ORlPr(A:O\Y: )Pr(A—0|Y—1)—ORl—q0 ,
_ _ 1y Pr(A=2|Y =0) _ N G2 fo
fg_Pr(A_2\Y_1)_ORQPr(A:(”Y: )Pr(A—O|Y—1)—OR2 o

Since fo + f1 + fo =1, we get
-1
fo = (1 +OR, & 4 OR2Q2> .
do
Now we can compute the genotype frequencies in cases. (Note ORy = OR? under the additive model).

Let’s write a function that computes the case and control frequencies given control allele frequencies and
OR.
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case.control.freqs <- function(q, or){

or

#i1f dimension of 'q' is 1 then 'q

' 7s taken as allele 1 freq. im controls and HWE %s assumed in contr

#1f dimension of 'q' is 3 them 'q' is taken as the genotype (0,1,2) frequencies in controls
#if dimension of 'or' is 1, then 'or' is per each copy of allele 1
#if dimension of 'or' s 2, then 'or[1]' is for gemotype 1 vs.0 and 'or[2]' is geno 2 vs. 0

i
s
i
s

£
£

d

f(length(q) == 1) q = c((1-q) "2, 2*gq*x(1-q), q°2) # assumes HWE in controls
topifnot (length(q) == 3)

f(length(or) == 1) or = c(or, or~2)

topifnot (length(or) == 2)

q / ql1] * c(1, or)
f / sum(f)

ata.frame(cases = f, controls = q, row.names = c(0,1,2))

= 1.43

a.cntrl = 0.13
cc.f = case.control.freqs(a.cntrl, or)
cc.f

##

cases controls

## 0 0.67887986  0.7569
## 1 0.29012360 0.2262
## 2 0.03099654 0.0169

Let’s generate 2000 cases and controls from these genotype frequencies and estimate the genetic effect using
logistic regression.

<MW X X B

.C
.C

glm
summary (glm.fit)

##
##
##
##
##
##
##
##
##
##
##
##
##
##

2000
ases = sample(c(0, 1, 2), prob = cc.f$cases, size = n, replace = T)

ontrols = sample(c(0, 1, 2), prob = cc.f$controls, size = n, replace = T)

c(x.cases, x.controls) #genotypes of all samples

c(rep(1, n), rep(0, n)) #binary phenotype corresponding to genotypes: 1st cases, then controls
.fit = glm(y ~ x, family = "binomial")

Call:
glm(formula = y ~ x, family = "binomial")
Deviance Residuals:

Min 1Q Median 3Q Max
-1.4894 -1.1252 -0.1153 1.2305 1.2305

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.12409 0.03685 -3.368 0.000758 *x*x
X 0.41655 0.06360 6.550 5.75e-11 *x*x*

Signif. codes: O ’*%x’ 0.001 ’xx’ 0.01 ’x’> 0.05 ’.” 0.1’ ’ 1
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#i#

## (Dispersion parameter for binomial family taken to be 1)
##

#i# Null deviance: 5545.2 on 3999 degrees of freedom
## Residual deviance: 5501.3 on 3998 degrees of freedom
## AIC: 5505.3

#i#

## Number of Fisher Scoring iterations: 4

What is the estimate and 95%CI on odds ratio scale?

b = summary(glm.fit)$coeff[2,1] #estimate, beta-hat

se = summary(glm.fit)$coeff[2,2] #standard error

#endpoints computed on logUR scale, then transformed to UR scale:

c( exp(b), exp(b - 1.96%*se), exp(b + 1.96%se))

##  or.est low95 up95
## 1.516720 1.338973 1.718063

Let’s compare the result from the additive logistic regression model to the results that we get from the raw
genotype counts between the genotypes 1 and 0 using the formulas above (see “Inference for OR based on
counts”):

s1 = sum(x.cases == 1); s0 = sum(x.cases == 0); rl = sum(x.controls == 1); r0 = sum(x.controls == 0)
or.l.counts = si*r0 / (sOxr1l)
se.l.counts = sqrt(sum( 1 / c(sl, sO, rl, r0) ) )

c( or.l.counts,
exp(log(or.1l.counts) - 1.96 * se.l.counts),
exp(log(or.1l.counts) + 1.96 * se.l.counts) )

## or.est low95 up95
## 1.580529 1.367507 1.826735

These are a bit different from the additive model results above. The reason is that the additive model above
uses also the data from individuals with genotype 2 to estimate the OR parameter while the formulas do not.
It turns out that if we applied the additive regression model only to the individuals having either genotype
0 or genotype 1, then we would get essentially the same results as we get from the raw counts:

glm.fit = glm(y[x !'= 2] ~ x[x != 2], "binomial")
b = summary(glm.fit)$coeff([2,1] #estimate, beta-hat

se = summary(glm.fit)$coeff[2,2] #standard error

exp(c( b, b - 1.96 * se, b + 1.96 * se ))

## [1] 1.580529 1.367512 1.826729

Remember that even though the count based inference and logistic regression inference based on additive
model gives similar results here, they may give very different results when there are confounding covariates
included in the regression model, and in such situations, we trust more the regression model results. We
come back to this later on the material.

Similarly to the quantitative phenotypes, we can use the full model also for the binary data:
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z = as.numeric( x == 2 )
glm.full = glm( y ~ x + z, "binomial")
summary (glm.full)

##

## Call:

## glm(formula = y ~ x + z, family = "binomial")

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.40069 -1.12268 -0.07657 1.23314 1.23314

##

## Coefficients:

#it Estimate Std. Error z value Pr(>|zl)

## (Intercept) -0.13011 0.03726 -3.492 0.000479 x*x**

## x 0.45776 0.07386  6.197 5.74e-10 *x**

# z -0.27459 0.24920 -1.102 0.270526

## -

## Signif. codes: O ’*%x’ 0.001 ’%x’ 0.01 ’%’ 0.05 ’>.” 0.1’ > 1
##

## (Dispersion parameter for binomial family taken to be 1)
#i#

it Null deviance: 5545.2 on 3999 degrees of freedom

## Residual deviance: 5500.1 on 3997 degrees of freedom
## AIC: 5506.1

#it

## Number of Fisher Scoring iterations: 4

In this example, we have no deviation from additivity as the data were simulated assuming the additive
model.

Ascertained case-control studies Suppose we are studying MS disease whose prevalence is about
1/1000. Even if we collect 100,000 individuals from the population, we still would get only about 100
cases! In ascertained case-control studies we enrich cases by collecting a case sample directly from the dis-
eased people and similarly we collect controls either from the general population or, even better, from the
individuals we know are disease free. (For diseases with prevalence < 1% there is little difference between
these two control ascertainment strategies.) Thus, by a phenotype-based ascertainment, we may have a
GWAS of 10,000 individuals that is divided into sets of 5,000 cases and 5,000 controls. This approach gives
much higher statistical power to detect associations than a population collection of 100 cases and ~100,000
controls. (We will do power analyses later on the course.)

Can we analyse such ascertained case-control samples using the same logistic regression model as we applied
above or does the ascertainment cause some issues? The answer is yes we can. The parameter 3 is the
logOR and we showed earlier that this parameter can be estimated also by ascertaining individuals based
on their phenotypes and similar result also extends to the use of logistic regression. However, the parameter
w1 that determines the absolute odds of disease for genotype class 0 depends on the sampling strategy, i.e.,
on the proportion of cases in the data. Thus, in ascertained data, pu does NOT estimate the population
prevalence parameter of the genotype group 0. However, we can still apply the logistic regression model to
the ascertained case-control sample and estimate the three central association statistics: genetic effect 3, its
uncertainty (standard error), and P-value.

GWAS software As current GWAS consider 100,000s of individuals and millions of variants, those analy-
ses are done with specialized software packages that read in specific file formats. The most popular software

20



is PLINK in its recent, efficient version 2.0. Another widely used software is SNPTEST.

On this course, we do not focus on the commands or input file formats of any particular GWAS software,
since that alone would take already all our time and the software packages are in constant development,
which means that data input formats and commands tend to change over time. Instead, the goal of this
course is to understand why each analysis is done and how to interpret the output from analyses, especially
from a statistical point of view. These skills are independent of any particular GWAS software.
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https://www.cog-genomics.org/plink/2.0/
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
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