
T-76.5650 SOFTWARE ENGINEERING SEMINAR, FALL 2006 1

User-Centered Design and Extreme Programming
Antti Nummiaho

Abstract— User-centered design (UCD) aims at designing soft-
ware so that users needs are considered throughout the pro-
cess. Extreme programming (XP) is the most well-known agile
software development method. It aims at being so lightweight
that changing requirements even late in the project do not cause
much rework. This paper focuses on identifying conflicts between
UCD and XP as well as discussing ways for resolving those
conflicts. The used research method is a literary research. The
results indicate that the biggest conflicts arise from the fact
that XP focuses on quality of the code, satisfying the customer,
and designing only what is necessary at the time while UCD
focuses on usability of the end product, satisfying the user, and
designing the user interface properly before implementing it. The
most relevant suggestions for resolving these conflicts include
having UI designers and users in the development team, using
a lightweight process for translating users’ needs into paper
prototypes, designing overall layout and look&feel upfront, and
integrating usability evaluation with users into acceptance testing.
The main conclusion is that only lightweight UCD practices can
be included in XP. Especially usability evaluation with users lacks
these kind of practices.

Index Terms— usability, user-centered design, UCD, agile
methods, extreme programming, XP.

1. INTRODUCTION

T HIS paper discusses the ways how user-centered design
(UCD) can be taken into account when developing soft-

ware using Extreme Programming (XP), which is the most
well-known agile software development method. The paper
has been written as part of the course T-76.5650 Software
Engineering Seminar at Helsinki University of Technology in
fall 2006.

1.1. Background

Traditionally software has been developed in a very inflex-
ible way. This so-called ”waterfall model” works well if the
requirements are very stable, but in many real world projects
requirements tend to be quite dynamic. In the late 1990’s this
led to the emergence of many different agile software devel-
opment methods, like for example XP, Scrum, Crystal and
FDD. Basically, these methods consist of different practices
that are considered to work well together in developing good
quality software in the environment of changing requirements.
In 2001 the founders of these different agile methods met and
created a statement that defined their common principles and
goals: the Agile Manifesto (Beedle et al., 2001). One of its
main principles is to produce software that gives value to the
customer. Meanwhile, the UCD process also evolved in the
1990’s with its goals to design the software so that users’
needs, wants and limitations are considered throughout the
process. In other words, it aims at producing software that
fits into users’ world instead of forcing users to change. Soon
people started to realize that these two methodologies share

some similar goals and it would make sense to integrate them
somehow. Many papers have discussed the issue of how UCD
can be taken into account in agile methods and especially with
XP. This paper tries to combine these findings into a coherent
wholeness.

1.2. Research Problem

This paper tries to answer the following research questions.

1) What conflicts between UCD and XP have been identi-
fied?

2) What ways have been suggested for resolving the con-
flicts in order to combine UCD and XP?

1.3. Objectives

This study uses a literary research to seek answers for
the research questions. The paper is mainly targeted for XP
developers who are interested in incorporating a user-centered
approach into their software development process.

1.4. Structure of the Paper

After this introduction chapter the paper is structured in
the following way. In the second chapter definitions for
usability are given and usability is discussed as a quality
attribute in software development. After usability has been
discussed, the principles and practices of user-centered design
are introduced. In the third chapter agile methodology as well
as XP and its practices are introduced. In the fourth chapter
the conflicting elements of UCD and XP are identified and the
reported suggestions and experiences on how UCD and XP
can be combined are discussed. Finally, in the fifth chapter,
conclusions of what was discussed are drawn and possible
topics for further study are presented.

2. USER-CENTEREDDESIGN

Before UCD can be introduced, it is essential to define
usability. UCD’s principles and practices are then examined
to the extent that is sufficient for understanding the conflict-
ing elements of UCD and XP and the suggested ways for
combining them.

2.1. Defining Usability

Usability can be defined in many different ways. Three com-
mon definitions, two from ISO standards and one from Jacob
Nielsen, a controversial leading authority on web usability, are
given in the following.



T-76.5650 SOFTWARE ENGINEERING SEMINAR, FALL 2006 2

ISO 9241-11: The extent to which a product can
be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfac-
tion in a specified context of use (ISO, 1988).

ISO 9126-1: The capability of the software prod-
uct to be understood, learned, used and attractive
to the user, when used under specified condi-
tions (ISO, 2000).

Jacob Nielsen: A quality attribute that assesses
how easy user interfaces are to use (Nielsen,
1993).

These definitions emphasize different elements of usability.
ISO 9241-11 emphasizes an overall goal that the software
meets users’ needs, ISO 9126-1 also emphasizes the detailed
software design activity involved, and Nielsen emphasizes the
qualitative nature of usability. It is also essential to understand,
that usability as a term does not cover only one quality, but
many possibly contradicting qualities. ISO 9241-11 describes
usability as a combination of effectiveness, efficiency and
satisfaction, ISO 9126-1 describes usability as a combination
of understandability, learnability, operability and attractive-
ness, and Nielsen describes usability as a combination of
learnability, efficiency, memorability, errors and satisfaction.
These qualities are explained in more detail in the following.

ISO 9241-11 (ISO, 1988):
• Effectiveness: The capability of the component to enable

tasks to be accomplished completely and without errors.
• Efficiency: The capability of the component to minimize

the use of resources (persons, money, time).
• Satisfaction: The capability of the component to be

pleasant to use for the user.
ISO 9126-1 (ISO, 2000):
• Understandability: The capability of the component to

enable the user to understand whether the component is
suitable, and how it can be used for particular tasks and
conditions of use.

• Learnability: The capability of the component to enable
the user to learn it.

• Operability: The capability of the component to enable
the user to operate and control it.

• Attractiveness: The capability of the component to be
attractive to the user.

Jacob Nielsen (Nielsen, 1993):
• Learnability: How easy is it for users to accomplish basic

tasks the first time they encounter the design?
• Efficiency: Once users have learned the design, how

quickly can they perform tasks?
• Memorability: When users return to the design after a

period of not using it, how easily can they re-establish
proficiency?

• Errors: How many errors do users make, how severe are
these errors, and how easily can they recover from the
errors?

• Satisfaction: How pleasant is it to use the design?
If one compares these three classifications, it seems that ISO

9126-1’s understandability and learnability somewhat equal to

Identify need for
human-centered
design

Specify context of use

Evaluate designs
System satisfies
specified
requirements

Specify requirements

Produce design solutions

Fig. 1. ISO 13407 UCD activities.

Nielsen’s learnability, but there is no correspondent in ISO
9241-11. Also, ISO 9241-11’s effectiveness and efficiency
somewhat equal to ISO 9126-1’s operability and to Nielsen’s
efficiency and errors. Furthermore, ISO 9241-11’s satisfaction
equals to ISO 9126-1’s attractiveness and to Nielsen’s sat-
isfaction. There seems to be no correspondent for Nielsen’s
memorability in ISO 9241-11 or ISO 9126-1.

2.2. Usability as a Quality Attribute

Traditionally software engineers have seen usability as
something that can be added to the software after it is
built (Seffah and Metzker, 2004). Therefore, the commonly
used architectural decision has been to separate the user
interface from the rest of the system and therefore enable its
modification without affecting rest of the system. However,
this is not very cost-effective since it delays the correction
of problems until very late in the development process life
cycle. (Bass and John, 2001). Furthermore, user interfaces
can be seen to consist of both look (visual components like
buttons, pull-down menus, check-boxes and colours) and feel
(interaction with the user), and the latter may not be easily sep-
arated from the rest of the system (Bosch and Juristo, 2003).
For example, cancel is a function that is not easily isolated
from the rest of the system. It requires architectural support
for recording initial states for all commands and informing
impacted parts of the system when a cancel command is
issued. Other architecturally significant usability issues include
i.e. undo, redo, recovering from failures, and predicting task
durations. Bass and John (2001) have recognized a total of
26 architecturally significant usability issues and suggested
architectural mechanisms for dealing with them. Of course,
architectural design must deal with other quality attributes
as well, but totally dismissing usability is definitely short-
sighted. (Bass and John, 2001)

2.3. Principles and Practices of User-Centered Design

UCD focuses on taking users’ needs, wants, and limitations
into account throughout the development process in order to
produce software that fits into users’ world instead of forcing
users to change. ISO 13407 specifies four UCD activities that



T-76.5650 SOFTWARE ENGINEERING SEMINAR, FALL 2006 3

need to start at the earliest stages of a project: understanding
and specifying the context of use, specifying the user and
organisational requirements, producing design solutions, and
evaluating designs against requirements (ISO, 1999). These
are illustrated in figure 1.

Many approaches exist for modeling UCD. In the following
a well-known model suggested by Nielsen (1993) is examined.

1) Know the user
Users are identified and their roles and tasks analysed.
Potential methods include observations, interviews and
questionnaires.

2) Competitive analysis
Competing products are analysed, compared, and tested.

3) Setting usability goals
Based on the analyses, it is decided how different us-
ability attributes (learnability, efficiency, memorability,
errors, and satisfaction) are emphasized.

4) Parallel design
Different design alternatives are explored before a single
solution is selected.

5) Participatory design
Designs are shown to users in order to get feedback.

6) Coordinated design of the total interface
The user interface is designed making sure that it is
consistent throughout.

7) Apply guidelines and heuristic analysis
Well-known principles are applied to the design and
the design is checked against these principles. Heuristic
analysis is the most common expert analysis method
(a usability evaluation method which does not involve
users).

8) Prototyping
Early prototypes are created so that design decisions
can be evaluated as soon as possible. Early prototypes
often take the form of paper prototypes, which enable
testing at an extremely low cost. Paper prototypes may
for example be hand-drawn pictures or printed screen
shots that are crafted together with i.e. scissors, glue,
and staples.

9) Empirical testing
The prototypes are tested with users by for example
giving them some tasks and observing how they manage
to accomplish them.

10) Iterative design
Based on the usability problems found in testing, new
prototypes are designed, implemented, and tested. It is
often too expensive to test every single improvement
with users so expert analyses can be used as well.

11) Collect feedback from field use
After the product is released, feedback is gathered either
passively through i.e. user complaints and calls to help
lines or actively by i.e. observing and interviewing users.

The model consists of a number of specific stages for a
usability engineering lifecycle. It emphasises that one should
not rush straight into design, but try to understand the users,
their needs, and the context first. It is important to differentiate
users’s needs and the functions of the user interface. For

example, the user’s need is not to click ”Save” on the user
interface, but to be able to continue his work later on from
where he left off even after the application and/or computer
have been shutdown. The need could be satisfied in many other
ways, but ”Save” function is commonly chosen. Therefore, it is
of upmost importance to understand the users’ true needs and
translate them into applicable requirements. (Nielsen, 1993)

3. EXTREME PROGRAMMING

XP is the most well-known agile software development
method. As anyone involved in software development knows,
in real-world applications the requirements always change.
In traditional software development this leads into a lot of
documentation and design done in vain. Agile methods aim
at being so lightweight that changing requirements even late
in the project do not cause much rework. This is achieved
by creating only the absolutely necessary documentation and
design upfront. To manage this without degenerating into
code-and-fix hacking and losing quality agile methods follow
a set of principles and practices. Nonetheless, agile methods
are best suited for small teams of skilled programmers who
take responsibility for their area of expertise, and that work
on non-safety-critical software. (Beck and Andres, 2004)

Agile Manifesto defines the principles for all agile methods.
Most relevant principles for understanding this study are
presented in the following. (Beedle et al., 2001)

• Satisfying customer by delivering useful software early,
frequently, and continuously

• Welcoming changing requirements even late in the devel-
opment

• Co-operating daily with the business people throughout
the project

• Considering working software as the primary measure of
progress

• Relying on face-to-face conversation instead of intensive
documentation as a communication tool

• Striving for simplicity in everything
In XP the development process is divided into release cycles

and iterations. Release cycles typically last 1–3 months and
they aim at delivering working software with added function-
ality to the customer. In the beginning of each release cycle
is an exploration phase, where the customer’s requirements
that are to be included in the next release are chosen. After
that, release cycles consist of iterations that typically last
1–3 weeks each. In each iteration developers implement a
set of requirements. If all selected requirements cannot be
implemented, the iteration’s length is not increased, but some
requirements are postponed into further iterations. (Beck and
Andres, 2004)

The core values of XP are communication, simplicity,
feedback, courage, and respect. These are pursued by a set of
practices of which most had already been used independently
in software development before XP was created. The ingenuity
of XP was to choose practices with care so that they comple-
ment each other in the best possible way to achieve the goals
of agile software development. These practices are presented
in Figure 2 and explained in the following. (Beck and Andres,
2004)



T-76.5650 SOFTWARE ENGINEERING SEMINAR, FALL 2006 4

Whole
Team

Collective
Ownership

Customer
Tests

Small
Releases

Planning
Game

Coding
Standard

Continuous
Integration

Metaphor

Sustainable
Pace

Pair
Programming

Test-Driven
Development

Refactoring

Simple
Design

Fig. 2. XP practices. The outermost circle contains release cycle practices, the
middlemost circle iteration practices, and the innermost circle daily practices.

• Whole Team
The customer, which in XP means the one who uses the
system not necessarily the one who pays the bill, should
always be available for answering questions.

• Planning Game
Planning game consists of release planning and iteration
planning. Release planning occurs when the development
of a new release begins. In it the customer’s requirements
are written on user story cards and the ones that are
to be included in the next release are chosen. Iteration
planning occurs in the beginning of each iteration. In it
developers choose which user stories to implement in the
next iteration and translate them into tasks that are then
assigned to each developer.

• Small Releases
Working software is released to the customer often with
each release adding some functionality.

• Customer Tests
The customer defines automated acceptance tests for each
feature.

• Coding Standard
A defined coding standard must be followed to ensure a
consistent style for the source code.

• Sustainable Pace
To ensure welfare no-one should work more than 40 hours
a week.

• Metaphor
A naming concept should be chosen so that it is easy to
guess the functionality of a certain class or method from
its name only.

• Continuous Integration
Changes should be uploaded to the repository every few
hours or whenever a significant break occurs in order to
prevent integration problems further in the project.

• Collective Ownership
Anyone is allowed to change any part of the code
therefore i.e. enabling bugs to be quickly fixed. Pair

programming supports this by sharing the understanding
of the code and automated unit tests by detecting possible
new bugs that the changes may cause.

• Test-Driven Development
Automated unit tests are written for each non-trivial peace
of code before the actual code is programmed.

• Refactoring
The code must be refactored when it starts to become
unnecessarily complicated. Possible symptoms for this
are for example that changes in one part of the code start
to have an effect on many other parts of the code.

• Simple Design
The simplest way to introduce a certain functionality
should always be chosen.

• Pair Programming
All code is produced by two people programming on one
computer. One does the actual coding and the other one
reviews the code and thinks about the big picture. Roles
should be traded and pairs mixed regularly.

4. USER-CENTEREDDESIGN AND EXTREME

PROGRAMMING

4.1. Conflicting Elements of User-Centered Design and Ex-
treme Programming

One of the main principles of XP is that working software
is the primary measure of progress. This is a common goal
with XP and UCD since in order for the software to be usable
it has to be working. However, working software does not
equal usable software. In XP working software emphasises the
quality of the code, which may in fact decrease the developers’
motivation to focus on the usability issues. (Bankston, 2003)

As discussed in chapter 3, XP works best with skilled
individuals, who each take responsibility for their area of
expertise. This should support the inclusion of usability experts
in XP teams, but in practice these skills are often overlooked.
Lack of usability experts makes it substantially more difficult
to achieve good usability. (Seffah et al., 2005)

XP uses the term customer for the tasks that actually the
users should do (Bankston, 2003). This may be misleading.
For example, user stories are often written by the customer’s
representative, who probably does not fully understand the
users’ true needs (Constantine, 2001). This may lead to a prod-
uct that has lots of features that the users do not really have
use for, and that lacks features that the users would actually
need, which may force the users to change their ways of doing
things in order to be able to use the software (Patton, 2002).
Relying only on the customer to provide the requirements may
also lead to unclear and ambiguous user story cards, since the
customer may not be capable of articulating, visualizing, or
organizing the requirements properly (Bankston, 2003). Even
if actual users are included in the team, there is a question of
whether they represent typical users. It is all too often that the
reasons for selecting the users are for example how popular
or unpopular they are among their colleagues or that they just
happen to be available. Even if the users represent typical users
in the beginning of the project, they are bound to drift further
away as they co-operate with the developers. (Hudson, 2003)



T-76.5650 SOFTWARE ENGINEERING SEMINAR, FALL 2006 5

In XP user stories are used to capture requirements. How-
ever, as such user stories do not fit into expressing usability
requirements. Thereby, usability requirements are typically
dismissed in XP projects. (Jokela and Abrahamsson, 2004).

In UCD the user interface is designed and evaluated thor-
oughly before it is actually implemented. However, in XP the
overall structure of the product (including its user interface) is
not designed before the implementation is started (McInerney
and Maurer, 2005). Instead XP focuses on implementing only
a little piece of functionality in each iteration. Continuous
integration, refactoring and unit testing guarantee that this
does not lead to inconsistent code, but it is not so easy to
guarantee that the user interface does not become inconsistent.
In fact, it is almost certain that the general look&feel including
navigation will require constant refactoring throughout the
development process to maintain its consistency. (Bankston,
2003) This will be troublesome for users that have already
begun to use the software (Constantine, 2001). I have also
personal experiences on this. I was once asked to implement
user interface screens for a mobile phone application. I was
first given the requirements for one screen. After that was
completed, another screen was requested, and finally after
that, a third screen. Already by that time, it was very hard
to maintain consistency, because the screens had so different
functionality. Had I been given the requirements for all screens
at once, I could have designed a general consistent look&feel
before starting to implement the first screen.

One can see from ISO 13407 and Nielsen’s model in
chapter 2.3 that an essential component of UCD is usability
evaluation. Although testing is emphasized in XP, it contains
no practices that directly support usability testing (Bankston,
2003). There is no time to do thorough usability tests with
users between iterations or release cycles and only testing
paper prototypes and doing expert analyses do not provide
an accurate picture of the product’s usability (Constantine,
2001). However, releasing useful software early, frequently,
and continuously to the customer may serve as ongoing
usability tests (Armitage, 2004).

In general, XP does not pay attention to the usability issues
and it may be that in its original form it works best in
applications that are not heavily GUI intensive (Armitage,
2004). The belief that close collaboration with the customer
guarantees good usability, is not valid. Instead the usability
depends heavily on the abilities of the customer and the
developers, since XP as a process does not support usability
systematically. (Jokela and Abrahamsson, 2004)

4.2. Suggested Ways for Combining User-Centered Design
and Extreme Programming

To make sure that developers are capable and motivated in
taking usability issues into account, it is suggested that user
interface designers should be partnered with the developers
in XP pair programming practice (Bankston, 2003). If this is
not feasible, then at least the user interface designers should
always be available to answer the developers’ questions and
to validate their work (McInerney and Maurer, 2005).

To make sure that the users’ needs are truly considered, it
should be emphasized that XP’s term customer includes the

actual users (Bankston, 2003). The context of use (who are
the users, which tasks they perform, what are the physical and
social surroundings, etc.) should be analysed in the beginning
of the project (Hudson, 2003). Preferably the users and/or
domain experts should be included in the development team
to answer the developers’ questions and to give them feedback
on their work (McInerney and Maurer, 2005). User interface
designers should also make sure that the customer is able
to properly articulate the requirements before the actual user
story cards are created (Bankston, 2003). Also, the support
for usability requirements should be included in the user story
cards (Jokela and Abrahamsson, 2004).

There are some suggestions to ensure that the incremental
implementation without designing the overall structure of
the product beforehand does not break the user interface.
To begin with, the overall layout of all user interface el-
ements should be sketched, a versatile navigation scheme
designed, and a look&feel style guide defined, before the
actual implementation is started (Constantine, 2001; Jokela
and Abrahamsson, 2004). Also, during the iterations the user
interface design should always stay a few steps ahead of
the actual implementation. In each iteration user interface
prototypes for upcoming iterations should be designed and an
unofficial visionary prototype for the final product maintained.
It would also be a good practice to maintain a design rationale
that one could use to check the reasoning behind user interface
design decisions later on. (McInerney and Maurer, 2005)

Usability evaluation with users should be included as part of
the acceptance testing process (Bankston, 2003). Also, enough
time should be allocated for improving the user interface based
on the evaluation results in the beginning of the next release
cycle (McInerney and Maurer, 2005).

Since XP does not take usability into account and UCD
practices as such are too heavy to be included in XP, some
lightweight UCD practices have been suggested. Most notable
is the process suggested by Constantine (2001). It emphasizes
the modelling of user roles and tasks in order to create
complete task scenarios and user interface prototypes. The
process should be integrated into XP’s planning game practice
and executed in the beginning of each release cycle. The
process should be completed before the implementation of
the components related to user interfaces is begun. How-
ever, system’s internal components may be implemented in
parallel. The process does not require heavy documentation
since the possibly vague paper prototypes can be explained
to the developers following the XP’s principle of face-to-
face conversation being the most important communication
mechanism. The different phases of the process are presented
in the following. (Constantine, 2001)

1) Stakeholders (domain experts, business people, develop-
ers, users, etc.) are recognized and gathered together.

2) The current situation is explained by domain experts and
users.

3) Expected functions, concerns, etc. are brainstormed.
4) User roles are brainstormed on index cards.
5) User roles are prioritized based on how relevant they are

for project’s success.
6) Task descriptions of different user roles are brainstormed



T-76.5650 SOFTWARE ENGINEERING SEMINAR, FALL 2006 6

on index cards.
7) Tasks are prioritized based on how common they are

and categorized into three classes: required, desired and
deferred.

8) Required tasks and desired tasks that are interesting are
described in more detail.

9) Tasks are organized into groups based on how likely
they relate to each other. Index cards are duplicated if
necessary.

10) A paper prototype is created, where each screen should
represent one task group. The focus is on required tasks,
but all tasks are kept in mind for the user interface’s
consistency.

11) Paper prototype is tested with users based on scenarios
derived from the task descriptions.

Patton (2002) describes the following experiences on using
the process described above. The brainstorming session in
the beginning provided good background information and its
results could be used later to check whether all issues had been
considered. Deriving paper prototypes from task descriptions
was an easy and efficient way of transferring the knowledge
of what needs to be done into what it could look on the
screen. Paper prototypes were created using post-it notes,
which were easy to move around. Also, the process helped
in creating a common understanding between the developers
and the customer. In addition to this, the task descriptions
helped the testing process later on. On the negative side of
things, the process proved to be quite heavy and exhausting
to be a part of lightweight XP. This was solved by creating
the paper prototypes on a later time with a smaller group of
people. Also, the paper prototypes were not accurate enough
for the developers to base their implementations on and the
designers weren’t always available to explain things face-to-
face. Therefore, the final paper prototypes were cleaned up and
the user roles and task descriptions were briefly documented
for the developers. (Patton, 2002)

5. CONCLUSIONS

This study focused on identifying conflicts between UCD
and XP as well as discussing ways for resolving those con-
flicts. The main findings are summarised in table I.

The main thing about the suggestions is that they cannot
break the lightweight nature of the XP process. Constantine
(2001) presented a lightweight method that covered three
of the four UCD activities defined in ISO 13407. Covered
activities were understanding and specifying the context of
use, specifying the user and organisational requirements, and
producing design solutions. The activity that was not cov-
ered was evaluating designs against requirements. Although
it was suggested that usability evaluation with users should
be included in acceptance testing (Bankston, 2003), and that
sufficient time should be reserved to the beginning of the next
release cycle for correcting the problems found in the usability
evaluation (McInerney and Maurer, 2005), no practical ways
for achieving these in a lightweight manner were given. This
could be an interesting concern for further study.

The study consisted of only three articles that reported
actual experiences on combining UCD and XP. Other ar-

TABLE I

CONFLICTS BETWEENXP AND UCD AND SUGGESTIONS FOR RESOLVING

THEM

XP fo-
cuses on

UCD fo-
cuses on

Conflict Suggestions for resolving

Quality
of the
code

Usability
of the
end
product

XP developers are
not motivated to
consider usability
issues

UI designers always avail-
able to help the devel-
opers, usability evaluation
with users integrated into
acceptance testing

Satisfying
the cus-
tomer

Concen-
trating
on the
user

If users’ true needs
are not identified,
the end product
does not satisfy the
users in the best
possible way

Users included in the
development team, light-
weight process for inter-
preting the users’ needs
and translating them into
paper prototypes

Designing
only
what is
neces-
sary at
the time

Proper
design
upfront

User interface be-
comes inconsistent
if it is not designed
properly

Overall layout, navigation
and look&feel designed
upfront, UI prototypes de-
signed for upcoming itera-
tions and a visionary pro-
totype of the final product
maintained throughout the
process

ticles presented more inferred thoughts on how UCD and
XP should be combined. Of course, these thoughts were
drawn from actual experiences. In science, it is often the
case, that reports are written only on succesful projects.
However, in this analysis one of the articles (McInerney and
Maurer, 2005) reported mainly positive experiences, another
one (Patton, 2002) positive and negative experiences, and the
third one (Jokela and Abrahamsson, 2004) mainly negative
experiences. Nevertheless, more analysed cases would have
given more grounds to base one’s conclusions on, so the results
presented in this paper should be seen only indicative of the
ways how UCD and XP can be combined.

For further discussion, see the Yahoo discussion group
”Agile Usability”, which aims at connecting the usability com-
munity to the agile development community (Patton, 2006).

REFERENCES

Armitage, J. (2004). Are agile methods good for design?
interactions 11(1), 14–23.

Bankston, A. (2003). Usability And User Interface De-
sign In XP, White Paper.http://www.ccpace.com/
Resources/documents/UsabilityinXP.pdf .

Bass, L. and B. E. John (2001). Supporting usability through
software architecture.Computer 34(10), 113–115.

Beck, K. and C. Andres (2004).Extreme Programming Ex-
plained: Embrace Change (2nd Edition). Addison-Wesley
Professional.

Beedle, M., A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, K. Schwaber, J. Sutherland,
and D. Thomas (2001). Manifesto for Agile Software
Development.http://agilemanifesto.org/ .

Bosch, J. and N. Juristo (2003). Designing software architec-
tures for usability. InProceedings of the 25th International
Conference on Software Engineering, pp. 757–758. IEEE
Computer Society.



T-76.5650 SOFTWARE ENGINEERING SEMINAR, FALL 2006 7

Constantine, L. L. (2001). Process agility and software us-
ability: Toward lightweight usage-centered design.Software
Development 9(6).

Hudson, W. (2003). Adopting user-centered design within an
agile process: A conversation.http://www.syntagm.
co.uk/design/articles/ucd-xp03.pdf .

ISO (1988). Guidance on Usability. Technical report, ISO
9241-11.

ISO (1999). Human-centered design processes for interactive
systems. Technical report, ISO 13407.

ISO (2000). Software Engineering - Product quality - Part 1:
Quality model. Technical report, ISO 9126-1.

Jokela, T. and P. Abrahamsson (2004). Usability assessment of
an extreme programming project: Close co-operation with
the customer does not equal to good usability. In5th
International Conference, PROFES 2004, Kansai Science
City, Japan, pp. 393–407. Springer Berlin / Heidelberg.

McInerney, P. and F. Maurer (2005). Ucd in agile projects:
dream team or odd couple?interactions 12(6), 19–23.

Nielsen, J. (1993).Usability Engineering. Boston, MA, USA:
Academic Press.

Patton, J. (2002). Hitting the target: adding interaction design
to agile software development. InOOPSLA ’02: OOPSLA
2002 Practitioners Reports, pp. 1–7. ACM Press.

Patton, J. (2006). Agile Usability Yahoo Discus-
sion Group. http://groups.yahoo.com/group/
agile-usability .

Seffah, A., J. Gulliksen, and M. C. Desmarais (2005).Human-
Centered Software Engineering - Integrating Usability in the
Software Development Lifecycle. Springer.

Seffah, A. and E. Metzker (2004). The obstacles and myths
of usability and software engineering.Communications of
the ACM 47(12), 71–76.


