
Helsinki University of Technology 3.12.2004
Telecommunications Software and Multimedia Laboratory
T-111.550 Multimedia Seminar
Autumn 2004

MIDP 2.0 Sound API and JSR-135/234

Teemu Harju (55730D)
Antti Nummiaho (48004M)



MIDP 2.0 Sound API and JSR-135/234

Teemu Harju (tsharju@cc.hut.fi)
Antti Nummiaho (anummiah@cc.hut.fi)

Abstract

Mobile media devices and their multimedia features have been developing
rapidly during the last few years. In this paper we inspect audio features of
Mobile Media API and Advanced Multimedia Supplements developed for Java
2 Platform Micro Edition. We go through the essential features and architec-
tural components of these two APIs. Some development related issues are also
dealt in this document through simple code examples. There are currently sev-
eral different mobile devices on market. We take a brief look on their support for
these audio features. Possible future audio supplements to MMAPI in addition
to AMMS are also considered mainly by comparing MMAPI and AMMS to Java
Media Framework for J2SE. Main findings of this paper are that audio support
for current mobile devices is extremely comprehensive and that AMMS is a very
extensive supplement to MMAPI.

1 Introduction

Java-enabled mobile devices have recently become more and more common among
regular customers. Latest mobile phones have microphones and cameras and are hence
equipped with quite good multimedia capabilities. To be able to take full advantage
of this hardware some kind of software platform is also required. The Micro Edi-
tion of the Java 2 Platform (J2ME) provides an application platform that fits to this
purpose. J2ME has application programming interfaces (APIs) such as Mobile Me-
dia API (MMAPI, JSR-135) and Mobile Information Device Profile 2.0 (MIDP 2.0,
JSR-118) that provide some basic multimedia features. Also, in the near future a new
supplement to MMAPI called Advanced Multimedia Supplements (AMMS, JSR-234)
will be finalized. It will bring multimedia features to mobile devices that are quite
close to the ones in desktop devices.

In this paper we will deal only with the audio features of these three APIs. We will
explain the basic architecture behind audio in mobile devices and show some examples
how some features can be implemented. Some attention has also been given to the sup-
port of these APIs in the current mobile multimedia devices as well as the comparison
to Java Media Framework (JMF) that has been developed for desktop devices.

1



2 Mobile Media API (JSR-135)

2.1 Overview

Mobile Media API is a standardized way to bring multimedia into mobile devices. The
MMAPI specification is defined in Java Specification Request 135 (JSR-135). MMAPI
is created based on the concepts of Java Media Framework for Java 2 Standard Edition
but targeted for mobile devices with limited audio and video capabilities, processing
power and memory size. MMAPI’s key feature is that it is not designed to be used
with certain protocols or media formats.Rantalahtiet al. , 2003

The MMAPI specification is an optional package that can be adopted to any J2ME-
enabled device. The main target for the API is a CLDC based device, but other en-
vironments like CDC are not excluded. Latest version of the MMAPI specification is
version 1.1, which was finalized in June 2003. It does not differ much from version
1.0. Basically only some documentation updates have taken place and the MIDP 2.0
security framework has been taken into account.Rantalahtiet al. , 2003

Almost all modern mobile multimedia devices on market support MMAPI.

2.2 Features

Tone generation, audio playback and audio recording are MMAPI’s essential audio
features. MMAPI has also some interesting general features. All main audio and
general features of the MMAPI are listed and explained shortly in the following.Mah-
moud, 2003; Rantalahti & Huopaniemi, 2003

• Support for tone generation. The API includes an ability to play single tones or
to create and play tone sequences. Tempo and volume changes in tone sequences
are also supported.

• Support for audio playback and recording with some basic controls like volume
control.

• Support for interactive MIDI. An application can trigger MIDI events directly to
create music or sound effects on the fly.

• Support for audio seeking that is the API enables the ability to move ahead or
behind in time while playing the audio.

• Support for audio synchronization that is the API enables the ability to use tim-
ing information in an audio stream to decide when to play out sample from
buffer.

• Protocol and format independency. An implementation of the API can support
any formats and protocols that it needs. Formats are handled as MIME types.

2



Figure 1: MMAPI Architecture.

• Extensibility. New features can be added easily without breaking the architec-
ture. Advanced MultiMedia Supplements is an example of a rather large exten-
sion to the MMAPI.

• Subsettability. Developers can limit support to particular types of content, for
example basic audio as in the MIDP 2.0 Sound API which is described later in
this document.

• Low footprint. The API works within the strict memory limits of mobile devices.

• Options for implementations. The API is designed to allow some features to be
left unimplemented if they for example cannot be supported by the target mobile
device.

2.3 Architecture

The architecture of MMAPI is very similar to the architecture of Java Media Frame-
work for J2SE. Four main components areDataSource , Player , Manager and
Control . DataSource ’s main purpose is to hide the details of reading and writ-
ing the actual data. This way thePlayer can concentrate on providing different
media-specificControl s, like VolumeControl , for handling the media content.
Manager ’s main task is to createPlayer s from differentDataSource s and also

3



Figure 2: MMAPI Player States.

from InputStream s. The architecture is visualized in figure1 on page3. Mahmoud,
2003

ThePlayer ’s life-cycle consists of five states, which areUNREALIZED, REALI-
ZED, PREFETCHED, STARTED, andCLOSED. The purpose of these states is to enable
programmatic control over potentially time-consuming operations. When aPlayer is
created, it is in theUNREALIZEDstate. A call to thePlayer ’s realize() method
transfers thePlayer to the REALIZED state. During this transition thePlayer
initializes the resources it needs to function. Therealize() method allows the ex-
ecution of this potentially time-consuming process at an appropriate time. After the
REALIZED state thePlayer typically moves to thePREFETCHEDstate. This tran-
sition takes care of the rest of the possible time-consuming operations reducing the
startup time of thePlayer to the minimum. Finally thePlayer normally moves to
theSTARTEDstate. When thePlayer reaches the end of media or when it is stopped,
it moves back to thePREFETCHEDstate and is ready to repeat the cycle. Calling
close() transfers thePlayer to theCLOSEDstate. ThePlayer is moved through
its states using its state transition methodsrealize() , prefetch() , start() ,
stop() , deallocate() andclose() . ThePlayer ’s life-cycle is illustrated in
figure2. Rantalahtiet al. , 2003

2.4 MIDP 2.0 Sound API

The MIDP 1.0 specification had only minimal support for sound. The MIDP 2.0 speci-
fication extends this support by including a subset of MMAPI. The purpose of this sub-
set is to enable more sophisticated audio features on mobile devices that do not have
the resources to support the full MMAPI. The MIDP 2.0 Sound API or ABB (Audio
Building Block) as it is also called is upwardly compatible with the full MMAPI. As
the name states, it only supports audio related features of the MMAPI. Video capture
or playback is not supported. Audio capture is not supported either. Features that are

4



Figure 3: MMAPI and MIDP 2.0 Sound Classes.

supported are listed in the following.Riggset al. , 2003; Hemphill, 2004

• Media format and protocol independency (some mandatory protocols and for-
mats have however been defined to ensure interoperability)

• Tone generation (including single tones and tone sequences)

• Audio playback

• General media flow controls (start, stop, etc.)

• Media-specific controls (volume control, tone control)

• Ability to query for supported media features

Other main characteristics of the MIDP 2.0 Sound API are that multiplePlayer s
cannot be synchronized and that the packagejavax.microedition.media.
protocol includingDataSource class is excluded. This means that custom pro-
tocols are not supported.Knudsen, 2002

In the figure3 the relationship between MMAPI and MIDP 2.0 sound API is pre-
sented in the form of main sound classes.

5



2.5 Development

Basically the main tool to use for MMAPI related development as well as almost any
other J2ME development is Sun Microsystems’ J2ME wireless toolkit. J2ME wireless
toolkit 2.2, which is currently the latest version of the toolkit, supports MMAPI 1.1.
It contains several emulators that can be used to emulate MIDP applications. Some
mobile device manufacturers, like Nokia, also offer their own J2ME development kits.
Those development kits usually have emulators that are more alike with a certain real
mobile device of the manufacturer that provides the kit. Of course, it is always recom-
mendable to test the applications also with the targeted mobile device, since there are
almost always some differences between the emulator and the actual device.

As stated earlier, the essential features of MMAPI are audio playback and audio
recording. The implementation of these features is now illustrated with some simple
code examples.

The following example illustrates audio playback from a network file. At first the
Manager creates aPlayer from a given media locator. The createdPlayer is
then set to play the audio file three times. After that thePlayer is realized so that
its VolumeControl can be obtained.VolumeControl can be used to set the vol-
ume of the audio that is played. Its methodsetLevel(int level) takes values
between 0 and 100 where 0 represents silence and 100 the highest volume possible and
the scaling is linear. If theVolumeControl can be obtained, the volume is set to 80
in this example. Finally thePlayer is started and the audio playback begins.

public class PlaySoundFromNetworkMIDlet extends MIDlet {
protected void pauseApp() {}
protected void destroyApp(boolean unconditional) {}
protected void startApp() {

try {
Player player = Manager.createPlayer

("http://localhost/example.wav");
player.setLoopCount(3);
player.realize();
VolumeControl vc;
if ((vc = (VolumeControl) player.getControl

("VolumeControl")) != null) {
vc.setLevel(80);

}
player.start();

} catch (MediaException e) {
} catch (IOException e) {}

}
}

The next example illustrates audio playback from a resource in the classpath. The

6



audio file can for example be included in the JAR file of the application. In this case
theManager creates aPlayer from a givenInputStream and media type. This
time the volume is left at the default value and there is no need to realize thePlayer
separately before starting it.

public class PlaySoundFromSystemResourceMIDlet
extends MIDlet {

protected void pauseApp() {}
protected void destroyApp(boolean unconditional) {}
protected void startApp() {

try {
String type = "audio/x-wav";
InputStream is = getClass().getResourceAsStream

("/res/audio/example.wav");
Player player = Manager.createPlayer(is, type);
player.start();

} catch (MediaException e) {
} catch (IOException e) {}

}
}

The following example demonstrates a simple audio tone generation. The tone is
generated using the methodManager.playTone(int note, int duration,
int volume) .

public class PlaySingleToneMIDlet extends MIDlet {
protected void pauseApp() {}
protected void destroyApp(boolean unconditional) {}
protected void startApp() {

try {
Manager.playTone(50, 500, 100);

} catch (MediaException e) {}
}

}

If more control over the tone generation is desired or if one wants to play a se-
quence of tones, one should use aToneControl obtained from aPlayer as in the
following example. In the example the tone sequence is first specified as a list of tone-
duration pairs and user-defined sequence blocks. A tonePlayer is then created using
theManager after which thePlayer is realized so that itsToneControl can be
obtained. The specified tone sequence is then set to theToneControl and played
by thePlayer .

7



public class PlayToneSequenceMIDlet extends MIDlet {
protected void pauseApp() {}
protected void destroyApp(boolean unconditional) {}
protected void startApp() {

byte tempo = 30;
byte volume = 100;
byte d = 8; // eighth note
byte C = ToneControl.C4;
byte D = (byte) (C + 2);
byte E = (byte) (C + 4);

byte[] sequence = {
ToneControl.VERSION, 1,
ToneControl.TEMPO, tempo,
ToneControl.SET_VOLUME, volume,
// define block 0 and repeatable block
// of 3 eigth notes
ToneControl.BLOCK_START, 0,

C, d, D, d, E, d,
// end block 0
ToneControl.BLOCK_END, 0,
// play block 0
ToneControl.PLAY_BLOCK, 0,
// play some other notes
ToneControl.SILENCE, d, E, d, D, d, C, d,
// play block 0 again
ToneControl.PLAY_BLOCK, 0

};

try {
Player player = Manager.createPlayer

(Manager.TONE_DEVICE_LOCATOR);
player.realize();
ToneControl tc = (ToneControl)

player.getControl("ToneControl");
tc.setSequence(sequence);
player.start();

} catch (IOException e) {
} catch (MediaException e) {}

}
}

8



The next example demonstrates media synchronization. TwoPlayer s are cre-
ated. The firstPlayer plays a midi sound file and the secondPlayer an mpeg
movie file. BothPlayer s are first realized so that their timebases can be set to same.
After that bothPlayer s are prefetched so that they can be started with minimum
delay possible. Finally thePlayer s are started.

public class RecordAudioMIDlet extends MIDlet {
protected void pauseApp() {}
protected void destroyApp(boolean unconditional) {}
protected void startApp() {

try {
Player player1 = Manager.createPlayer

("http://localhost/example.mid");
player1.realize();
Player player2 = Manager.createPlayer

("http://localhost/example.mpg");
player2.realize();
player2.setTimeBase(player1.getTimeBase());
player1.prefetch();
player2.prefetch();
player1.start();
player2.start();

} catch (IOException e) {
} catch (MediaException e) {

}
}

The final example of MMAPI illustrates audio recording. At first aPlayer for
audio capturing is created using theManager . Then thePlayer is realized so that
its RecordControl can be obtained. A stream to which to record is then set to the
RecordControl . After that the recording can be started with theRecordControl ’s
methodstartRecord() . The Player has to be started as well, because theRecord-
Control records what is being played by thePlayer . In this example the method
Thread.sleep(int duration) is used to set the duration of the recording.
The recording is stopped using theRecordControl ’s methodcommit() . The
Player is also closed and the recorded audio is available in the stream that was set
as theRecordControl ’s output stream.

public class RecordAudioMIDlet extends MIDlet {
protected void pauseApp() {}
protected void destroyApp(boolean unconditional) {}
protected void startApp() {

try {

9



Player player = Manager.createPlayer
("capture://audio");

player.realize();
RecordControl rc = (RecordControl)

player.getControl("RecordControl");
ByteArrayOutputStream recordStream =

new ByteArrayOutputStream();
rc.setRecordStream(recordStream);
rc.startRecord();
player.start();
// record for 5 seconds
Thread.currentThread().sleep(5000);
rc.commit();
player.close();

} catch (IOException e) {
} catch (MediaException e) {
} catch (InterruptedException e) {}

}
}

3 Advanced MultiMedia Supplements (JSR-234)

3.1 Overview

JSR-234 specifies an advanced multimedia supplements to Mobile Media API (JSR-
135). It will enhance the multimedia support on mobile devices by adding features
like camera control, radio tuner and even 3D audio. Of course, all this can be done
on resource-constrained devices such as mobile phones and personal digital assistants
(PDA). JSR-234 is still at the time of writing this document under development, but
the final version of the specification should be published by January 2005.Rantalahti,
2004; Haley, 2004

In this section we will concentrate only on the sound features of JSR-234 such as
different kind of additional audio effects it provides. We will also take a look in to the
way that the effects are processed, since that differs quite drastically from the earlier
specifications. Another very interesting feature of JSR-234 is 3D audio and virtual
acoustics, so we are also going to take a brief look at that. In addition to these, a quite
detailed architectural view to the API will also be presented as well as some simple
code examples.

10



3.2 Features

3.2.1 Advanced Audio

More than a half of the new interfaces defined by JSR-234 are concentrating on ad-
vanced audio. It will define many new sound effects such as reverb and chorus. Also
sound equalizer is added to the specification. This can be used for example to make
music sound more natural to the listener in some certain situations.

The most interesting new feature in JSR-234 is probably the possibility to create
three-dimensional sound effects. This makes it possible to create virtual acoustic en-
vironments to the listener that is using a device equipped with either earphones or
loudspeakers. In practice this means that it is possible to create sounds that from the
listener’s perspective seem to be coming from different directions and different dis-
tances. Human ear can perceive direction from where the sound is coming very accu-
rately using certain physical properties of the sound arriving to the ears. These physical
properties can be simulated quite efficiently using computers, thus creating a feeling
to the listener that the sound is coming from some certain direction. A more detailed
explanation on how this is implemented in JSR-234 can be found from section3.3.4
of this document.

3.2.2 Radio

JSR-234 also defines controls for AM/FM radio tuner. Of course presuming that the
device in question has hardware implemented to support this also. It is possible to seek
channels and save them as presets as in normal radio devices. JSR-234 supports also
Radio Data System (RDS) and this gives lots of additional features to regular radio.
With RDS it is possible for the radio broadcasters to send signals to radio tuner and it
can for example automatically tune to a channel that is broadcasting important traffic
announcements.

3.3 Architecture

JSR-234 is built on Mobile Media API, so it automatically inherits its structure. Mobile
Media API is described in more detail in section2.3of this document. The concept of
Player , Manager and Control is hereafter used in JSR-234 also. In addition
to more sophisticated audio effect controls, which we will deal later in this chap-
ter, JSR-234 addsGlobalManager , Spectator , Module , EffectModule ,
SoundSource3D andMediaProcessor classes to the Mobile Media API specifi-
cation. In the figure4 the relationship between AMMS, MMAPI and MIDP 2.0 sound
API is presented in the form of main sound classes.

GlobalManager class is used to createEffectModule s,SoundSource3D s
andMediaProcessor s. This is pretty much the same concept as in theManager
class that is used to createPlayer s. Furthermore aSpectator class can be fetched
from GlobalManager .

11



Figure 4: AMMS, MMAPI and MIDP 2.0 Sound Classes.

12



Figure 5: JSR-234 Effects Network.

The idea behindGlobalManager is that it serves as a manager to allPlayer
objects in the application.Player s are usually grouped under some certainModule .
Module s itself cannot be fetched from anywhere but its subclassesEffectModule
andSoundSource3D are used instead. These two classes operate almost exactly the
same way. The important difference between them is thatEffectModule is meant
for effects in general whereasSoundSource3D is meant only for three-dimensional
audio effects. This is done only to keep the implementation as simple as possible.

3.3.1 Effects Network

JSR-234 provides means for specifying effects and their order. This can be done by
groupingPlayer s, adding effects after a group ofPlayer s or after eachPlayer
individually and optionally, even the order of the effects applied can be specified.
This can be called as the effects network. Essential parts of this network are the
EffectModule andSoundSource3D classes introduced in the previous chapter.
Visualization of how the effects network works can be seen in figure5. The order in
which the individual effects are applied can be defined usingEffectOrderControl
interface. It simply assigns different priorities to different effects.

3.3.2 Media Post-processing

MediaProcessor interface is used to handle post-processing of media. It also can
be retrieved usingGlobalmanager . Using aMediaProcessor it is possible to
specify source media and several post-processing effects to be applied on it. In other
words, it gives a possibility to reuse the effects network.MediaProcessor has
three different states:SETUP, STARTEDandSTOPPED. WhenMediaProcessor
is in SETUPstate it is possible to define theControl s applied to the media that will
be processed. Of course, also the input and output of the processor need to be set in

13



SETUPstate. Input to theMediaProcessor is given inInputStream and out-
put is written toOutputStream . Before processing can startMediaProcessor
needs to read some data from the start of the stream to setup the differentControl s.
For example, the header of the file may contain information about the format that is
used. Processing can be started usingMediaProcessor ’s start() method af-
ter which the processor moves toSTARTEDstate. After processing has started the
changes that take place in definedControl s don’t affect theMediaProcessor .
This is the same also for theSTOPPEDstate where the processor goes after the method
stop() is called. The changes will take effect only after the processor has returned
to SETUPstage.MediaProcessor will return to SETUPstate after the processing
has completed or some error interrupts it.

UsingMediaProcessor it is also possible to convert media to different formats.
This can be achieved using theFormatControl and in the case of audio, its subclass
AudioFormatControl .

3.3.3 Media Player Priorities

In JSR-234 specification it is possible to assign different priorities toPlayer objects
as well as for the effects.Player prioritization is done to assure the proper function-
ing of the application in the case where numerousPlayer s are used.

When aPlayer is making a transition fromREALIZED to PREFETCHEDor
from PREFETCHEDto STARTEDand there are no resources left to perform the tran-
sition, prioritization is used to determine whichPlayer can use the resources of
the device. If aPlayer with lower priority than the one that is making the upward
state transition is using the resources needed, the lower priorityPlayer will send
DEVICE_UNAVAILABLEevent to itsPlayerListener and return back to previous
state, this way giving the resources to the higher priorityPlayer . If a Player is
trying to do a transition when there are no resources available and thePlayer has
equal or lower priority than thePlayer s using the resources, the transition simply
cannot be done.

3.3.4 Spatialization and Virtual Acoustics

JSR-234 specifies aLocationControl interface that can be used to place differ-
ent auditory objects, usuallySpectator or SoundSource3D , around the virtual
acoustic space.Spectator , that can be again fetched from theGlobalManager ,
represents the human listener. Location in 3D space is expressed using XYZ coordi-
nates. Since sounds coming from different distances sound different because of vary-
ing attenuation the location information is not adequate. We need also the distance, so
the location is noted using a location vector.

In addition to defining the location of the sound source, it is also possible to define
the orientation of the sound source in three-dimensional space. This can be accom-
plished viaOrientationControl interface.OrientationControl can again

14



be used with theSpectator or SoundSource3D . In the latter case the subclasses
DirectivityControl andMacroscopicControl are used.

3.3.5 Commit

One main feature of JSR-234 that also has to be mentioned is theCommitControl .
It is a mechanism that enables one to commit many audio parameters at the same time.
If it is supported, it can be obtained fromGlobalManager . CommitControl
has two different modes:immediateanddeferred. The first one basically means that
theCommitControl is disabled and the other one means that all audio effects that
are applied will be buffered and activated only when thecommit() method of the
CommitControl is called. This is done in order to make synchronization easier and
also to improve the performance of the applications.

3.4 Development

In this section we will concentrate on code examples which are based on the proposed
final draft of the JSR-234 API. Since a final version of the API has not been published
yet, we are not able to test or actually implement the examples we present here, so they
might not be totally accurate. The idea that is behind this API should however become
clearer through these examples.

3.4.1 Tuner and RDS Example

In this first very simple example we show how it is possible to control the radio tuner
using classes defined injavax.microedition.amms.control.tuner pack-
age of JSR-234 API.

It all starts simply by creating aPlayer that uses the device’s radio tuner hard-
ware as its input. This is done with the following code.

Player player = Manager.createPlayer("capture://radio");

Then we need to get theControl of the tuner so we can actually control the
radio. Here we use theTunerControl class that naturally has to be supported by
the device.

TunerControl tuner = (TunerControl) player.getControl
("javax.microedition.media.control.tuner.TunerControl");

Now using theTunerControl we can for example search for some radio station
and save it as a preset.

15



int freqFound = tuner.seek
(970000, TunerControl.MODULATION_FM, true);

tuner.setStereoMode(TunerControl.STEREO);
tuner.setPreset(1);
tuner.setPresetName(1, "Station 1");

In the previous code sample we started to search an FM radio channel from 97 kHz
and up. Then we stored it to the preset slot number one.

If RDSControl is supported by the device, we can use RDS to get some channel
specific data. Next we will use RDS to get the current date, set the traffic announce-
ments on and get the current program type.

if ((RDSControl rds = (RDSControl) radio.getControl
("javax.microedition.media.control.tuner.RDSControl")
)!= null) {
Date date = rds.getCT();
if (rds.getTA()) {

rds.setAutomaticTA(false);
}
String pty = rds.getPTYString(true);

}

3.4.2 3D Audio Example

This example shows how to create three-dimensional sound sources using JSR-234
API. This example is very illustrative because it also shows how the effects network is
used viaEffectModule andSoundSource3D . In the code below we first add a
Player to theSoundSource3D . This then enables us to set thePlayer ’s position
in virtual acoustic environment usingLocationControl . We are going to set the
location of the sound source to be 10 meters in front, meaning that it resides on the
negative Z-axis.

SoundSource3D src = GlobalManager.createSoundSource3D();
src.addPlayer(p1);
LocationControl ls = (LocationControl) src.getControl

("javax.microedition.media.control.audio3d.LocationControl");
ls.setCartesian(0, 0, -10000);

Next we set the way the sound attenuates when it travels from some location to the
position where the listener is. This is done usingDistanceAttenuationControl .
The sound attenuates exponentially when moving away from the listener. We set the
sound to be totally silent after 50 meters.

16



DistanceAttenuationControl distSrc =
(DistanceAttenuationControl) src.getControl
("javax.microedition.media.control.audio3d." +

"DistanceAttenuationControl");
distSrc.setParameters(10, 50000, true, 1000);

Now we are going to useEffectModule to set some 2D effect. We are going to
set a flanger effect to the sound usingChorusControl .

EffectModule effect = GlobalManager.createEffectModule();
effect.addPlayer(p2);
effect.addPlayer(p3);
if ((ChorusControl chorusEffect =

(ChorusControl) effect.getControl
("javax.microedition.media.control.audioeffect.ChorusControl")
) != null) {
chorusEffect.setPreset("flanger");
chorusEffect.setModulationDepth(4000);
chorusEffect.setModulationRate(260);

}

It is also possible to set the location of the spectator usingLocationControl
and the orientation using theOrientationControl . In the following example we
will set the Spectator to the origin, which actually is not needed since it is the
default value. Then we will slightly turn the spectator so the rotation is ten degrees on
the Y-axis, zero degrees on the X-axis and five degrees on the Z-axis.

Spectator s = GlobalManager.getSpectator();
LocationControl lc = (LocationControl) s.getControl

("javax.microedition.media.control.audio3d.LocationControl");
lc.setCartesian(0, 0, 0);
OrientationControl oc = (OrientationControl) s.getControl

("javax.microedition.media.control.audio3d.OrientationControl");
oc.setOrientation(10, 0, 5);

4 Support on Current Mobile Devices

Today the biggest mobile phone manufacturers such as Nokia, Siemens and Sony-
Ericsson have quite good multimedia support in their latest phone models. MMAPI
is included in almost all new mobile devices that have some kind of multimedia fea-
tures. The level ofControl s that these devices support varies based on different
content types. For example, a whole lot ofControl s are supported for content types

17



Manufacturer Model Content type Supported Controls
Nokia Series 40 DP 1.0, audio/x-tone-seq VolumeControl,

Series 40 DP 2.0 StopTimeControl,
ToneControl

audio/midi, VolumeControl,
audio/sp-midi StopTimeControl,

MIDIControl,
TempoControl,
PitchControl

Series 60 DP 2.0 audio/x-tone-seq VolumeControl,
StopTimeControl,
ToneControl

audio/wav, VolumeControl,
audio/x-wav, StopTimeControl
audio/au,
audio/x-au,
audio/amr,
audio/amr-wb
audio/midi, VolumeControl,
audio/sp-midi StopTimeControl

Siemens Siemens SX1 audio/x-tone-seq VolumeControl,
StopTimeControl,
ToneControl

audio/x-wav, VolumeControl,
audio/amr, StopTimeControl
audio/midi,
audio/sp-midi

Sony-Ericsson All models with audio/x-tone-seq VolumeControl,
MMAPI support StopTimeControl,

ToneControl
audio/x-wav, VolumeControl,
audio/amr, StopTimeControl
audio/midi,
audio/sp-midi

Table 1: Supported Controls on Current Mobile Phones.

18



audio/midi andaudio/sp-midi whereas basically onlyVolumeControl and
StopTimeControl are supported foraudio/wav content type. Naturally this is
because of the difficulty in implementing some more complicatedControl s for sam-
pled audio and of course the devices’ resources are still somewhat limited as well. Ta-
ble 1 on page18 shows the controls that are implemented in mobile phones of some
today’s biggest mobile phone manufacturers.Hui, 2004; Polish, 2004; Nokia, 2004;
Siemens, 2003; Sony-Ericsson, 2004

5 Possible Future Supplements to MMAPI

The fact that the MMAPI has a very similar structure with the Java Media Framework
for J2SE suggests that one could find out possible future supplements to MMAPI by
comparing these two technologies. However, JMF does not seem to contain any major
elements that are not in the MMAPI/AMMS. Of course, there are differences that
arouse from the fact that JMF has been designed for desktop devices and MMAPI for
mobile devices. For example, RTP is a large part of JMF, but is not included at all
in the MMAPI. This decision has been made according to the protocol independency
principle and it is vital in allowing MMAPI to be implemented on all kinds of different
mobile devices. Therefore, it is not likely that the RTP support feature will be a future
supplement to MMAPI. On the other hand, MMAPI also contains some elements that
are not so well handled in the JMF. For example, the support for MIDI is a key part of
the MMAPI but is not especially supported in the JMF. As a summary, we do not see
any major supplements to the MMAPI in the near future after the AMMS supplement.

6 Conclusions

In this paper the support for sound on current mobile devices was discussed by go-
ing through the MIDP 2.0 sound API and JSR-135/234 standards. We found out that
the MIDP 2.0 sound API contains the basic audio features including audio playback
and tone generation while the JSR-135 also known as MMAPI adds some more so-
phisticated features, most importantly audio recording, to it. We took a glance on the
support of these technologies on current mobile devices and found out that most of the
new devices on market already support MMAPI. We also got acquainted with the new
standard JSR-234 also known as AMMS that adds a bunch of even more sophisticated
audio features to MMAPI. In our opinion, AMMS is such a large extension to MMAPI
that most likely it will take some time before the real mobile devices on market will
have the resources to be able to fully support all of its possibilities.

REFERENCES

Haley Dan. 2004 (August).Get ready for advanced multimedia on your Java mo-
bile platform - A tour of the features in the upcoming Advanced Multimedia

19



Supplements for J2ME API. http://www.javaworld.com/javaworld/
jw-08-2004/jw-0823-multimedia.html .

Hemphill David. 2004 (May).Exploring the J2ME Mobile Media APIs. http://
www.devx.com/wireless/Article/20911 .

Hui Ben. 2004 (October).MIDP 2.0 Phones and PDAs. http://www.benhui.
net/modules.php?name=Midp2Phones .

Knudsen Jonathan. 2002 (June). Mobile Media API Overview. http:
//developers.sun.com/techtopics/mobility/apis/
articles/mmapi_overview/ .

Mahmoud Qusay H. 2003 (June). The J2ME Mobile Media API.
http://developers.sun.com/techtopics/mobility/midp/
articles/mmapioverview/ .

Nokia. 2004 (May). Mobile Media API Implementation In Nokia Developer
Platforms. http://www.forum.nokia.com/main/1,6566,21,00.
html?fsrParam=1-3-/main/0,,21_20,00.html&fileID=4992 .

Polish J2ME. 2004 (November).MIDP 2.0 Devices. http://www.j2mepolish.
org/devices/midp2.html .

Rantalahti Antti. 2004 (October).JSR 234: Advanced Multimedia Supplements.
http://www.jcp.org/en/jsr/detail?id=234 .

Rantalahti Antti & Huopaniemi Jyri. 2003 (May).Birth of Mobile Java Multimedia.
http://www.nokia.com/nokia/0,,53719,00.html .

Rantalahti Antti, Yli-Nokari Jyrki & Huopaniemi Jyri. 2003 (June).JSR 135: Mobile
Media API. http://jcp.org/en/jsr/detail?id=135 .

Riggs Roger, Taivalsaari Antero, Peursem Jim Van, Huopaniemi Jyri, Patel Mark,
Uotila Aleksi & Holliday Jim. 2003. Programming Wireless Devices with the
Java 2 Platform, Micro Edition, Second Edition. Addison Wesley.

Siemens. 2003 (Nov). Siemens SX1, Techical Note for Application Devel-
opers. https://communication-market.siemens.de/portal/
main.aspx?pid=1&langid=0 .

Sony-Ericsson. 2004 (July).Java J2ME for Sony Ericsson Mobile Phones. http://
developer.sonyericsson.com/getDocument.do?docId=65067 .

20

http://www.javaworld.com/javaworld/jw-08-2004/jw-0823-multimedia.html
http://www.javaworld.com/javaworld/jw-08-2004/jw-0823-multimedia.html
http://www.devx.com/wireless/Article/20911
http://www.devx.com/wireless/Article/20911
http://www.benhui.net/modules.php?name=Midp2Phones
http://www.benhui.net/modules.php?name=Midp2Phones
http: //developers.sun.com/techtopics/mobility/apis/ articles/mmapi_overview/
http: //developers.sun.com/techtopics/mobility/apis/ articles/mmapi_overview/
http: //developers.sun.com/techtopics/mobility/apis/ articles/mmapi_overview/
http:// developers.sun.com/techtopics/mobility/midp/ articles/mmapioverview/
http:// developers.sun.com/techtopics/mobility/midp/ articles/mmapioverview/
http://www.forum.nokia.com/main/1,6566,21,00.html?fsrParam=1-3-/main/0,,21_20,00.html&fileID=4992
http://www.forum.nokia.com/main/1,6566,21,00.html?fsrParam=1-3-/main/0,,21_20,00.html&fileID=4992
http://www.j2mepolish.org/devices/midp2.html
http://www.j2mepolish.org/devices/midp2.html
http://www.jcp.org/en/jsr/detail?id=234
http://www.nokia.com/nokia/0,,53719,00.html
http://jcp.org/en/jsr/detail?id=135
https://communication-market.siemens.de/portal/main.aspx?pid=1&langid=0
https://communication-market.siemens.de/portal/main.aspx?pid=1&langid=0
http://developer.sonyericsson.com/getDocument.do?docId=65067
http://developer.sonyericsson.com/getDocument.do?docId=65067

	Introduction
	Mobile Media API (JSR-135)
	Overview
	Features
	Architecture
	MIDP 2.0 Sound API
	Development

	Advanced MultiMedia Supplements (JSR-234)
	Overview
	Features
	Advanced Audio
	Radio

	Architecture
	Effects Network
	Media Post-processing
	Media Player Priorities
	Spatialization and Virtual Acoustics
	Commit

	Development
	Tuner and RDS Example
	3D Audio Example


	Support on Current Mobile Devices
	Possible Future Supplements to MMAPI
	Conclusions
	REFERENCES

