General Notice

When using this document, keep the following in mind:

- 1. This document is confidential. By accepting this document you acknowledge that you are bound by the terms set forth in the non-disclosure and confidentiality agreement signed separately and /in the possession of SEGA. If you have not signed such a non-disclosure agreement, please contact SEGA immediately and return this document to SEGA.
- 2. This document may include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new versions of the document. SEGA may make improvements and/or changes in the product(s) and/or the program(s) described in this document at any time.
- 3. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without SEGA'S written permission. Request for copies of this document and for technical information about SEGA products must be made to your authorized SEGA Technical Services representative.
- 4. No license is granted by implication or otherwise under any patents, copyrights, trademarks, or other intellectual property rights of SEGA Enterprises, Ltd., SEGA of America, Inc., or any third party.
- 5. Software, circuitry, and other examples described herein are meant merely to indicate the characteristics and performance of SEGA's products. SEGA assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples describe herein.
- 6. It is possible that this document may contain reference to, or information about, SEGA products (development hardware/software) or services that are not provided in countries other than Japan. Such references/information must not be construed to mean that SEGA intends to provide such SEGA products or services in countries other than Japan. Any reference of a SEGA licensed product/program in this document is not intended to state or simply that you can use only SEGA's licensed products/programs. Any functionally equivalent hardware/software can be used instead.
- 7. SEGA will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's equipment, or programs according to this document.

NOTE: A reader's comment/correction form is provided with this document. Please address comments to : SEGA of America, Inc., Developer Technical Support (att. Evelyn Merritt) 150 Shoreline Drive, Redwood City, CA 94065 SEGA may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

SEGA OF AMERICA, INC. Consumer Products Division

SCU User's Manual

Third version

Doc. # ST-97-R5-072694

© 1994 SEGA. All Rights Reserved.

READER CORRECTION/COMMENT SHEET

Keep us updated!

If you should come across any incorrect or outdated information while reading through the attached document, or come up with any questions or comments, please let us know so that we can make the required changes in subsequent revisions. Simply fill out all information below and return this form to the Developer Technical Support Manager at the address below. Please make more copies of this form if more space is needed. Thank you.

General	Informa	tion:		
Your Na	me			Phone
Documer	nt numbe	r <u>ST-97-R5-072694</u>		Date
Document name SCU User's Manual				
Correcti	ons:			
Chpt.	pg. #	Correction		
		4		
	I			
Question	ns/comm	ents:		
4				
		Where to send	your corre	ections:
	Fax:	(415) 802-3963 Attn: Manager, Developer Technical Support	Mail:	SEGA OF AMERICA Attn: Manager, Developer Technical Support 275 Shoreline Dr. Ste 500 Redwood City, CA 94065

REFERENCES

In translating/creating this document, certain technical words and/or phrases were interpreted with the assistance of the technical literature listed below.

- 1. *KenKyusha New Japanese-English Dictionary* 1974 Edition
- 2. *Nelson's Japanese-English Character Dictionary* 2nd revised version
- 3. Microsoft Computer Dictionary
- 4. *Japanese-English Computer Terms Dictionary* Nichigai Associates 4th version

Version History

Version 1:	April 7, 1994 • New draft	+
Version 2:	May 31, 1994 • Revisions according to April 28, 1994 meeting	X
Version 3:	July 15, 1994 • Revisions requested on June 30 and July 11, 199	4

Introduction

This manual explains functions of the system controller and how they are used. The system controller transfers data rapidly and smoothly by means of the bus controls.

Explanation of Terms

The following terms are used in this manual.

- **SCU** System Control Unit. The SCU contains the CPU I/F, A-Bus IF, B-BUS I/F, and smoothly effects data transfers between several processors connected through their respective I/F and bus. It also internally houses the DMA controller, interrupt controller, and DSP, and makes possible rapid DMA control, interrupt control, and processing of operations.
- **Main CPU** Uses a RISC type CPU SH2 that controls the overall system. SH2 contains 32-bit internal and external buses.
- **VDP1** Video Display Processor 1. Functions include character and line painting, color indication, Gouraud Shading color operations, screen output coordinate indication, and frame buffer display control.
- VDP2 Video Display Processor 2. Functions include scrolling the screen up/down/ left/right, rotating the screen, determining priority order of multiple screens, and a priority function that controls the image process of color operations and color offset.
- **SCSP** Acronym for Saturn Custom Sound Processor. This is a sound source LSI for multi-functional games that combines a PCM sound source and sound used for the DSP.

- **SMPC** System Manager and Peripheral Control. Has the functions of managing system resets, control of interfacing with output devices (control pads, mouse, etc.), time display by a real time clock, and battery backup.
- DataA bit is the smallest unit for expressing 1 or 0. 8 bits is a byte. 16 bits (or 2 bytes)
is a word. 32 bits (or 4 bytes) is a 9 long word.
- **A_Bus** Bus that connects external devices such as a ROM cassette or CD.
- **B_Bus** Bus that connects VDP1, VDP2, and SCSP.

Manual Notations

This manual contains the following notations.

Binary	Represented by " B " at the end as in 100 B . However, " B " may be omitted for 1 bit.
Hexadecimal	Represented by н at the end as in 00н and FFн.
Unit	1 KByte is 1,024 bytes. 1 Mbit is 1,048,576 bits.
MSB, LSB	The configuration of byte and word shows at the left the high order bit (MSB, most significant bit), and atthe right the low order bit (LSB, least significant bit).
Undefined Bit	A bit not defined by an instruction word is represented by "—"
(R)	Represents read only data.
(W)	Represents write only data.
(R/W)	Represents data that can be read and written.
++	Shows increments. For example, when the CT0 register is incremented, it is shown as CT0++.
x=2-0	This indicates that 3 types exist, 2,1, and 0. For example, DxR26-0[x=2-0] in the read address in section 3.2 "DMA Control Register" means that D2R26-0, D1R26-0, and D0R26-0 exist. Similarly, D2R26-0 indicates that D2R26 ~ D2R0 exist.

CONTENTS

INTRO	DUCTION
Exp	lanation of Terms
Mar	nual Notations
	Figures (vii)
List of	Tables (x)
CHAPT	TER 1 OVERVIEW
	SCU Overview
	System Diagram2
	Block Diagram3
1.2	SCU Mapping4
	Operation of Cache Hit5
1.3	SCU Register Map7
	Level 2-0DMA Set Register 8
	DMA Forced-Stop Register 8
	DMA Status Register9
	DSP Program Control Port 9
	DSP Program RAM Data Port 10
	DSP Data RAM Address Port 10
	DSP Data RAM Data Port10
	Timer 0 Compare Register11
	Timer 1 Set Data Register 11
	Timer 1 Mode Register 11
	Interrupt Mask Register12
	Interrupt Status Register12
	A-Bus Interrupt Acknowledge Register 12
	A-Bus Set Register
	A-Bus Refresh Register13
	SCU SDRAM Select Register 14
	SCU Version Register

СНАРТ	ER 2 OPERATION
-	DMA Transfer
	Basic Operation of DMA16
	DMA Mode
	Example of a Specific Use
2.2	nterrupt Control
	Blanking Interrupt
	Timer Interrupt
	DSP-End Interrupt
	Sound-Request Interrupt
	SMPC Interrupt
	PAD Interrupt
	DMA End Interrupt
	DMA-Illegal Interrupt
	Sprite Draw End Interrupt
2.3	DSP
	DSP Control from the Main CPU
	ER 3 REGISTERS
	Register List 40
3.2	DMA Control Registers 41
	Level 2-0 DMA Set Register 41
	DMA Mode, Address Update, Start Factor Select Register 46
	DMA Force-Stop Register47
	DMA Status Register47
3.3	DSP Control Ports 51
	DSP Program Control Port 51
	DSP Program RAM Data Port 53
	DSP Data RAM Address Port 53
	DSP Data RAM Data Port54
3.4	Timer Registers
	Timer 0 Compare Register 55
	Timer 1 Set Data Register55
	Timer 1 Mode Register

3.5 Interruj	ot Control Registers	57
Interru	pt Mask Register	57
Interru	pt Status Register	58
3.6 A-Bus	Control Registers	61
	Interrupt Acknowledge Register	
A-Bus	Set Register	62
A-Bus	Refresh Register	72
3.7 SCU Co	ontrol Registers	73
	DRAM Select Register	
SCU V	ersion Register	73
CHAPTER 4 D	OSP CONTROL	75
4.1 DSP Int	ernal BLOCK MAP	76
	Commands	
4.3 Operan	d Execution Methods	85
Jump	Command Execution	85
Loop (Command Execution	86
DMA (Command Execution	87
End C	ommand Execution	88
4.4 Special	Process Execution	89
Loadir	g a Program by the DMA Command	89
Repea	ting One Command	89
Execu	ting a Subroutine Program	90
4.5 More A	bout Commands	91
Opera	tion Commands	91
Load I	mmediate Command	. 120
DMA (Command	. 132
Jump	Commands	. 141
Loop E	Bottom Commands	. 153
END C	Command	. 156

List of Figures

List of Figures	
(Chapter 1 Overview)	
Figure 1.1 Diagram of System2	
Figure 1.2 Block Diagram	
Figure 1.3 SCU Mapping (Cache_address) 4	
Figure 1.4 Explanation of Cache Hit Operation	
Figure 1.5 SCU Mapping (Cache_through_address)6	
Figure 1.6 SCU Register Map7	
Figure 1.7 Level 2-0 DMA Set Register Map 8	
Figure 1.8 DMA Force-Stop Register Map8	
Figure 1.9 DMA Status Register Map9	
Figure 1.10 DSP Program Control Port Map 9	
Figure 1.11 DSP Program RAM Data Port Map 10	
Figure 1.12 DSP Data RAM Address Port Map 10	
Figure 1.13 DSP Data RAM Data Port Map10	
Figure 1.14 Timer 0 Compare Register Map11	
Figure 1.15 Timer 1 Set Data Register Map11	
Figure 1.16 Timer 1 Mode Register Map11	
Figure 1.17 Interrupt Mask Register Map12	
Figure 1.18 Interrupt Status Register Map12	
Figure 1.19 A-Bus Interrupt Acknowledge Map 12	
Figure 1.20 A-Bus Set Register Map13	
Figure 1.21 A-Bus Refresh Register Map13	
Figure 1.22 SCU SDRAM Select Register Map 14	
Figure 1.23 SCU Version Register Map14	

(Chapter 2 Operation)

Figure 2.1	DMA Transfer Basic Operation	16
Figure 2.2	DMA Transferable Area when Activacted from the Main CPU	17
Figure 2.3	DMA Transferable Area when Activacted from the DSP	17
Figure 2.4	Direct Mode DMA Transfer Operation	18
Figure 2.5	Indirect Mode DMA Transfer Flow	19
Figure 2.6	Indirect Mode DMA Transfer Operation Details	20
Figure 2.7	Differences in DMA Operations according to the Address Update Bit	22

Figure 2.8	Example of Data Write	23
Figure 2.9	Work RAM Area Contents	24
Figure 2.10	DMA Transfer by Setting Address Add Value	26
Figure 2.11	Blanking Interrupt	29
Figure 2.12	Timer 0 Interrupt Process (compare register = when 19 is set)	30
Figure 2.13	Timer 1 Interrupt Process (In sync with Timer 0)	31
Figure 2.14	Timer 1 Interrupt Process (not in sync with Timer 0)	32
Figure 2.15	DSP Program Load Step 1	34
Figure 2.16	DSP Program Load Step 2	35
Figure 2.17	DSP Program Load Step 3	35
Figure 2.18	DSP Data Access Step 1	36
Figure 2.19	DSP Data Access Step 2	37
Figure 2.20	DSP Data Access Step 3	37
Figure 2.21	DSP Program Execution Start Control from CPU	38
Figure 2.22	DSP Program Forced Stop Control from CPU	38

(Chapter 3 Registers)

Figure 3.1 Level 2-0 Read Address (Register: D0R, D1R, D2R) 41
Figure 3.2 Level 2-0 Write Address (Register: D0W, D1W, D2W) 41
Figure 3.3 Level 0 Transfer Byte Number (Register: D0C) 42
Figure 3.4 Level 2-1 Transfer Byte Number (Register: D1C, D2C) 42
Figure 3.5 Level 2-0 Address Add Value (Register: D0AD, D1AD, D2AD) 42
Figure 3.6 Communication Units between the SCU and Processor
Figure 3.7 Specific Example of Transfer between the SCU and Processor
Figure 3.8 Write Address Add Value Indication 45
Figure 3.9 Level 2-0 DMA Authorization Bit (Register: D0EN, D1EN, D2EN) 45
Figure 3.10 Level 2-0 DMA Mode, Address Update, Start Up Factor
Select Register (Register: D0MP, D1MP, D2MP) 46
Figure 3.11 DMA Force-Stop Register (Register: DSTP) 47
Figure 3.12 High and Low Level DMA Operation
Figure 3.13 DMA Status Register (Register: DSTA) 48

Figure 3.14	DSP Program Control Port (Register: PPAF)	51
Figure 3.15	DSP Program RAM Data Port (Register: PPD)	53
Figure 3.16	DSP Data RAM Address Port (Register: PDA)	53
Figure 3.17	DSP Data RAM Data Port (Register: PDD)	54
Figure 3.18	Time 0 Compare Register (Register: T0C)	55
Figure 3.19	Timer 1 Set Data Register (Register: T1S)	55
Figure 3.20	Timer 1 Mode Register (Register: T1MD)	56
Figure 3.21	Interrupt Mask Register (Register: IMS)	57
Figure 3.22	Interrupt Status Register (Register: IST)	58
Figure 3.23	A-Bus Interrupt Acknowledge Register (Register: AIAK)	61
Figure 3.24	A-Bus Set [CS0, 1 Space] (Register: ASR0)	62
Figure 3.25	A-Bus Set [CS2, Dummy Space] (Register: ASR1)	62
Figure 3.26	Result of Previous Read Process	63
Figure 3.27	Timing when Setting the Pre-Charge Insert Bit after Write	63
Figure 3.28	Timing when Setting the Pre-Charge Insert Bit after Read	64
Figure 3.29	Differences in Timing by Setting External Wait Effective Bit	64
Figure 3.30	A-Bus Refresh Register (Register: AREF)	72
Figure 3.31	SCU SDRAM Select Bit (Register: RSEL)	73
Figure 3.32	SCU Version Register (Register: VER)	73

Chapter 4 DSP Control)

	-
pter 4 DSP Control)	
Figure 4.1 DSP Internal Block Map	77
Figure 4.2 Jump Command Execution	85
Figure 4.3 Loop Program Execution	86
Figure 4.4 Subroutine Program Execution	91
Figure 4.5 Operation Command Format	92
Figure 4.6 Load Immediate Command Format 1 (Unconditional Transfer)	120
Figure 4.7 Load Immediate Command Format 2 (Conditional Transfer)	120
Figure 4.8 DMA Command Format 1	132
Figure 4.9 DMA Command Format 2	132
Figure 4.10 Jump Command Format	141
Figure 4.11 Loop Bottom Command Format	153
Figure 4.12 End Command Format	156

List of Tables

(Chapter 2 Operation)

Table 2.1 Interrupt Factors27	
Table 2.2 Interrupt Factor General Names 28	

(Chapter 3 Registers)

Table 3.1 Register List	. 40
Table 3.2 Read Address Add Value	43
Table 3.3 Write Address Add Value	43
Table 3.4 Starting Factors	.46
Table 3.5 RAM Page Select	.53
Table 3.6 Timer 1 Occurrence Selection Contents	56
Table 3.7 Timer Operation Contents	56
Table 3.8 Interrupt Status Bit Contents	59
Table 3.9 A-Bus Interrupt Acknowledge Contents	61
Table 3.10 CS0 Space Burst Cycle Set Values	65
Table 3.11 CS0 Space Normal Cycle Set Values	65
Table 3.12 CS0 Space Burst Length Set Values	65
Table 3.13 CS0 Space Bus Size Set Values	66
Table 3.14 CS1 Space Burst Cycle Set Values	67
Table 3.15 CS1 Space Normal Cycle Set Values	67
Table 3.16 CS1 Space Burst Length Set Values	68
Table 3.17 CS1 Space Bus Size Set Values	68
Table 3.18 CS2 Space Burst Cycle Set Values	69
Table 3.19 CS2 Space Bus Size Set Values	70
Table 3.20 Dummy Space Burst Cycle Set Values	71
Table 3.21 Dummy Space Normal Cycle Set Values	71
Table 3.22 Dummy Space Burst Length Set Values	71
Table 3.23 Dummy Space Bus Size Set Values	72
Table 3.24 A-Bus Refresh Wait Number	72

(Chapter 4 DSP Control)

Table 4.1 List of Commands (1)	. 80
Table 4.2 List of Commands (2)	. 81
Table 4.3 List of Commands (3)	. 82
Table 4.4 List of Commands (4)	
Table 4.5 Descriptions of Constants	. 84
Table 4.6 Features of Data Transfer from D0 Bus to DSP	87
Table 4.7 Features of Data Transfer from DSP to D0 Bus	. 88

CHAPTER 1 OVERVIEW

Chapter 1 Contents

1.1	SCU Overview	
	System Diagram	2
	Block Diagram	
1.2	SCU Mapping	4
	Operation of Cache Hit	5
1.3	SCU Register Map	7
	Level 2-0DMA Set Register	8
	DMA Forced-Stop Register	8
	DMA Status Register	9
	DSP Program Control Port	9
	DSP Program RAM Data Port	10
	DSP Data RAM Address Port	10
	DSP Data RAM Data Port	10
	Timer 0 Compare Register	11
	Timer 1 Set Data Register	11
	Timer 1 Mode Register	11
	Interrupt Mask Register	12
	Interrupt Status Register	12
	A-Bus Interrupt Acknowledge Register	12
	A-Bus Set Register	13
	A-Bus Refresh Register	13
	SCU SDRAM Select Register	14
	SCU Version Register	14

1.1 SCU Overview

The SCU (System Control Unit) contains a CPU I/F, A-Bus I/F, and B-Bus I/F. It smoothly interfaces multiple processors connected through their respective I/Fs and buses. Also contained inside are the DMA controller, interrupt controller, and DSP.

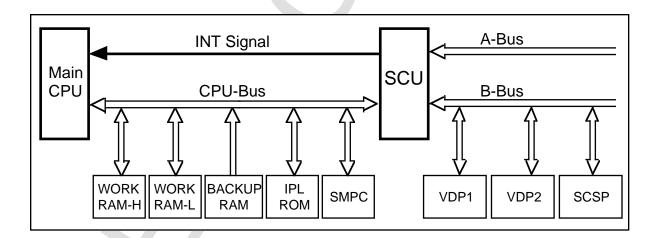
The DMA controller controls the internal level 2-0 as well as DSP total 4 channel DMA transfer, and allows the free transfer of data between the CPU, A-Bus, and B-Bus. Using the CPU-Bus, the CPU can access the work area while executing the DMA of the A-Bus and B-Bus. The DSP region must be used in data transfer request from the DSP. For instance, DMA transfer with the A-Bus and B-Bus not using the DSP region cannot request that data be transfered from the DSP.

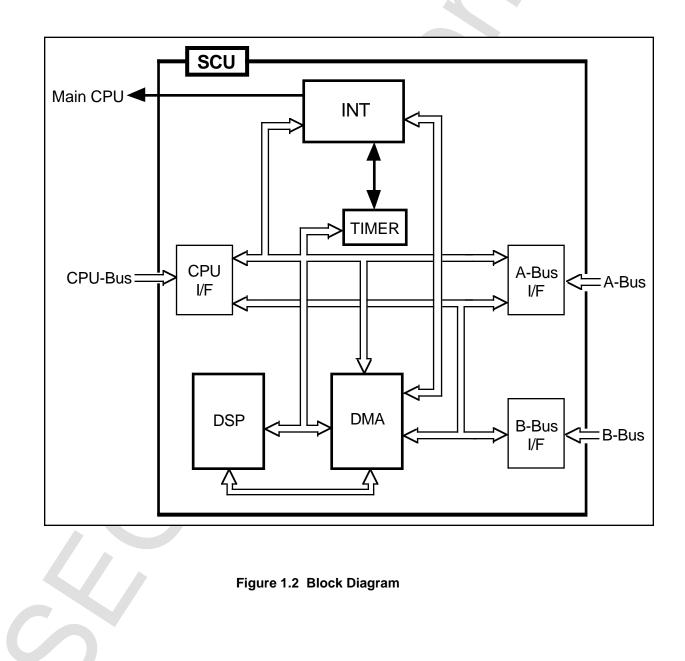
The interrupt controller includes interrupts from the A-Bus, B-Bus, and System Manager, and controls all interrupts within the SCU. It also supports interrupt by timers and can produce interrupts that are in sync with the screen.

DSP can handle processes that cannot be handled by the main CPU when its load has been exceeded. DSP operates at half the frequency of the main CPU. As a result, one step takes about 70 nsec.

System Diagram

A diagram of the system is shown in Figure 1.1. The Work RAM-H, Work RAM-L, Backup RAM, IPL ROM, and SMPC are connected to the CPU-Bus. The CPU-Bus controls the system reset signal and control pad. The medium that supplies the CD or cartridge software is an external system connected to the A-Bus. VDP1, VDP2, and SCSP are connected to the B-Bus and control picture and sound.




Figure 1.1 Diagram of System

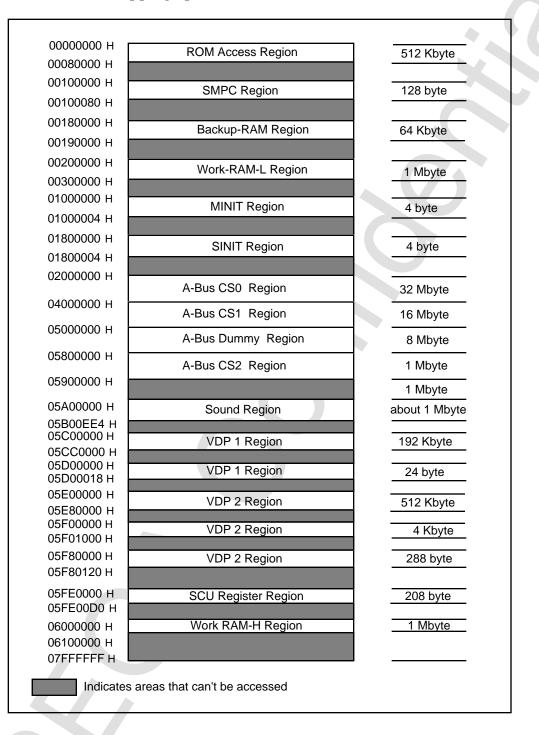
Block Diagram

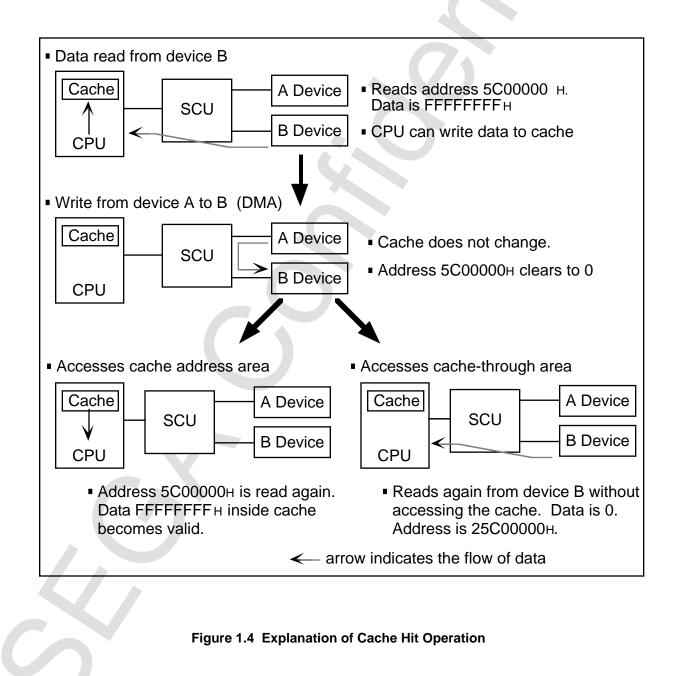
A block diagram of the SCU is shown in Figure 1.2. As previously mentioned, the CPU interface, A-Bus, and B-Bus interfaces, and the DMA controller, interrupt controller, and DSP are contained in the SCU. All interfaces and controllers are connected by buses, making transfer of data possible.

The CPU I/F and A-Bus I/F connections are through two buses. The upper bus is connected through the register. The lower bus is a connection used in transferring data. Therefore, DMA transfer is done using the lower bus.

1.2 SCU Mapping

Figure 1.3 shows the mapping operation.




Figure 1.3 SCU Mapping (Cache_address)

Operation of Cache Hit

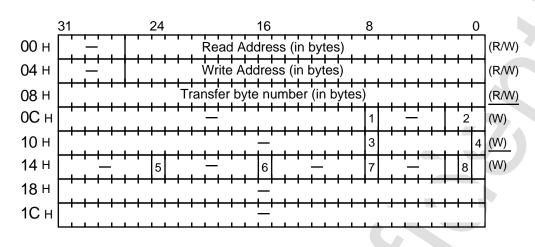
If a hit is made to the cache during access to an area that is rewritable by non-CPU devices such as the work RAM of an I/O port, an external device, or a SCU register, a value different from the actual value could be returned. When this happens, the cache-through area must be accessed.

Figure 1.4 explains cache hit operations, and Figure 1.5 shows cach-through operations.

20000000 н	ROM Access Region	512 Kbyte
20080000 н	5	
20100000 н	SMPC Region	128 byte
20100080 н		
20180000 н	Backup-RAM Region	64 Kbyte
20190000 н		
20200000 н	Work-RAM-L Region	1 Mbyte
20300000 н		
21000000 н	MINIT Region	4 byte
21000004 н		
21800000 н	SINIT Region	4 byte
21800004 н		
22000000 н	A-Bus CS0	32 Mbyte
24000000 н	A-Bus CS1	16 Mbyte
25000000 н	A-Bus Dummy	8 Mbyte
25800000 н	A-Bus CS2	1 Mbyte
25900000 н		1 Mbyte
25А00000 н	Sound Region	about 1 Mbyte
25B00EE4 H 25C00000 н		100.1/1
25СС0000 н	VDP 1 Region	192 Kbyte
25D00000 H 25D00018 H	VDP 1 Region	24 byte
25E00000 H	VDP 2 Region	512 Kbyte
25E80000 H	VDP 2 Region	4 Kbyte
25F01000 H 25F80000 H		
25F80120 H	VDP 2 Region	288 byte
25FE0000 H	SCU Register Region	208 byte
25FE00D0 H	Work RAM-H Region	1 Mbyte
26000000 H 26100000 H		1 Mbyte
27FFFFFFH		
Indicates are	eas that can't be accessed	

Figure 1.5 SCU Mapping (Cache_through_address)

1.3 SCU Register Map


Figure 1.6 shows a map of the SCU register. The SCU register is assigned to the highest address in the SCU mapping region and, as shown in Figure 1.3, maintains a 208 byte area. Next, a map of each register region is shown.

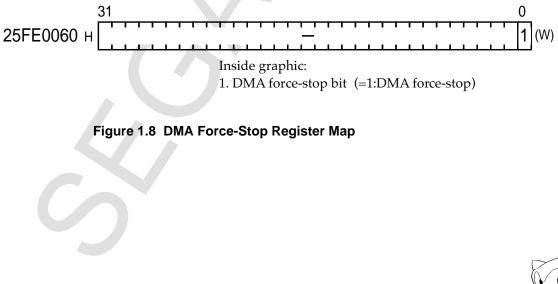
25FE0000 н	Level 0 DMA Set Register	32 byte
25FE0020 н	Level 1 DMA Set Register	32 byte
25FE0040 н	Level 2 DMA Set Register	32 byte
25FE0060 н	DMA Forced Stop	16 byte
25FE0070 н	DMA Status Register	16 byte
25FE0080 н	DSP Program Control Port	4 byte
25FE0084 н	DSP Program RAM DataPort	4 byte
25FE0088 н	DSP Data RAM Address Port	4 byte
25FE008C н	DSP Data RAM DataPort	4 byte
25FE0090 н	Timer 0 Compare Register	4 byte
25FE0094 н	Timer 1 Set Data Register	4 byte
25FE0098 н	Timer 1 Mode Register	4 byte
25FE009C н	Free	4 byte
25FE00A0 н	Interrupt Mask Register	4 byte
25FE00A4 н	Interrupt Status Register	4 byte
25FE00A8 н	A-Bus Interrupt Acknowledge	4 byte
25FE00AC н	Free	4 byte
25FE00B0 н	A-Bus Set Register	8 byte
25FE00B8 н	A-Bus Refresh Register	4 byte
25FE00BC н	Free	8 byte
25FE00C4 н	SCU SDRAM Select Register	4 byte
25FE00C8 н	SCU Version Register	4 byte
25FE00CC н 25FE00CF н	Free	4 byte

Figure 1.6 SCU Register Map

Level 2-0 DMA Set Register

Figure 1.7 is a map of the Level 2-0 DMA set register. Parameters required for DMA transfer are stored in this register. There are three DMA levels (from level 0 to level 2), as there are in the SCU register map (Figure 1.6). As a result, the addresses in Figure 1.7 are shown as relative addresses.

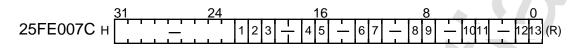
Inside graphic:


- 1. Read address add value 5. DMA mode bit (=0:Direct Mode / =1:Indirect Mode)
- 2. Write address add value 6. Read address update bit (=0:Save / =1:Revise)
- 3. DMA enable bit (=0:Disable / =1:Enable) 7. Write address update bit (=0:Save / =1:Update)
- 4. DMA starting bit

8. DMA start factor select bit

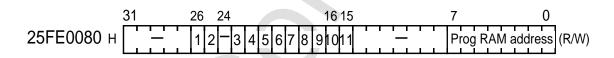
Figure 1.7 Level 2-0 DMA Set Register Map

DMA Force-Stop Register


Figure 1.8 is a map of the DMA force-stop register. This register has a bit that forces the DMA operation to stop. However, if the DMA is forced to stop, it can no longer be used. This register should not be used except for debugging.

DMA Status Register

Figure 1.9 is a map of the DMA status register. This register shows level 2-0 condition status.


Inside graphic:

1. DMA DSP-Bus access flag (=0: no access /=1:access) 2. DMA B-Bus access flag (=0: no access / =1:access) 8. Level 1 DMA standby (=0:stop/=1:standby) 3. DMA A-Bus access flag (=0: no access / =1:access) 9. Level 1 DMA in operation (=0:stop/=1:operate) 4. Level 1 DMA interrupt(=0:stop/=1:interrupt) 10. Level 0 DMA stand by (=0:stop/=1:standby) 5. Level 0 DMA interrupt(=0:stop/=1:interrupt) 11. Level 0 DMA in operation (=0:stop/=1:operate) 6. Level 2 DMA standby (=0:stop/=1:standby) 12. DSP side DMA in stand by (=0:stop/=1:standby) 7. Level 2 DMA in operation (=0:stop/=1:operate)13. DSP side DMA in operation (=0:stop/=1:operate)

Figure 1.9 DMA Status Register Map

DSP Program Control Port

Figure 1.10 is a map of the DSP program control port. This is the DSP control register. It stores both the DSP operation start address and end address.

Inside graphic:

6. Carry flag

1. EX = cancels pause briefly (=0: no execute/=1:execute) 7. Overflow flag

- 2. EX = executes pause briefly (=0: no execute/=1:execute) 8. Program end interrupt flag
- 3. D0 bus use DMA transfer execution flag
- 4. Sine flag 9. Program step execute control bit (=0:no execute/=1:execute) 5. Zero flag
 - 10. Program execute control (=0:stop/=1:execute)
 - 11. Program counter load authorization (=0:no execute/=1:execute)

Figure 1.10 DSP Program Control Port Map

DSP Program RAM Data Port

Figure 1.11 is a map of the DSP program RAM data port. This port is used as a go-between when transferring program data from the CPU to the DSP.

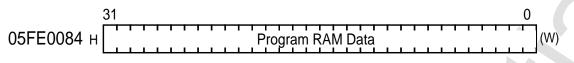
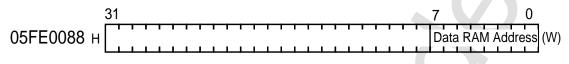



Figure 1.11 DSP Program RAM Data Port Map

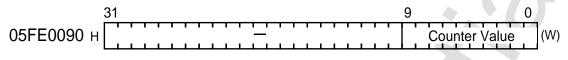
DSP Data RAM Address Port

Figure 1.12 is a map of the DSP data RAM address port. This port indicates the data RAM address while accessing the data RAM inside DSP from the CPU.

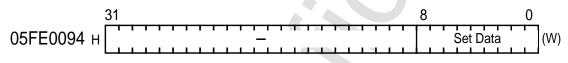
DSP Data RAM Data Port

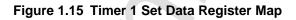
Figure 1.13 is a map of the DSP data RAM data port. The content of the address shown by the DSP data RAM address port is stored. Data written from the CPU is stored in the DSP data RAM and data read from the CPU can fetch RAM data inside the DSP.



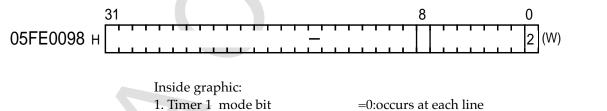

Figure 1.13 DSP Data RAM Data Port Map

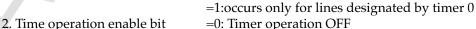
Timer 0 Compare Register


Figure 1.14 is the map of the timer 0 compare register. Timer 0 gets in sync with V-Blank-IN interrupt (See 2.2 *Interrupt Control*) and causes interrupt to occur. The operation is explained in section 2.2 and the register contents are explained in chapter 3.



Timer 1 Set Data Register


Figure 1.15 is the map timer 1 set data register. Timer 1 is *data-set* by H-Blank-IN interrupt (See 2.2 *Interrupt Control*) and decremented by 7 MHz cycles. Interrupt occurs when data is 0. The operation is explained in section 2.2 and the register contents are explained in chapter 3.



Timer 1 Mode Register

Figure 1.16 is a map of the timer 1 mode register. This register indicates the timing by which Time 1 is generated. The operation is explained in section 2.2 and the register contents are explained in chapter 3.

=1 : Timer operation ON

Figure 1.16 Timer 1 Mode Register Map

Interrupt Mask Register

Figure 1.17 shows the map of the interrupt mask register. When this bit is 0, interrupt is not masked and occurs as needed. When the bit is 1, interrupt will not occur because it is masked. Chapter 3 has more information about bit 0 (inside graphic, no. 15) to bit 13 (inside graphic, no. 2).

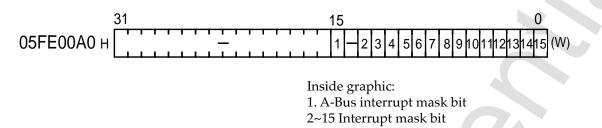


Figure 1.17 Interrupt Mask Register Map

Interrupt Status Register

Figure 1.18 shows the map of the interrupt status register. Because this register is able to read and write, when reading it shows that interrupt won't occur when bit data is 0, and will occur when bit data is 1. When writing, interrupt is reset if 0 is written, and maintains the current interrupt status when 1 is written. See chapter 3 for details about this register.

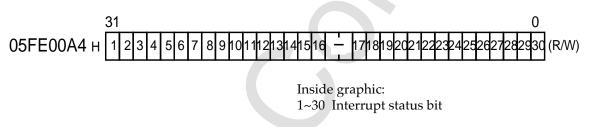
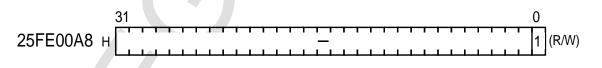



Figure 1.18 Interrupt Status Register Map

A-Bus Interrupt Acknowledge Register

Figure 1.19 shows a map of the A-Bus interrupt acknowledge. This is a read/write bit that has different meanings when reading vs. when writing. See chapter 3 for details.

Inside graphic:

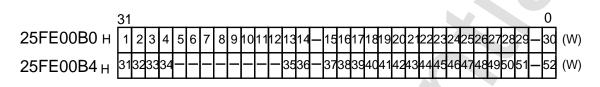
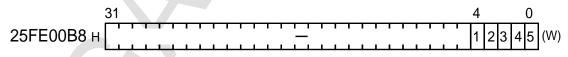

1. READ: A-Bus interrupt acknowledge significant bit (=0:insignificant / =1:significant) WRITE: A-Bus interrupt acknowledge significant bit (=0:insignificant / =1:significant)

Figure 1.19 A-Bus Interrupt Acknowledge Register Map

A-Bus Set Register

Figure 1.20 shows the map of the A-Bus set register. Each pre-read significant bit, precharge insertion bit, and external wait significant bit is insignificant at 0 and significant at 1. See chapter 3 for more information.

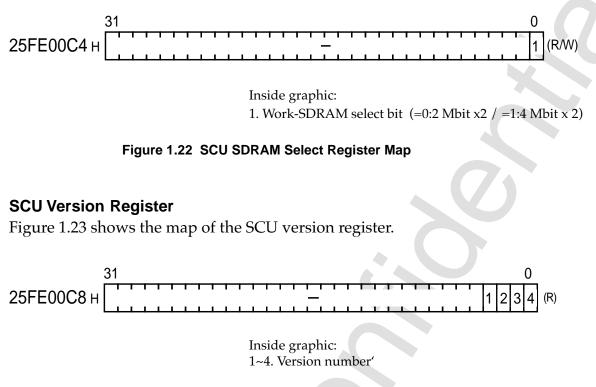

Inside graphic:

- 1. CS0 space, pre-read significant bit 31. CS2 space, pre-read significant bit 2. CS0 space, precharge insertion bit after write 32. CS2 space, precharge insertion bit after write 3. CS0 space, precharge insertion bit after read 33. CS2 space, precharge insertion bit after read 4. CS0 space, external wait significant bit 34. CS2 space, external wait significant bit 5~8. CS0 space, burst cycle wait no. set 35~36. CS2 space, burst length set bit 9~12. CS0 space, single cycle wait no. set 37. Bus size set bit (0=16 bit 1=8 bit)13~14. CS0 space, burst length set 38. Spare space, pre-read significant bit 15. CS0 space, bus size set bit (0=16bit 1=8bit) 39. Spare space, precharge insertion after write 16. CS1 space, pre-read significant bit 40. Spare space, precharge insertion after read 17. CS1 space, precharge insertion bit after write 41. Spare space, external wait significant bit 18. CS1 space, precharge insertion bit after read 42~45. Spare space, burst cycle wait no. set bit 19. CS1 space, external wait significant bit 46~49. Spare space, normal cycle wait no. set bit 20~23. CS1 space, burst cycle wait no. set 50~51. Spare space, burst length set bit 24~27. CS1 space, normal cycle wait no. set 52. Spare space, bus size set bit (0=16bit 1=8bit) 28~29. CS1 space, burst length set bit
- 30. CS1 space, bus size set bit (0=16bit 1=8bit)

Figure 1.20 A-Bus Set Register Map

A-Bus Refresh Register

Figure 1.21 shows the map of the A-Bus refresh register. This register performs the settings for A-Bus refresh.


Inside graphic:

A-Bus refresh output significant bit (=0:insignificant / =1:significant)
 2~5. A-Bus refresh wait number set bit

SCU SDRAM Select Register

Figure 1.22 shows the map of the SCU SDRAM select register.

Figure 1.23 SCU Version Register Map

CHAPTER 2 OPERATION

Chapter 2 Contents

2.1	DMA	A Transfer	16
		Basic Operation of DMA	16
		DMA Mode	18
		Example of A Specific Use	21
2.2	Inter	rupt Control	27
		Blanking Interrupt	29
		Timer Interrupt	30
		DSP-End Interrupt	33
		Sound-Request Interrupt	33
		SMPC Interrupt	33
		PAD Interrupt	33
		DMA End Interrupt	33
		DMA-Illegal Interrupt	33
		Sprite Draw End Interrupt	33
2.3	DSP		34
		DSP Control from the Main CPU	34

2.1 DMA Transfer

Basic Operation of DMA

Figure 2.1 shows basic DMA operation. This DMA is basically long word access through the DMA controller buffer, but if the start address and end address are not in long word boundaries, reads and writes are made in byte units, and DMA transfer can be executed.

Figure 2.1 is an example of DMA transfer from transfer source address 1H - 50H to transfer destination address 6H - 55H. However, since the long word boundary in the transfer source is 4H, 1H - 3H is read in byte units. Since the long word boundary in the transfer destination is 8H, the first 2 bytes of read data are written to 6H - 7H in byte units. Moreover, the transfer source end address is 50H, but since the long word boundary is up to 4FH, the data in 50H is read in byte units. On the other hand, since the transfer destination end address is 55H but the long word boundary is up to 53H, the last two bytes read are written to 54H - 55H in byte units.

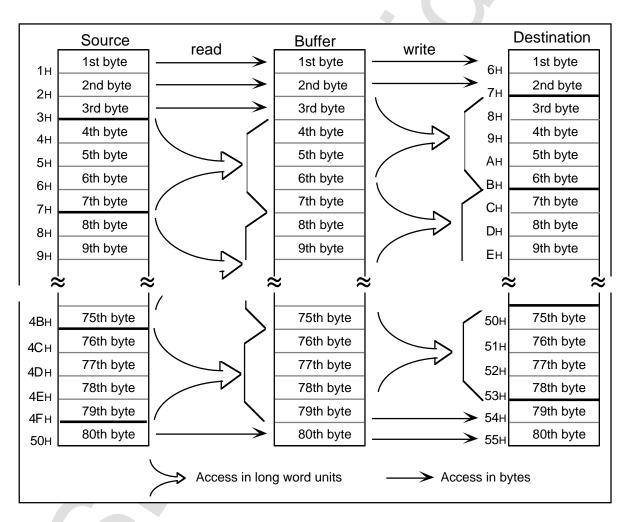


Figure 2.1 DMA Transfer Basic Operation

There are two methods of activating the SCU's DMA transfer control.

- 1) activate DMA from the Main CPU
- 2) activate DMA from the DSP

Figure 2.2 shows the DMA transferable area when activated from the main CPU. Figure 2.3 shows the DMA transferable area when activated from the DSP.

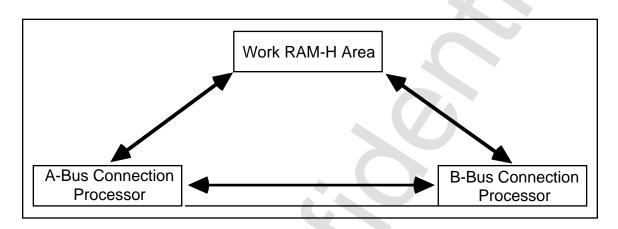


Figure 2.2 DMA Transferable Area when activated from the Main CPU

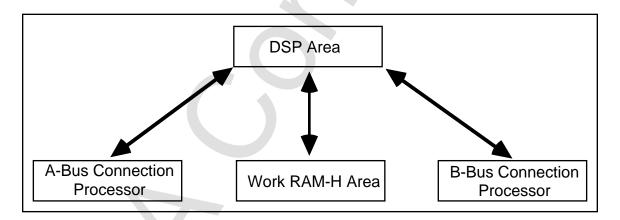
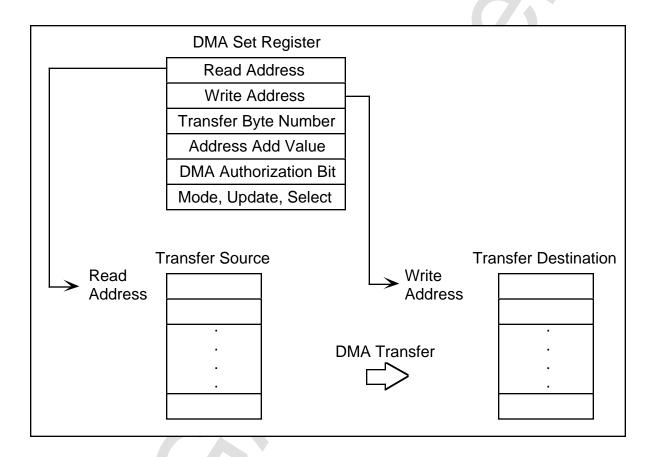


Figure 2.3 DMA Transferable Area when activated from the DSP


DMA Mode

The SCU DMA mode has the following two modes:

- 1) Direct Mode
- 2) Indirect Mode

Direct Mode

Data is transferred only in byte numbers shown as transfer byte numbers directly using address values of separate level DMA set registers, and from the address memory shown by the read address register to the address memory shown by the written address register. One transfer is implemented per start up, then DMA ends. Figure 2.4 shows the DMA transfer operation of the direct mode.

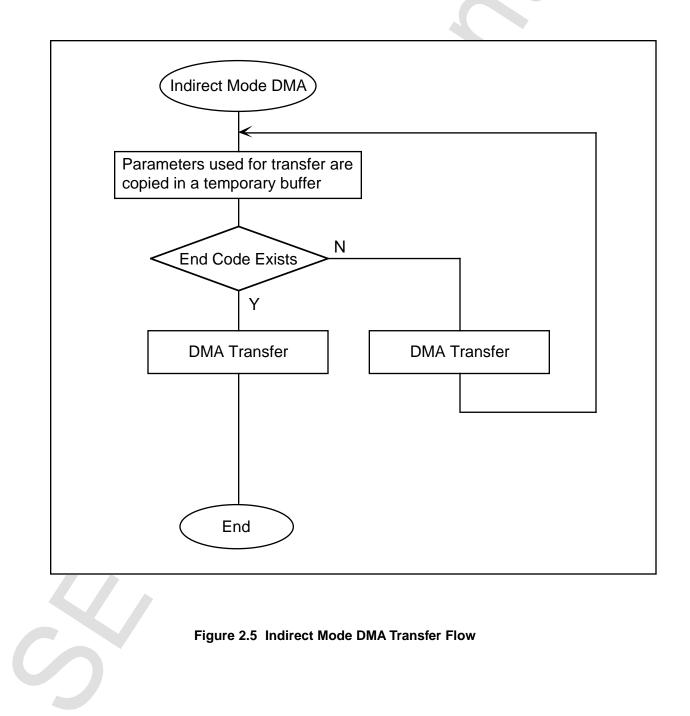
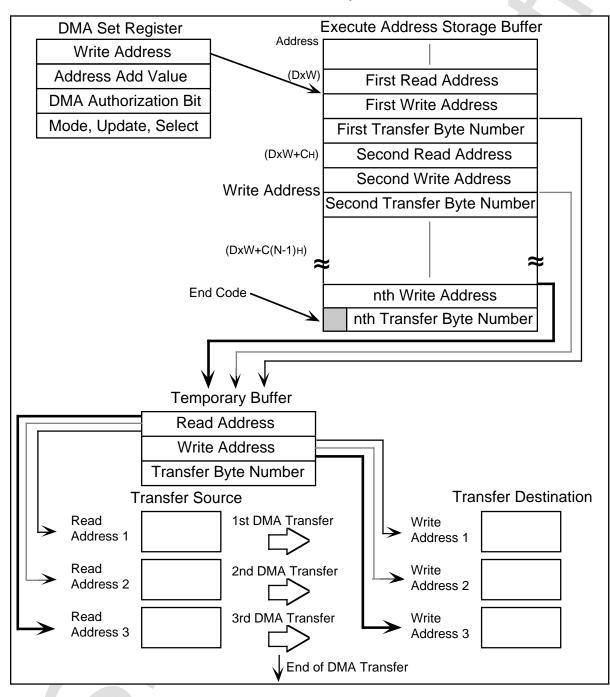


Figure 2.4 Direct Mode DMA Transfer Operation Map



Indirect Mode

The indirect mode implements DMA transfer by indirectly using the DMA set register at a level different from the Direct mode mentioned earlier. The address value and byte number stored by the Direct mode in the set register are stored in the indirect mode temporary buffer by the Indirect mode, and DMA transfer is repeated until the end code is detected. Thus, the Indirect mode can implement more than one DMA transfer when activated once. Figure 2.5 shows the execution flow of Indirect mode DMA.

When the Indirect mode is activated, parameters of a 3 long word segment from the address first written in the write address register (DxW) is read and stored in a temporary buffer. Next, the actual DMA is executed using the parameters. On completion of DMA, the address parameters of DxW+CH are read and similarly executed. This operation is repeated until the end code is detected.

The indirect mode address is incremented in 4 byte units.

Example of a Specific Use

Direct Mode

A 1 Kbyte transfer can be thought of as level 0 DMA from address 2000000H (A-Bus area) to address 6000000H (work RAM). DMA (direct mode) can be executed when operating in accordance with the following procedures.

- 1) Write the read address (200000H) to the read address register D0R. (Loads the address that is read to address 25EF0000H from the CPU.)
- 2) Write the write address (6000000H) to the write address register D0W. (Loads the address that is written to address 25EF0004H from the CPU.)
- 3) Write the transfer byte number (400H) to transfer byte number register D0C. (Loads the transfer byte number from the CPU to address 25EF0008H.)
- 4) Write the address add value (101H) to address add value register D0AD. (Loads the address add value from the CPU to address 25EF000CH. Details of the address add value are listed in the address add value of this section. The address add value indicated in the normal DMA is 101H.)
- 5) The DMA mode is 0, and the address update bit and DMA start factor are set as necessary and written to mode/address/update/DMA start factor register D0MD. For example, when address update is handled as the save mode and V-Blank-IN is handled as the start factor, 0 is written to D0MD. (Loads 0 in address 25EF0014H from the CPU.)
- 6) Set 1 in the DMA enable bit. When the start factor set by step 5) occurs, DMA is activated and 1 Kbyte of data is transferred by level 0 from address 2000000H (A-Bus area) to address 6000000H (work RAM).
- 7) After DMA has ended, DMA is activated each time the start factor set in step 5) occurs. The operation at that time changes according to the values of the read address update bit (D0RUP) and write address update bit (D0WUP). Figure 2.7 shows DMA operation changes by the address update bit.

Steps 1) to 5) do not have to be done in the same order. (When the start factor is set in the DMA starting bit, DMA starts each time the DMA operation bit is set to 1 by the CPU.)

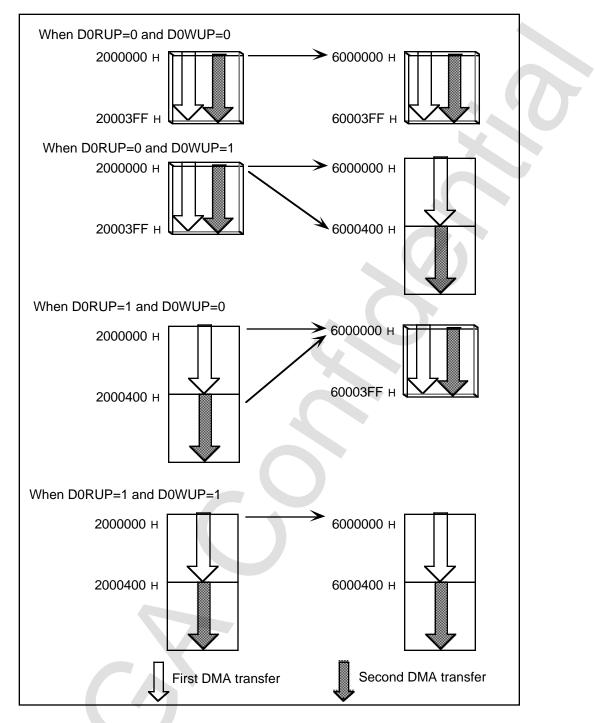


Figure 2.7 Differences in DMA Operations according to the Address update Bit

When the read address update bit is 0, the same address is referred to (read to) both the first and second time. When the read address update bit is 1, the second read starts after the address following the first read.

When the write address update bit is 0, write is executed to the same address for both the first and second time. When the write address update bit is 1, the second write starts after the address following the first write.

Indirect Mode

The Indirect mode is used when executing DMA transfer more than once by starting once. The Indirect mode is not set in a register as is the Direct mode, but uses a method of executing DMA by accessing the register through RAM. For example, consider a case in which three DMA transfers are to be continuously (consecutively) executed at level 0 through work RAM area (600000H).

- (a) 20HByte DMA transfer from 4000000H to 5C00000H
- (b) 10HByte DMA transfer from 5E00000H to 6080000H
- (c) 15HByte DMA transfer from 5A00000H to 6081000H

DMA (Indirect mode) can be executed if operated in accord with the following steps.

1) As shown in Figure 2.8, data is written in long word units from the work RAM area (6000000H).

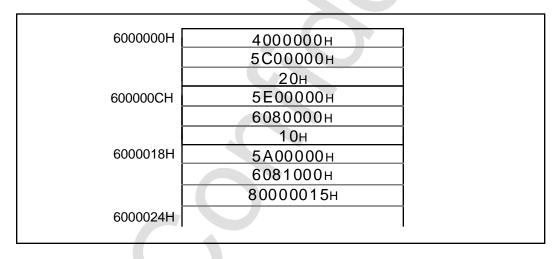


Figure 2.8 Example of Data Write

- 2) DMA parameter source address (6000000H) is written to the write address register (D0W).
- 3) The address add value (101H) is loaded to the address add value register D0AD. (The address add value is written from the CPU to address 25FE000CH.) Information on the address add value is described in the address add value of this section. The address add value indicates 101H in normal DMA.
- 4) The DMA mode is 1 and the address update bit and DMA start factor are set as required and written to mode/address/update /DMA start factor register D0MP. For example, when address update is handled as the retain mode and V-Blank-IN is handled as the start factor, 1000000H is written to D0MD. (Loads 1000000H in address 25FE0014H from the CPU.)

5) "1" is set in the DMA enable bit, DMA is activated when the start factor set by step 4) occurs. DMA transfer (a) to (c) is executed in order until the DMA end code is detected. The DMA end code is the end notification code of the DMA indirect mode that exists only in the work RAM area. DMA transfer continues as long as "1" of this bit remains undetected.

Steps 1) to 4) do not need to be done in the same order. The read address register (D0R), transfer byte number register (D0C), and address add value register (D0AD), which must be set in the Direct mode, do not need to be set in the Indirect mode.

When the DMA transfers listed below are registered in memory, DMA transfer is restarted after the above process ends. Restart can be done only by repeating the operation in step (4) above.

- (d) 30HByte DMA transfer from 5000000H to 6100000H.
- (e) 25HByte DMA transfer from 5100000H to 6200000H.

The contents from the work RAM area 6000000H are shown below in Figure 2.9. DMA starts each time the start factor set by (5) occurs.

6000000H	<u>4000000н</u>	
	5С0000н	
	20н	
600000CH	5Е00000н	
	6080000н	
	10н	
6000018H	5А00000н	
	6081000н	
ĺ	80000015н	
6000024H	500000н	
	6090000н	
	30н	
6000030H	510000н	
	60А0000н	
	80000025н	
600003CH		

Figure 2.9 Work RAM Area Contents

The operation at restart differs depending on whether the DMA mode is in save mode or update mode. Recognition of the save/update mode of the Indirect mode is performed and judged by the write address update bit.

- For Save mode (write address update bit = 0), after one DMA transfer is completed, because the address accessing the parameters is saved at 6000000H, (a) ~ (c) DMA transfer is re-implemented.
- For update mode (write address update bit = 1), after one DMA transfer is completed, because the address accessing the parameters is updated at 6000024H, (d) ~ (e) DMA transfer is implemented.

Address Add Value

DMA normally accesses continuous areas, but by setting the address add value, the addresses of fixed intervals can be accessed. This function is effective when changing part of continuously arranged parameters like the VDP1 command table. An example is 32 blocks as one 20H byte table from address 5C00000H, among which the parameters of each 8 byte block are rewritten one time. Change parameters that have 40H bytes from address 6000000H are set by the following steps and the transfer process is implemented when transferring via level 0 of DMA.

- 1) Write the read address 6000000H to read address register D0R.
- 2) Write the write address 5C00008H to write address register D0W.
- 3) Write transfer byte number 40H to transfer byte number register D0C.
- 4) Write the address add value 105H to address add value register D0AD. Here, the low 3 bits (5=101B) updates the address for each 20H.
- 5) Set the DMA mode to 0 and set the address update bit and DMA start factor as required. Write to the mode/address /update/DMA start factor register D0MD. For example, 0 is written to D0MD when V-Blank-IN is the starting factor and address update is in a retain mode.

6) Set the DMA enable bit to 1. DMA is activated when the starting factor set in step 5) occurs and the slanted line area in Figure 2.10 is rewritten once.

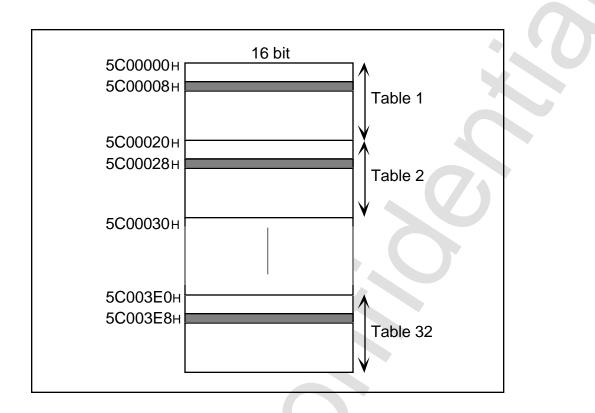


Figure 2.10 DMA Transfer by Setting Address Add Value

Steps 1) through 5) do not have to be in the same order.

2.2 Interrupt Control

Table 2.1 shows the bit allocation of interrupt factors. Bit allocation shows the interrupt register status. Level 1 is the lowest interrupt level and level F is the highest. Details are given below for each interrupt factor.

Bit Allocation	Interrupt Factors	Interrupt Source	Vector Number	Lev
bit 0	V-Blank-IN	VDP2	Vector 40	Leve
bit 1	V-Blank-OUT	VDP2	Vector 41	Leve
bit 2	H-Blank-IN	VDP2	Vector 42	Leve
bit 3	Timer 0	SCU	Vector 43	Leve
bit 4	Timer 1	SCU	Vector 44	Leve
bit 5	DSP End	SCU	Vector 45	Leve
bit 6	Sound Request	SCSP	Vector 46	Leve
bit 7	System Manager	SM	Vector 47	Leve
bit 8	PAD Interrupt	PAD	Vector 48	Leve
bit 9	Level-2 DMA End	A-Bus	Vector 49	Leve
bit 10	Level-1 DMA End	A-Bus	Vector 4A	Leve
bit 11	Level-0 DMA End	A-Bus	Vector 4B	Leve
bit 12	DMA-illegal	SCU	Vector 4C	Leve
bit 13	Sprite Draw End	VDP1	Vector 4D	Leve
bit 14				
bit 15				
bit 16	External Interrupt 00	A-Bus	Vector 50	Leve
bit 17	External Interrupt 01	A-Bus	Vector 51	Leve
bit 18	External Interrupt 02	A-Bus	Vector 52	Leve
bit 19	External Interrupt 03	A-Bus	Vector 53	Leve
bit 20	External Interrupt 04	A-Bus	Vector 54	Leve
bit 21	External Interrupt 05	A-Bus	Vector 55	Leve
bit 22	External Interrupt 06	A-Bus	Vector 56	Leve
bit 23	External Interrupt 07	A-Bus	Vector 57	Leve
bit 24	External Interrupt 08	A-Bus	Vector 58	Leve
bit 25	External Interrupt 09	A-Bus	Vector 59	Leve
bit 26	External Interrupt 10	A-Bus	Vector 5A	Leve
bit 27	External Interrupt 11	A-Bus	Vector 5B	Leve
bit 28	External Interrupt 12	A-Bus	Vector 5C	Leve
bit 29	External Interrupt 13	A-Bus	Vector 5D	Leve
bit 30	External Interrupt 14	A-Bus	Vector 5E	Leve
bit 31	External Interrupt 15	A-Bus	Vector 5F	Leve

Table 2.1 Interrupt Factors

Table 2.2 shows by what general names the interrupt factors are called. Later descriptions are based on the general name.

General Names	Specific Names
	V-Blank-IN
Blanking Interrupt	V-Blank-OUT
	H-Blank-IN
Timer Interrupt	Timer 0
	Timer 1
	Level 2-DMA End Interrupt
DMA End Interrupt	Level 1-DMA End Interrupt
	Level 0-DMA End Interrupt

Blanking Interrupt

There are three types of blanking interrupt, V-Blank-IN, V-Blank-OUT, and H-Blank-IN. Figure 2.11 details blanking interrupt. Blanking interrupt is synchronous to the display, and notifies the user whether a drawing is at the beginning or end.

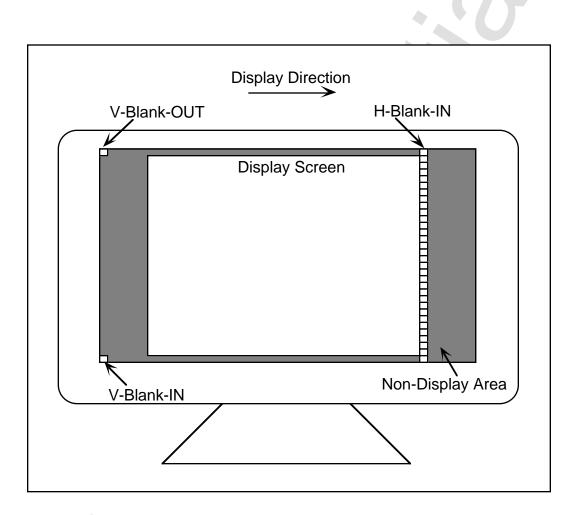


Figure 2.11 Blanking Interrupt

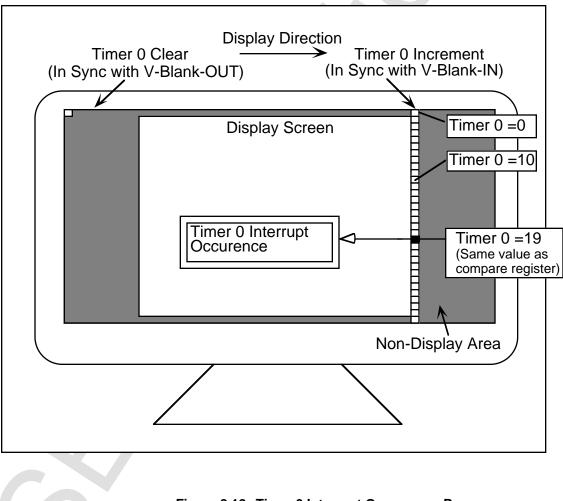
V-Blank-IN

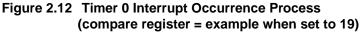
Indicates the end of a display, after which nothing will be displayed on the screen even when attempting to display data.

V-Blank-OUT

V-Blank-OUT indicates the beginning of a display. Although a display may be about to begin, how long before interrupt occurs must be taken into consideration since it takes time (an interval) for the actual display to materialize. V-Blank-OUT also clears Time 0 data.

H-Blank-IN


H-Blank-IN indicates the draw end of one line. Timer 0 data is incremented by this timing.


Timer Interrupt

Time interrupt includes Timer 0 and Timer 1. Time interrupt is synchronous with the blanking interrupt mentioned earlier and can cause interrupt to occur at dots (points) on the screen.

Timer 0

Values are cleared by V-Blank-OUT interrupt reception and counted by H-Blank-IN interrupt reception . Timer 0 interrupt occurs when values compared to the Timer 0 compare register (see register details) are the same. Figure 2.12 shows the Timer 0 occurrence process.

Timer 1

Data of the Timer 1 data set register (see register details) is set by Timer 1 with H-Blank-In interrupt receiving. Count down is done at a frequency (1 dot painting) of 7 MHz or about 1/4 the system clock. When the value of Timer 1 becomes 0, interrupt of Timer 1 occurs. Interrupt can also be made to occur at 1 point by combining it with Timer 0 according to the Timer 1 mode register value (see register details), and interrupt can be caused to occur at each line independently of Timer 0. Figure 2.13 shows the process up to when Timer 1 interrupt is caused to occur in sync with Timer 0.

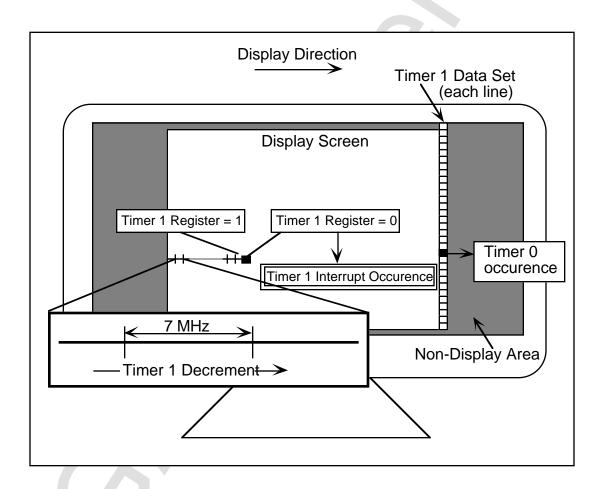


Figure 2.14 shows the process up to when Timer 1 is caused to occur out of sync with Timer 0. There is no change when operationally in sync but a judgment is made for each line and interrupt made to occur.

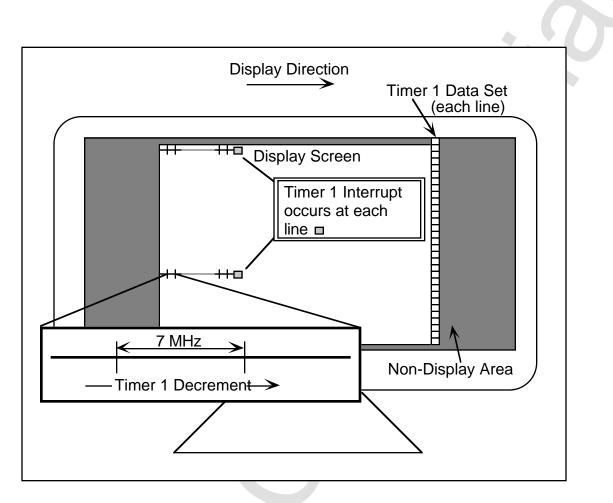


Figure 2.14 Timer 1 Interrupt Process (out of sync with Timer 0)

DSP-End Interrupt

The program execution control flag (see section 3.3, *E flag of the Program Control Port*) of the program control port (see section 3.3, *Program Control Port*) is set by the DSP ENDI command (see section 4.5, *"Command" ENDI command*) and gives notice when the program has ended. By this, the main CPU can retrieve the results calculated by the DSP.

Sound-Request Interrupt

This interrupt occurs from the SCSP. For example, to display the volume level meter on the screen when a CD (Compact Disk) is connected, interrupt from SCSP is used and reported to the main.

SMPC Interrupt

Detailed information about interrupt that occurs from SMPC is listed in the SMPC User's Manual.

PAD Interrupt

The occurrence of this interrupt depends on the action of the user. PAD is given as one example but other items, such as a mouse, may be connected.

DMA End Interrupt

Divided by level, this interrupt notifies the user when DMA transfer has ended. There are three DMA levels from level 2 to level 0.

DMA-Illegal Interrupt

Notifies user that DMA cannot be executed by interrupt when executing DMA that cannot be done using certain parameters.

Sprite Draw End Interrupt

Notifies user via VDP1 that draw has ended.

2.3 DSP

DSP Control from the Main CPU

This allows control of the DSP from the main CPU. DSP items that can be controlled from the CPU include:

- 1) Load DSP program
- 2) Access DSP data
- 3) Begin DSP program execution
- 4) Forced stop of DSP program

Load DSP Program

There are two methods in which the DSP program is loaded: by using the DSP DMA command, and by writing directly to the DSP program RAM area from the main CPU. Program data can be loaded if controlled from the main CPU in the order shown below.

- 1) Set the program control port bits 16 and 17 to 0.
- 2) Write the transfer start address to the program RAM address of the same port. If DSP is not stopped, it cannot be loaded.
- 3) Write sequence program data in long word units to the program RAM data port.

Figures 2.15 to 2.17 show each step of control from the CPU.

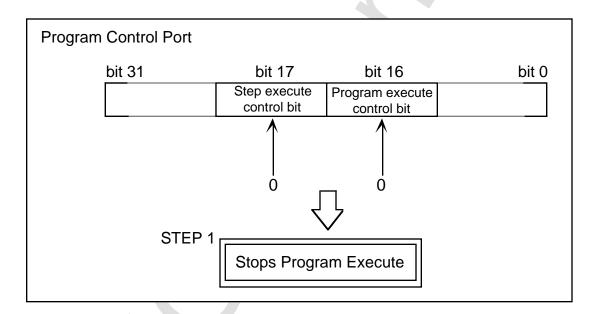


Figure 2.15 DSP Program Load Step 1

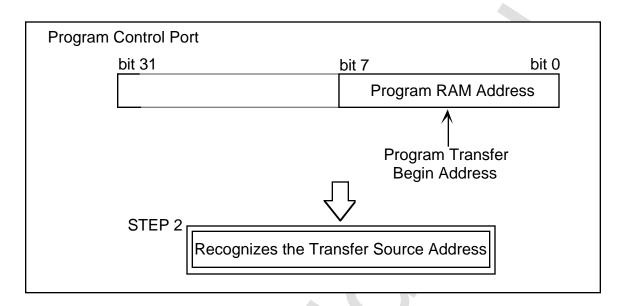


Figure 2.16 DSP Program Load Step 2

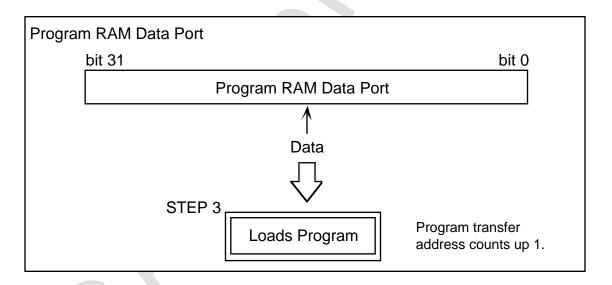


Figure 2.17 DSP Program Load Step 3

DSP Data Access

In order to access DSP data, the DMA command of DSP can be used, but there is also a method that accesses the DSP data RAM area from the main CPU. Data can be accessed if controlled from the CPU in the following sequence.

- 1) Set the program control port bit 16 and bit 17 to 0.
- 2) Write the access start address to the data RAM address port. If DSP is not stopped, it cannot be set.
- 3) Sequence data is accessed in long-word units through the data RAM data port.

Control methods from the CPU for each step are shown from Figure 2.18 to Figure 2.20.

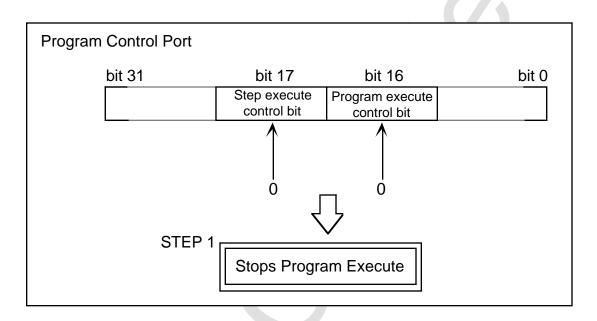
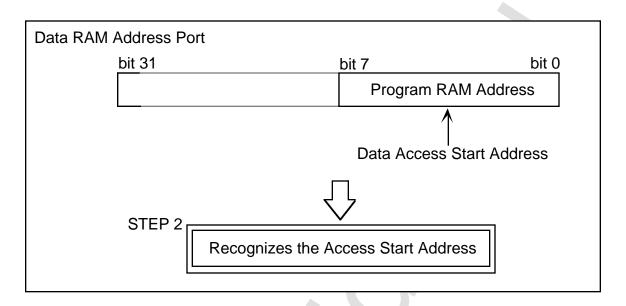



Figure 2.18 DSP Data Access Step 1

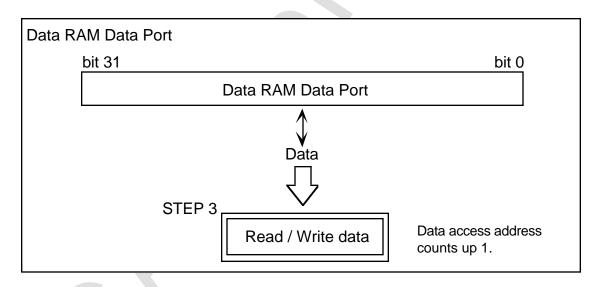


Figure 2.20 DSP Data Access Step 3

DSP Program Execute Start

Execution of the DSP program is begun by writing of the program control port 1 to bit 16 (see Figure 2.21). When the write is recognized, DSP begins execution from the address stored in the program RAM address of the program control port. The execution start address must be set before writing "1" to bit 16 of the program control port.

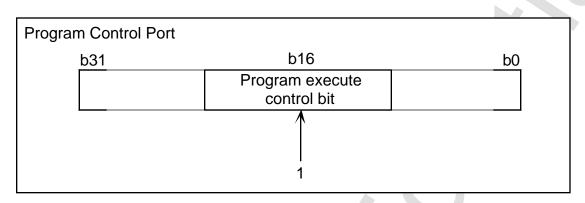


Figure 2.21 DSP Program Execution Start Control from CPU

DSP Program Forced Stop

4

In contrast to execution start, DSP program execution forced stop is done by writing the program control port 0 to bit 16 of the program control port. Figure 2.22 shows the forced stop control.

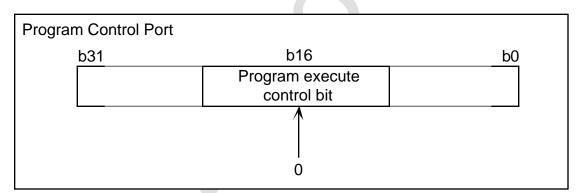


Figure 2.22 DSP Program Forced Stop Control from CPU

CHAPTER 3 REGISTERS

Chapter 3 Contents

3.1	Register List	40
3.2	DMA Control Registers	41
	Level 2-0 DMA Set Register	41
	DMA Enable Register	45
	DMA Mode, Address Update, Start Factor Select Register	46
	DMA Forced Stop Register	47
	DMA Status Register	47
3.3	DSP Control Ports	51
	DSP Program Control Port	51
	DSP Program RAM Data Port	53
	DSP Data RAM Address Port	53
	DSP Data RAM Data Port	54
3.4	Timer Registers	55
	Timer 0 Compare Register	55
	Timer 1 Set Data Register	55
	Timer 1 Mode Register	56
3.5	Interrupt Control Registers	57
	Interrupt Mask Register	57
	Interrupt Status Register	58
3.6	A-Bus Control Registers	61
	A-Bus Interrupt Acknowledge Register	61
	A-Bus Set Register	62
	A-Bus Refresh Register	72
3.7	SCU Control Registers	73
	SCU SDRAM Select Register	73
	SCU Version Register	73

3.1 Register List

A list of SCU registers is given in Table 3.1. Headings are divided for each register type and each register is explained.

Туре	Register Name	Lead Address	End Address	Size
DMA Control Registers	Level 0-DMA Set Register	25FE0000н	25FE0017н	24 byte
	Level 1-DMA Set Register	25FE0020н	25FE0037 н	24 byte
	Level 2-DMA Set Register	25FE0040н	25FE0057н	24 byte
	DMA Force-End Register	25FE0060н	25FE0063н	4 byte
	DMA Status Register	25FE007Сн	25FE007Fн	4 byte
DSP Control Ports	DSP Program Control Port	25FE0080н	25FE0083н	4 byte
	DSP Program RAM Data Port	25FE0084н	25FE0087н	4 byte
	DSP Data RAM Address Port	25FE0088н	25FE008Bн	4 byte
	DSP RAM Data Port	25FE008Сн	25FE008Fн	4 byte
Timer Registers	Timer 0 Compare Register	25FE0090н	25FE0093н	4 byte
	Timer 1 Set Data Register	25FE0094н	25FE0097н	4 byte
	Timer 1 Mode Register	25FE0098н	25FE009Bн	4 byte
Interrupt Control	Interrupt Mask Register	25FE00A0н	25FE00А3н	4 byte
Registers	Interrupt Status Register	25FE00A4н	25FE00A7н	4 byte
A-Bus Control Registers	A-Bus Interrupt Acknowledge	25FE00А8н	25FE00ABн	4 byte
	A-Bus Set Register	25FE00B0н	25FE00B7н	8 byte
	A-Bus Refresh Register	25FE00B8н	25FE00BBн	4 byte
SCU Control Registers	SCU SDRAM Select Register	25FE00C4н	25FE00C7н	4 byte
	SCU Version Register	25FE00C8н	25FE00CBн	4 byte

Table 3.1 Register List

3.2 DMA Control Registers

Level 2-0 DMA Set Register

There are three DMA levels, beginning at the highest priority level of 2 to the lowest priority level of 0. These are explained below.

Read Address

Figure 3.1 is the read address register. The DMA mode includes a direct mode and an indirect mode. The value of the meaning changes for each mode.

25FE0000 (Level 0) b31	b31 b24 b23					b16 b15								b8 b7							b0								
25FE0020 (Level 1) 25FE0040 (Level 2)			- ·	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26 2	27

Figure 3.1 Level 2-0 Read Address (Register: D0R, D1R, D2R) Initail value undefined

Read Address (1~27 [bit 26 ~ 0] in Figure 3.1)

DxR 26-0[x=2-0] (R/W) DMA level 2-0 Read address bit 26-0

When in the Direct mode, values being stored are transfer source addresses. However, this has no meaning when in the Indirect mode. The register of that level prohibits writing while DMA is operating. All address values are expressed in bytes.

• Write Address

The write address register is shown in Figure 3.2. The DMA mode includes a direct mode and indirect mode; the value of the meaning changes with each mode.

25FE0004 (Level 0) b31	b24 b23	b16 b15	b8 b7	b0
25FE0024 (Level 1) 25FE0044 (Level 2)	1 2 3 4 5 6	7 8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23 2	24 25 26 27

Figure 3.2 Level 2-0 Write Address (Register: D0W, D1W, D2W) Initial value undefined

Write Address (1~27 [bit 26 ~ 0] in Figure 3.2)

DxW 26-0[x=2-0] (R/W) DMA level 2-0 Write address bit 26-0

When in the Direct mode, the value being stored is the transfer source address. However, when in the Indirect mode, the address of the location where the transfer source address of DMA transfer is executed the first time is stored. The register of that level prohibits writing while DMA is operating. All address values are expressed in bytes. • Transfer Byte Number

Stores the byte number to be transferred by DMA. Figure 3.3 shows the level 0 transfer byte number. Figure 3.4 shows the level 2-1 transfer byte number.

 b31
 b24 b23
 b16 b15
 b8 b7
 b0

 25FE0008
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

Figure 3.3 Level 0 Transfer Byte Number (Register: D0C) Initial value undefined

Level 0 transfer byte number (1~20 [bit 19 ~ 0] in Figure 3.3) D0C 19-0 (R/W) DMA level 0 Count bit 19-0

Stores the DMA transfer byte number to be operated at level 0. The register of that level prohibits writing while DMA is operating. This register can be set to up to 1 MByte.

b31	b24 b23	b16 b15	b8 b7	b0			
25FE0028 (Level 1) 25FE0048 (Level 2)			-1234567	8 9 10 11 12			

Figure 3.4 Level 2-1 Transfer Byte Number (Register: D1C, D2C) Initial value undefined

Level 2-1 transfer byte number (1~12 [bit 11 ~ 0] in Figure 3.4) DxC 11-0[x=2-1] (R/W) <u>D</u>MA level <u>2-1</u> <u>Count bit 11-0</u>

Stores the DMA transfer byte number to be operated at level 1 or 2. The register of that level prohibits writing while DMA is operating. This register can be set to a maximum of 4 Kbytes.

• Add Value Register

Figure 3.5 shows the add value register.

Figure 3.5 Level 2-0 Address Add Value (Register: D0AD, D1AD, D2AD) Initial value 00000101H

Read Address Add Value (1 [bit 8] in Figure 3.5)

DxRA[x=2-0] (W) DMA level 2-0 Read address Addition data bit

Designates the add byte number of the read address. Table 3.2 shows the read address add value. Since this is effective only for the CS2 space of the A-Bus, everything else should set 1B. The register of that level prohibits writing while DMA is operating.

Table 3.2 Read Address Add Value

DxRA (X=2-0)	Description
0	Nothing is added
1	4 Bytes are added

Write Address Add Value (2~4 [bit 2~0] in Figure 3.5)

DxWA3-0[x=2-0] (W) DMA level 2-0 Write address Addition data bit 3-0

Designates the add byte number of the write address. Table 3.3 shows the write address add value. This value is always effective when writing data to the B-Bus, but is effective only for 000B or 010B data when writing to the CS2 space of the A-Bus. Data should be set to 010B when writing anywhere except to A-Bus or B-Bus. The register of that level prohibits writing while DMA is operating.

Table 3.3	Write	Address	Add Value	

DxWA (X=2-0)	Description
000в	Nothing is added
001в	2 Bytes are added
010в	4 Bytes are added
011в	8 Bytes are added
100в	16 Bytes are added
101в	32 Bytes are added
110в	64 Bytes are added
111в	128 Bytes are added

There are provisions (as in Figure 3.6) for the write address add value. As shown in Figure 3.6, communication between the SCU and B-Bus is in 32-bit units, but in 16-bit units between the B-Bus and processor. Thus, when transferring A ~ D data from the SCU to the processor, as shown in Figure 3.7, the SCU can transfer A ~ D to the B-Bus at one time but the B-Bus can only transfer to the processor after dividing A ~ B and C ~ D. From this, the difference between address 2 and address 1 can be written and indicated as the address add value since the write address add value of B-Bus is 2 byte units, as shown in Figure 3.8.

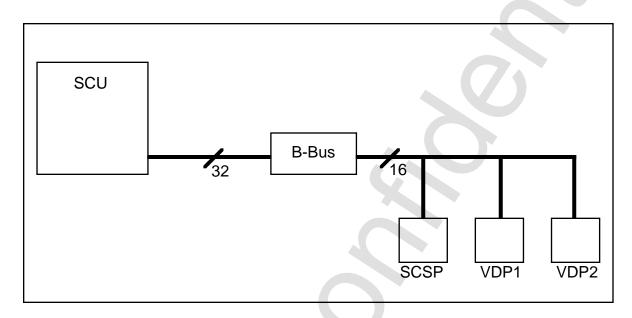


Figure 3.6 Communication Units Between the SCU and Processor

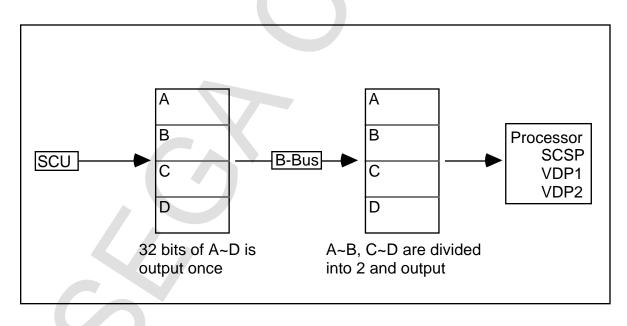


Figure 3.7 Specific Example of Transfer Between the SCU and Processor

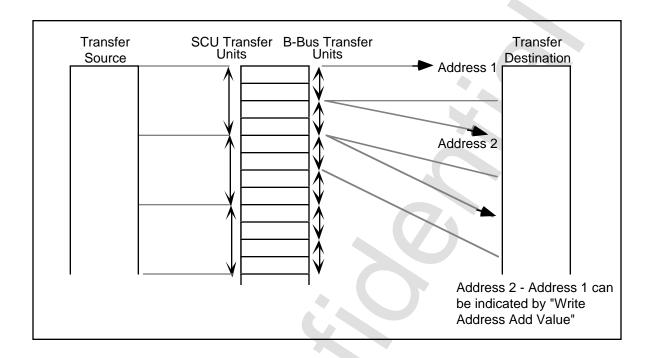


Figure 3.8 Write Address Add Value Indication

DMA Enable Register

This register enable execution of DMA. The register of that level prohibits writing while DMA is operating. Figure 3.9 shows the format of this register.

	b31							b24	b2:	3					k	516	b15	5						b8	b7				
25FE0010 (Level 0) 25FE0030 (Level 1) 25FE0050 (Level 2)	–	-	-	—	-	-	-	E	—	-	-	—	—	-	—	—	—	-	-	—	—	-	—	1	—	-	-	—	—

Figure 3.9 Level 2-0 DMA Enable Bit (Register: D0EN, D1EN, D2EN) Initial Value 00000000H

DMA Enable Bit (1 [bit 8] in Figure 3.9)

DxEN[x=2-0] (W) DMA level 2-0 ENable bit

This bit enables DMA to be executed. This flag is set to 1 when DMA is enabled. Other required data must be set in advance since DMA begins after the flag is set.

DMA Starting Bit (2 [bit 0] in Figure 3.9) DxGO[x=2-0] (W) DMA level 2-0 GO bit

This bit starts execution of DMA. The starting factor bit is significant only when 111B, and when DMA is started, this bit is set to 1. DMA starts one time per set.

DMA Mode, Address Update, Start Factor Select Register

This register designates the DMA mode (direct or indirect), address update (save or update set value), and selection of the start factor. Registers of that level prohibit writing while DMA is operating. Figure 3.10 shows the register.

25FE0014 (Level 0)	b31						I	o24	b23	3					k	o16	b15	5						b8	b7						b0
25FE0034 (Level 1) 25FE0054 (Level 2)	—	-	-	-	-	-	-	1	—	-	-	-	-	-	-	2	-	-	-	—	-	-	-	3	-	E	-	=	4	5	6

Figure 3.10 Level 2-0 DMA Mode, Address Update, Start Factor Select Register (Register : D0MD, D1MD, D2MD) Initial Value 00000007H

DMA Mode Bit (1 [bit 24] in Figure 3.10)

DxMOD[x=2-0] (W) DMA level 2-0 MODe bit

Decides the DMA mode. "0" shows the direct mode, and "1" shows the indirect mode.

Read Address Update Bit (2 [bit 16] in Figure 3.10)

DxRUP[x=2-0] (W) DMA level 2-0 Read update UP bit

This bit decides whether to save or update the value at the time it is set for read address. 0 means save and 1 means update. See *"Example of a Specific Use"* in section 2.1 *"DMA Transfer"* for more information on how to operate it.

Write Address Update Bit (3 [bit 8] in Figure 3.10)

(DxWUP[x=2-0] (W) <u>D</u>MA level <u>2-0</u> <u>Write update <u>UP</u> bit</u>

This bit decides whether to save or update the value at the time it is set for write address. "0" means save and "1" means update. See "Example of A Specific Use" in section 2.1 "*DMA Transfer*" for more information on how to operate it.

DMA Starting Factor Select Bit (4~6 [bit 2~0] in Figure 3.10) DxFT2-0[x=2-0] (W) <u>D</u>MA level <u>2-0</u> starting <u>FacTor bit 2-0</u>

DMA sets the DMA enable bit and starts by receiving an outside signal selected by the starting factor select bit. When the starting factor bit is 111B, DMA starts by setting the DMA starting bit.

Starting F	actor Bits (x	(=2-0)	Starting Factors
DxFT2	DxFT1	DXFT0	
0	0	0	V-BLANK-IN signal receive and enable bit setting
0	0	1	V-BLANK-OUT signal receive and enable bit setting
0	1	0	H-BLANK-IN signal receive and enable bit setting
0	1	1	Timer 0 signal receive and enable bit setting
1	0	0	Timer 1 signal receive and enable bit setting
1	0	1	Sound Req signal receive and enable bit setting
1		0	Sprite draw end signal receive and enable bit setting
1	1	1	Enable bit setting and DMA starting factor bit setting

Table 3.4 Starting Factors

DMA Forced Stop Register

This is a bit in DMA control which causes DMA forced stops. This register is positioned at address 05FE0060H (32 bit area) within the SCU. Its operation is shown by the map below.

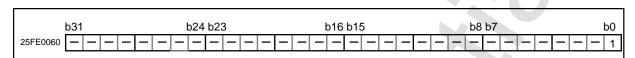


Figure 3.11 DMA Force-Stop Register (Register: DSTP) Initial Value 00000000H

DMA Force-Stop bit (1 [bit 0] in Figure 3.11) DSTOP (W) <u>DMA STOP</u> control bit DSTOP=1: Stops DMA while in operation.

DMA Status Register

• Access, Interruption, Stand by, Operation Registers

This register shows the DMA bus access indication and the DMA condition for each level. The four DMA conditions are interrupt, standby, operation, and stop. Explained first are the high level and low level DMA operational relation ships.

When high level DMA is operating, as shown in Figure 3.15, and launching low level DMA currently interrupted, the operation will not occur at the time when the low level DMA is launched (it will not be in operation). It will wait for a period of time and then go into operation mode. This period is called Standby (or Wait period), and this condition always exists prior to the DMA operation. Low level DMA operates after high level DMA is completed.

When starting high level DMA while low level DMA is operating, operation will not begin at the moment that high level DMA is started but will begin to operate after temporarily being on standby. At this time, low level DMA is interrupted and cannot start until high level DMA has stopped (operation ends).

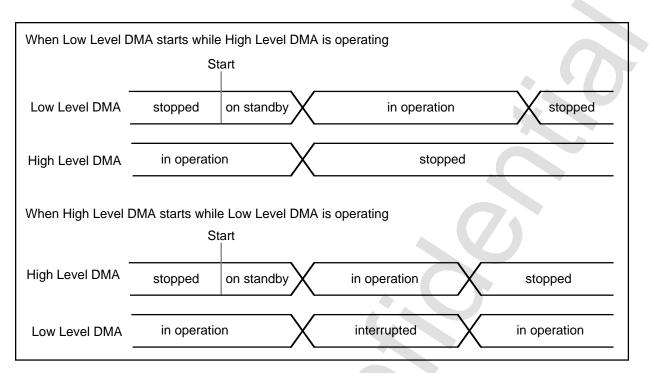


Figure 3.12 High Level DMA Operation

A 0 bit during interrupt or operation confirms that the DMA operation is stopped. Figure 3.13 shows access, interrupt, stand by, and operation registers.

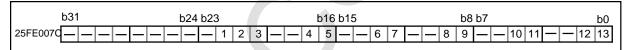


Figure 3.13 DMA Status Register (Register: DSTA) Initial Value 00000000H

DMA DSP Bus Access Flag (1 [bit 22] in Figure 3.13)

DACSD (R) <u>DMA ACceSs DSP-Bus</u>

Shows whether the DSP bus is being accessed during DMA. 1 means accessing. 0 means not accessing.

DMA B Bus Access Flag (2 [bit 21] in Figure 3.13)

DACSB (R) <u>DMA ACceSs B</u>-Bus

Shows whether the B bus is being accessed during DMA. 1 means accessing. 0 means not accessing.

DMA A Bus Access Flag (3 [bit 20] in Figure 3.13)

DACSA (R) <u>DMA ACceSs A</u>-Bus

Shows whether the A bus is being accessed during DMA. 1 means accessing. 0 means not accessing.

Level-1 DMA Interrupt Flag (4 [bit 17] in Figure 3.13)

D1BK (R) <u>D</u>MA level 1 <u>BacK</u> ground flag

Shows Level-1 DMA transfer execution is interrupted by the effect of high level DMA. A 1 shows that it is currently being interrupted. A 0 shows that level 1 DMA is not interrupted.

Level-0 DMA Interrupt Flag (5 [bit 16] in Figure 3.13)

D0BK (R) <u>D</u>MA level <u>0</u> <u>B</u>ac<u>K</u> ground flag

Shows Level-0 DMA transfers execution is interrupted by the effect of high level DMA. A 1 shows that it is currently being interrupted. A 0 shows that level 0 DMA is not interrupted.

Level-2 DMA Stand by Flag (6 [bit 13] in Figure 3.13)

D2WT (R) <u>D</u>MA level <u>2</u> <u>WaiT</u> flag

Level-2 DMA transfer execution is currently shown in on standby (in wait condition). A 1 shows the current standby condition. A 0 shows that level 2 DMA is not on standby.

Level-2 DMA Operation Flag (7 [bit 12] in Figure 3.13)

D2MV (R) <u>D</u>MA level <u>2</u> <u>MoVe</u> flag

Level-2 DMA transfer execution is currently shown in operation. A 1 shows that it is currently in operation. A 0 shows level 2 DMA is not in operation. Also, when both D2WT and D2MV are 0, it shows that level 2 DMA is stopped.

Level-1 DMA Stand by Flag (8 [bit 19] in Figure 3.13) D1WT (R) <u>D</u>MA level <u>1 WaiT</u> flag

Level-1 DMA transfer execution is currently shown on standby. A 1 shows

the current standby condition. A 0 shows that level 1 DMA is not on standby.

Level-1 DMA Operation Flag (9 [bit 8] in Figure 3.13)

D1MV (R) <u>DMA level 1 MoVe flag</u>

Level-1 DMA transfer execution is currently shown in operation. A 1 shows that it is currently in operation. A 0 shows level 1 DMA is not in operation. Also, when D1WT, D1MV, D1BK are all 0, it shows that level 1 DMA is stopped.

Level-0 DMA Stand by Flag (10 [bit 5] in Figure 3.13) D0WT (R) <u>D</u>MA level <u>0</u> <u>WaiT</u> flag

Level-0 DMA transfer execution is shown to be currently on standby. A 1 shows the current standby condition. A 0 shows level 0 DMA is not on standby.

Level-0 DMA Operation Flag (11 [bit 4] in Figure 3.13)

D0MV (R) <u>D</u>MA level <u>0</u> <u>MoVe</u> flag

Level-0 DMA transfer execution is shown to be currently in operation. A 1 shows that it is currently in operation. A 0 shows that level 0 DMA is not in operation. Also, when all D0WT, D0MV, D0BK are 0 it indicates that level 0 DMA is stopped.

DSP DMA Stand by Flag (12 [bit 1] in Figure 3.13) DDWT (R) <u>DMA DSP WaiT</u> flag

DMA transfer execution of the DSP statement is shown to be currently on standby. A 1 shows the current standby condition. A 0 shows that DSP issue DMA is not on standby.

DSP DMA Operation Flag (13 [bit 0] in Figure 3.13)

DDMV (R) DMA DSP MoVe flag

DMA transfer execution of the DSP statement is shown to be currently in operation. A 1 shows that it is currently in operation. A 0 shows that DSP issue DMA is not in operation. Also, when DDWT, DDMV, D0BK are all 0, it shows that DSP DMA is stopped.

3.3 DSP Control Ports

DSP Program Control Port

The DSP program control port is shown in Figure 3.14.

b31	b24 b23	b16 b15	b8 b7	b0
25FE080 — — — —	— 1 2 — 3 4 5 6	7 8 9 10 11	— — — — 12 13 14 15 1	6 17 18 19

Figure 3.14 DSP Program Control Port (Register: PPAF) Initial Value 00000000H

Execute Pause Reset Flag (1 [bit 26] in Figure 3.14)

PR (W) execute Pause Reset flag

When the program execute control flag (see below) is 1, the program pause is reset if 1 is written to the flag and execution begins. The condition does not change when it does not pause or when the program execute flag is 0.

Execute Pause Flag (2 [bit 25] in Figure 3.14)

EP (W) Execute Pause flag

When the program execute control flag (see below) is 1, the executing program pauses if 1 is written to the flag. This condition does not change when it pauses or when the program execute flag is 0.

D0-Bus DMA Execution Flag (3 [bit 23] in Figure 3.14)

T0 (R) Transfer 0

This flag becomes 1 when executing DMA using the D0-Bus.

Sine Flag (4 [bit 22] in Figure 3.14)

S (R) Sign flag

This flag becomes 1 when the operation result is negative.

Zero Flag (5 [bit 21] in Figure 3.14)

Z (R) <u>Z</u>ero flag

This flag becomes 1 when the operation result is 0.

Carry Flag (6 [bit 20] in Figure 3.14)

C (R) <u>C</u>arry flag

This flag becomes 1 when carry occurs in the operation result.

Overflow Flag (7 [bit 19] in Figure 3.14)

V (R) o<u>V</u>erflow flag

This flag becomes 1 when the operation results causes overflow (or underflow). This flag is reset by the read out.

Program End Interrupt Flag (8 [bit 18] in Figure 3.14)

E (R) End flag

This flag becomes 1 and causes program end interrupt to occur when the program ended by the ENDI command is detected. This flag is reset by the read out.

Step Execute Control BIt (9 [bit 17] in Figure 3.14)

ES (W) Execute Step control bit

The program executes 1 step if a 1 is written while the program is stopped (when the program execute control flag is 0). Invalid while executing.

Program Execute Control Flag (10 [bit 16] in Figure 3.14)

EX (R/W) program EXecute control flag

Controls execution of program. Execution begins by writing 1 and stops by writing 0. When this flag is read out, it can be determined whether execution is in progress (1) or is stopped (0).

Program Counter Transfer Enable Bit (11 [bit 15] in Figure 3.14)

LE (W) Load Enable bit

This bit decides whether or not the program RAM address (see below) is to be loaded to the program counter. The program RAM address is loaded to the program counter if 1 is written to the bit. The address can not be loaded when the program is being executed (when the program execute control flag is 1).

Program RAM Address (12~19 [bit 7~0] in Figure 3.14)

P7-0 (R/W) Program RAM address bit 7-0

Stores the address of the program RAM. Also, is able to set the begin address and read the stop address.

DSP Program RAM Data Port

Details of the DSP program RAM data port are shown in Figure 3.15. Data is loaded into the program RAM by writing data stored in the program RAM area from the CPU. After loading, the program RAM address of the program control port counts up 1. However, write is prohibited while the program is being executed (when program execute control flag is 1). This port is write only.

b31 b24 b23 b16 b15 b8 b7 b00 25FE0084 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32																																
25FE0084 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32		b31							b24	b2	3					b16	b15	5						b8	b7							b0
	25FE0084	1	- 2	3	4	5	6	7		9	10	11	12	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

Figure 3.15 DSP Program RAM Data Port (Register: PPD) Initial Value Undefined

DSP Data RAM Address Port

The DSP data RAM address port is shown in Figure 3.16. This sets the data RAM address to be accessed. However, write is prohibited while the program is being executed (when program execute control flag is 1).

																														- 1
b31					ł	o24		3					b16	b15	5						b8	b7							b0	
25FE0088		_	_	_	_	_	_	_	_	_	_				—	_	_	_	_	_	_	1	2	3	4	5	6	7	8	
	-									_		-										-		-	<u> </u>	لتا			-	· 1

Figure 3.16 DSP Data RAM Address Port (Register: PDA) Initial Value 00000000H

Data RAM Select Bit (1~2 [bit 7~6] in Figure 3.16)

RA7-6 (W) <u>RA</u>M select bit bit <u>7-6</u>

Shows the page of the read RAM data. Table 3.5 shows the RAM page selection.

Table 3.5 RAM Page Select

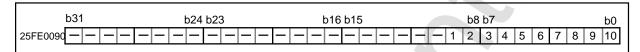
	В	it	Select RAM Page
	RA7	RA6	
	0	0	Selects RAM0
	0	/ 1	Selects RAM1
l	1	0	Selects RAM2
7	1	1	Selects RAM3

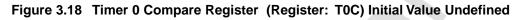
Data RAM Address (3~8 [bit 5~0] in Figure 3.16) RA5-0 (W) <u>R</u>AM address bit <u>5-0</u> Indicates the read data RAM address.

DSP Data RAM Data Port

Details of the DSP data RAM data port are shown in Figure 3.17. The data RAM data is accessed from this port. The data RAM address of the DSP data RAM address port increases by 1 when accessed. However, access is prohibited while the program is being executed (when program execute control flag is 1). This port can read and write.

b31 b24 b23 b16 b15 b8 b7 b0 25FE008C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32					
	b31	b24 b23	b16 b15	b8 b7	b0
	25FE008C 1 2 3 4	5 6 7 8 9 10 11 12	13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29	30 31 32


Figure 3.17 DSP Data RAM Data Port (Register: PDD) Initial Value Undefined



3.4 Timer Registers

Timer 0 Compare Register

The Timer 0 compare register is shown in Figure 3.18. (Timer 0 is a counter that increases on receiving an H-Blank-IN signal, and that is cleared by a V-Blank-END signal.)

Timer 0 Compare Data (1~1 0 [bit 9~0] in Figure 3.18) TOC9-0 (W) <u>Timer 0 Compare data bit 9-0</u> When the value of Timer 0 is equal to the value of this register, timer 0 interrupt will occur.

Timer 1 Set Data Register

The Timer 1 set data register is shown in Figure 3.19. (Timer 1 sets the data of this register by the H-Blank-IN signal receive, automatically counts down by 7 MHz, and when the Timer 1 value is 0, executes interrupt.)

b31	b24 b23	b16 b15	b8 b7	b0
25FE0094 — — — —				6 7 8 9

Figure 3.19 Timer 1 Set Data Register (Register: T1S) Initial Value Undefined

Timer 1 Set Data (1~9 [bit 8~0] in Figure 3.19) T1S8-0 (W) <u>Timer 1 S</u>et data bit <u>8-0</u> Sets the value that is set in Timer 1.

5

Timer 1 Mode Register

Details of the Timer 1 mode register are shown in Figure 3.20. How occurrence of Time is set is decided by this register.

b31	b24 b23	b16 b15	b8 b7 b0
25FE0098 — — — —	- - - - - - -	- - - - - - -	1

Figure 3.20 Timer 1 Mode Register (Register: T1MD) Initial Value 00000000H

Timer 1 Mode Bit (1 [bit 8] in Figure 3.20)

T1MD (W) $\underline{\text{Ti}}$ mer $\underline{1}$ <u>M</u>o<u>D</u>e bit

This bit specifies the occurrence of Timer 1. Table 3.6 shows what happens when it occurs.

Table 3.6 Timer 1 Occurre	ence Selection
---------------------------	----------------

T1MD	Occurrence Selection
0	Interrupt occurs at each line
1	Occurs only at lines indicated by Timer 0

Timer Enable Bit (2 [bit 0] in Figure 3.20)

TENB (W) <u>T</u>imer <u>EN</u>a<u>B</u>le bit

This bit turns the timer operation ON/OFF. Operation details are shown in Table 3.7.

Table 3.7 Timer Operation Contents

TENB	Timer Operation
0	Timer operation off
1	Timer operation on

3.5 Interrupt Control Registers

Interrupt Mask Register

Г

The interrupt register is shown in Figure 3.21. It does not mask interrupt when the value of this register is 0, and masks interrupt when it is 1.

b31 b24 b23 b16 b15 b8 b7 b0 25FE00A0 - - - - - - 1 - 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Figure 3.21 Interrupt Mask Register (Register: IMS) Initial Value 0000BFFFH
A-Bus Interrupt Mask Bit (1 [bit 15] in Figure 3.21) IMS15 (W) <u>Interrupt MaSk bit bit 15</u> Indicates whether to mask the A-Bus interrupt.
Sprite Draw End Interrupt Mask Bit (2 [bit 13] in Figure 3.21) IMS13 (W) <u>Interrupt MaSk bit bit 13</u> Indicates whether to mask the sprite draw end interrupt.
DMA Illegal Interrupt Mask Bit (3 [bit 12] in Figure 3.21) IMS12 (W) <u>I</u> nterrupt <u>MaSk</u> bit bit <u>12</u> Indicates whether to mask the DMA illegal interrupt.
Level-0-DMA End Interrupt Mask Bit (4 [bit 11] in Figure 3.21) IMS11 (W) <u>I</u> nterrupt <u>MaSk bit bit 11</u> Indicates whether to mask the level-0-DMA end interrupt.
Level-1-DMA End Interrupt Mask Bit (5 [bit 10] in Figure 3.21) IMS10 (W) Interrupt MaSk bit bit <u>10</u> Indicates whether to mask the level-1-DMA end interrupt.
Level-2-DMA End Interrupt Mask Bit (6 [bit 9] in Figure 3.21) IMS9 (W) <u>Interrupt MaSk bit bit 9</u> Indicates whether to mask the level-2-DMA end interrupt.
 PAD Interrupt Mask Bit (7 [bit 8] in Figure 3.21) IMS8 (W) Interrupt MaSk bit bit 8 Indicates whether to mask the interrupt from PAD.
System Manager Interrupt Mask Bit (8 [bit 7] in Figure 3.21) IMS7 (W) <u>I</u> nterrupt <u>MaSk bit bit 7</u> Indicates whether to mask the interrupt from the system manager.
Sound Request Interrupt Mask Bit (9 [bit 6] in Figure 3.21) IMS6 (W) <u>I</u> nterrupt <u>MaSk bit bit 6</u> Indicates whether to mask the sound request interrupt.

DSP End Interrupt Mask Bit (10 [bit 5] in Figure 3.21) IMS5 (W) Interrupt MaSk bit bit 5 Indicates whether to mask the DSP end interrupt.
Timer 1 Interrupt Mask Bit (11 [bit 4] in Figure 3.21) IMS4 (W) Interrupt MaSk bit bit <u>4</u> Indicates whether to mask the Timer 1 interrupt.
Timer 0 Interrupt Mask Bit (12 [bit 3] in Figure 3.21) IMS3 (W) Interrupt MaSk bit bit 3 Indicates whether to mask the Timer 0 interrupt.
H-Blank-IN Interrupt Mask Bit (13 [bit 2] in Figure 3.21) IMS2 (W) Interrupt MaSk bit bit 2 Indicates whether to mask the H-Blank-IN interrupt.
V-Blank-OUT Interrupt Mask Bit (14 [bit 1] in Figure 3.21) IMS1 (W) Interrupt MaSk bit bit 1 Indicates whether to mask the V-Blank-OUT interrupt.
V-Blank-IN Interrupt Mask Bit (15 [bit 0] in Figure 3.21) IMS0 (W) Interrupt MaSk bit bit 0

Indicates whether to mask the V-Blank-IN interrupt.

Interrupt Status Register

S.

Figure 3.22 shows the interrupt status register.

b31	b24 b23	b16 b15	b8 b7	b0
25FE00A4 1 2 3 4	5 6 7 8 9 10 11 12		19 20 21 22 23 24 25 26 27	28 29 30

Figure 3.22 Interrupt Status Register (Register: IST) Initial Value 00000000H

These status registers are all read/write registers; the read and write meanings are as shown in Table 3.8.

Table 3.8 Interrupt Status Bit Contents

Access	Status	Result			
Read	0	Interrupt does not occur			
	1	Interrupt does occur			
Write	0	Resets interrupt			
	1	Maintains current interrupt status			

External Interrupt Status Bit (1~16 [bit 31-16] in Figure 3.22) IST31-16 (R/W) Interrupt STatus bit bit <u>31-16</u>

Shows the status of 16 external interrupts from external interrupt 15 (1 in Figure 3.25) to external interrupt 0 (16 in Figure 3.25).

Sprite Draw End Interrupt Status Bit (17 [bit 13] in Figure 3.22)

IST13 (R/W) Interrupt STatus bit bit 13

Shows interrupt status of sprite draw end.

DMA Illegal Interrupt Status Bit (18 [bit 12] in Figure 3.22) IST12 (R/W) Interrupt STatus bit bit 12

Shows interrupt status of DMA illegal.

Level-0-DMA End Interrupt Status Bit (19 [bit 11] in Figure 3.22)

IST11 (R/W) Interrupt STatus bit bit 11

Shows interrupt status of level-0-DMA end.

Level-1-DMA End Interrupt Status Bit (20 [bit 10] in Figure 3.22) IST10 (R/W) Interrupt <u>STatus bit bit 10</u>

Shows interrupt status of level-1-DMA end.

Level-2-DMA End Interrupt Status Bit (21 [bit 9] in Figure 3.22) IST9 (R/W) Interrupt STatus bit bit 9 Shows interrupt status of level-2-DMA end.

PAD Interrupt Status Bit (22 [bit 8] in Figure 3.22) IST8 (R/W) Interrupt <u>STatus bit bit 8</u> Shows status of interrupt from PAD.

System Manager Interrupt Status Bit (23 [bit 7] in Figure 3.22) IST7 (R/W) Interrupt <u>ST</u>atus register bit bit <u>7</u> Shows status of interrupt from the system manager.

Sound Request Interrupt Status Bit (24 [bit 6] in Figure 3.22) IST6 (R/W) Interrupt STatus bit bit 6 Shows status of sound request interrupt.

DSP End Interrupt Status Bit (25 [bit 5] in Figure 3.22) IST5 (R/W) Interrupt <u>STatus bit bit 5</u> Shows status of DSP end interrupt.

Timer 1 Interrupt Status Bit (26 [bit 4] in Figure 3.22) IST4 (R/W) Interrupt <u>ST</u>atus bit bit <u>4</u> Shows status of Timer 1 interrupt.

Timer 0 Interrupt Status Bit (27 [bit 3] in Figure 3.22) IST3 (R/W) Interrupt <u>ST</u>atus bit bit <u>3</u> Shows status of Timer 0 interrupt.

 H-Blank-IN Interrupt Status Bit (28 [bit 2] in Figure 3.22)
 IST2 (R/W) Interrupt STatus register bit bit 2 Shows status of H-Blank-IN interrupt.

V-Blank-OUT Interrupt Status Bit (29 [bit 1] in Figure 3.22) IST1 (R/W) Interrupt STatus bit bit 1 Shows status of V-Blank-OUT interrupt.

V-Blank-IN Interrupt Status Bit (30 [bit 0] in Figure 3.22) IST0 (R/W) Interrupt <u>ST</u>atus bit bit 0 Shows status of V-Blank-IN interrupt.

3.6 A-Bus Control Registers

A-Bus Interrupt Acknowledge Register

Figure 3.23 shows the A-Bus interrupt acknowledge register.

b31	b24 b23	b16 b15	b8 b7	b0
25FE00A8 — — — —				1

Figure 3.23 A-Bus Interrupt Acknowledge Register (Register: AIACK) Initial Value 00000000H

A-Bus Interrupt Acknowledge (1 [bit 0] in Figure 3.23)

AIACK (R/W) <u>A</u>-Bus <u>Interrupt ACK</u>nowledge

This shows the effectiveness or ineffectiveness of interrupts from the devices that exist on the A-Bus. This bit can read and write. The meaning of the bit is shown in Table 3.9. If interrupt is requested, the A-Bus interrupt acknowledge cycle occurs, the interrupt classification data (16 bit) is fetched, and by means of its contents, the current interrupt condition can be acknowledged. If this cycle occurs, and since the AIACK bit must be 0 and the A-Bus interrupt be comes ineffective, the AIACK bit must be reset to receive interrupt from the A-Bus.

Table 3.9	A-Bus Inter	rupt Acknowle	dge Contents
-----------	--------------------	---------------	--------------

Access	Status	Contents
Read	0	Invalid A-Bus interrupt
	1	Valid A-Bus interrupt
Write	0	Invalid A-Bus interrupt
	1	Valid A-Bus interrupt

A-Bus Set Register

There are a total of four types of spaces arranged as spaces connected to the A-Bus, chip select $0 \sim 2$ (hereafter referred to as CS) which includes three types of spaces that are output and one type of dummy space that CS does not output.

The register relating to the A-Bus is determined by the connecting devices and therefore must be set to include all devices. Make sure that there is no excessive change in the value after it has been set.

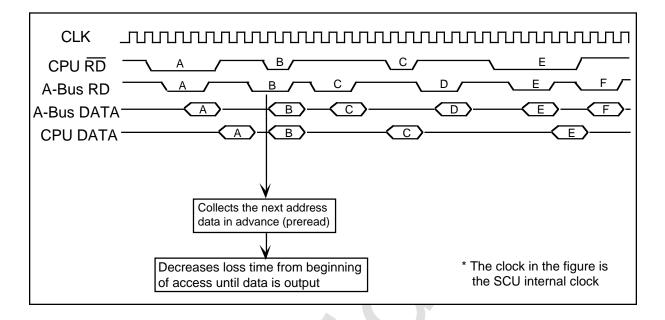
CS0, CS1, and CS2 Dummy Space A-Bus Set Registers

Figure 3.24 shows the CS0 and CS1 spaces, and Figure 3.25 shows the CS2 spaces and dummy spaces of the A-Bus set register.

b31	b24 b23	b16 b15	b8 b7	b0
25FE00B0 1 2 3 4	5 6 7 8 9 10 11 12		21 22 23 24 25 26 27 2	8 29 — 30

Figure 3.24 A-Bus Set Register [CS0, CS1 Spaces] (Register: ASR0) Initial Value 00000000H

b31	b24 b23	b16 b15	b8 b7	b0
25FE00B4 1 2 3 4			2 13 14 15 16 17 18 19 2	20 21 - 22


Figure 3.25 A-Bus Set Register [CS2, Dummy Spaces] (Register: ASR1) Initial Value 00000000H

CS0 Space Previous Read Bit (1 [bit 31] in Figure 3.24)

A0PRD (W) <u>A</u>-Bus CS<u>0</u> Previous <u>ReaD</u> bit

This bit decides whether the data previous read process of CS0 space is effective or not. The time period from when access begins until data output is reduced by the previous data read process. This is effective only for data that is stored in the address following the accessed data; other addresses do not change with normal access. A 1 shows it is effective, 0 shows it is not effective. Figure 3.26 shows the result when the previous read is effective.

Pre-charge Insert Bit After CS0 Space Write (2 [bit 30] in Figure 3.24) A0WPC (W) <u>A</u>-Bus CS<u>0</u> after <u>Write Pre-Charge insert bit</u>

After data is written in the CS0 space, 1 clock no-process condition can be inserted. This is the bit that decides whether the process is effective or ineffective: 1 shows it is effective; 0 shows it is ineffective. This bit does not affect the operation after CS0 space read. The operation when this bit has been set is shown in Figure 3.27.

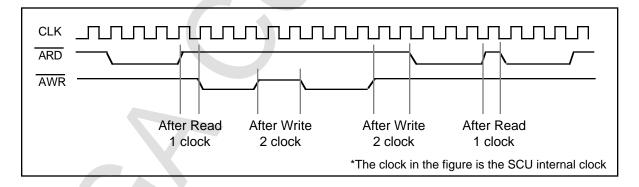


Figure 3.27 Timing when Setting the Pre-Charge Insert Bit after Write

Pre-charge Insert Bit After CS0 Space Read (3 [bit 29] in Figure 3.24) A0RPC (W) <u>A</u>-Bus CS<u>0</u> Previous <u>ReaD</u> bit

After CSO space data is read, 1 clock no-process condition can be inserted. This is the bit that decides whether the process is effective or ineffective: 1 shows it is effective; 0 shows it is ineffective. This bit does not affect the operation after CSO space write. The operation when this bit has been set is shown in Figure 3.28. Depending on the type of device, this bit is set because a fixed period is required after CS is set to High until the next CS is set to Low. This is true for write as well.

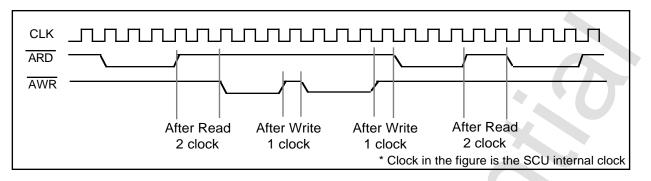


Figure 3.28 Timing when Setting the Pre-Charge Insert Bit after Read

CSO External Wait effective Bit (4 [bit 28] in Figure 3.24) A0EWT (W) <u>A-Bus CS0 External WaiT</u> effective bit

Wait can be inserted by force by the external signal when accessing the CS0 space via the A-Bus. Whether the process will be effective or not is decided by this bit. A 1 shows that the process is effective, 0 shows that the process is ineffective. When the process is effective, wait will continue as long as the external wait signal is "Low" at the time of the SCU wait sampling. Figure 3.29 shows the difference in timing charts when external wait is effective or ineffective.

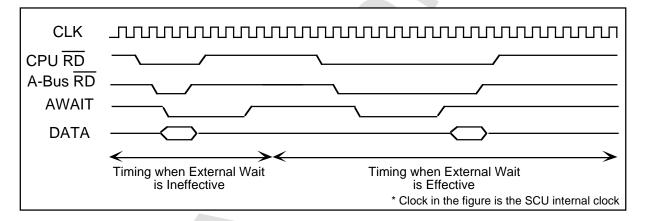


Figure 3.29 Differences in Timing by Setting External Wait Effective Bit

CS0 Space Burst Cycle Wait Number Set Bit (5~8 [bit 27~24] in Figure 3.24) A0BW3-0 (W) <u>A-Bus CS0 Burst cycle Wait bit 3-0</u> In the CS0 space, the wait number is set for 1 cycle while a burst access is being performed. Table 3.10 shows the set values.

Table 3.10 CS0 Space Burst Cycle Set Values

	Bit			Wait Number
A0BW3	A0BW2	A0BW1	A0BW0	
0	0	0	0	No wait (wait does not sample)
0	0	0	1	1-cycle wait
:	:	:	:	
1	1	1	0	14-cycle wait
1	1	1	1	15-cycle wait

CS0 Normal Cycle Wait Number Set Bit (9~12 [bit 23~20] in Figure 3.24)

A0NW3-0 (W) <u>A-Bus CS0 Normal cycle Wait bit 3-0</u> In the CS0 space, the wait number is set for 1 cycle during normal access. Table 3.11 shows the set values.

Table 3.11	CS0 Space Normal Cycle Set Values
------------	-----------------------------------

	В	Bit	Wait Number	
A0NW3	A0NW2	A0NW1	A0NW0	
0	0	0	0	No wait (does not sample waits)
0	0	0	1	1 cycle wait
:	:	:	:	
1	1	1	0	14 cycle wait
1	1	1	1	15 cycle wait

CS0 Burst Length Set Bit (13~14 [bit 19~18] in Figure 3.24)

A0LN1-0 (W) <u>A</u>-Bus CS<u>0</u> burst <u>LeNgth bit 1-0</u>

In the CS0 space, the length (boundary) to be accessed is designated during burst access. Table 3.12 shows the length set values.

Table 3.12 CS0 Space Burst Length Set Values

Bit		Access Values	
A0LN1	A0LN0		
0	0	No burst access	
0	1	4 address burst access	
1	0	256 address burst access	
1	1	No boundary	

CS0 Space Bus Size Set Bit (15 [bit 16] in Figure 3.24) A0SZ (W) <u>A</u>-Bus CS<u>0</u> bus <u>SiZ</u>e bit Sets the A-Bus size in the CS0 space. Table 3.13 shows the set values.

Table 3.13 CS0 Space Bus Set Values

A0SZ	Bus Size Settings		
0	Indicates 16 bit bus		
1	Indicates 8 bit bus		

CS1 Space Previous Read Effective Bit (16 [bit 15] in Figure 3.24)

A1PRD (W) <u>A</u>-Bus CS<u>1</u> Previous <u>ReaD</u> bit

This bit decides whether the data previous read process of CS1 space is effective or not. The data previous read processes reduces the time from access start until data output. This is effective only for data that is stored in address that follows the accessed data. Other addresses do not change with normal addresses. A 1 shows it is effective, a 0 shows it is not effective. See Figure 3.26 for the result when previous read is effective.

Pre-charge Insert Bit After CS1 Space Write (17 [bit 14] in Figure 3.24)

A1WPC (W) <u>A</u>-Bus CS<u>1</u> after <u>W</u>rite <u>Pre-C</u>harge insert bit

Non-process conditions of 1 clock can be inserted after writing data to CS1 space. This is the bit that decides whether the process is effective or ineffective. A 1 shows it is effective, a 0 shows it is ineffective. This bit has no effect on the operation after read. Figure 3.26 shows the operation when this bit has been set.

Pre-charge Insert Bit After CS1 Space Read (18 [bit 13] in Figure 3.24) A1RPC (W) <u>A</u>-Bus CS<u>1 Read Pre-C</u>harge insert bit

One clock worth of non-process condition can be inserted after reading data to CS1 space. This is the bit that decides whether the process is effective or ineffective. A 1 shows it is effective, a 0 shows it is ineffective. This bit has no effect on the operation after write. Figure 3.28 shows the operation when this bit has been set.

CS1 Space External Wait Effective Bit (19 [bit 12] in Figure 3.24) A1EWT (W) <u>A-Bus CS1 External WaiT</u> effective bit

Wait can be entered by force by an external signal when accessing the CS1 space via the A-Bus; however, whether the process will be effective or not is decided by this bit. A 1 shows that the process is effective, a 0 shows that the process is ineffective. When the process is effective, wait will continue as long as the external signal is "Low." Figure 3.29 shows differences in timing charts when external wait is effective vs. ineffective.

CS1 space Burst Cycle Wait Number Set Bit (20~23 [bit 11~8] in Figure 3.24) A1BW3-0 (W) <u>A</u>-Bus CS<u>1</u> <u>B</u>urst cycle <u>WaiT</u> bit <u>3-0</u>

In the CS1 space, the wait number is set for 1 cycle while a burst access is performed. Table 3.14 shows the set values.

Bit			Wait Number	
A1BW3	A1BW2	A1BW1	A1BW0	
0	0	0	0	No wait (Does not sample wait)
0	0	0	1	1 cycle wait
:	:	:	:	
1	1	1	0	14 cycle wait
1	1	1	1	15 cycle wait

Table 3.14 CS1 Space Burst Cycle Set Values

CS1 Normal Cycle Wait Number Set Bit (24~27 [bit 7~4] in Figure 3.24)

A1NW3-0 (W) <u>A</u>-Bus CS<u>1</u> Normal cycle <u>W</u>ait bit <u>3-0</u>

In the CS1 space, the wait number is set for 1 cycle during a normal access. Table 3.15 shows the set values.

	Bit			Wait Number
A1NW3	A1NW2	A1NW1	A1NW0	
0	0	0	0	No wait (Does not sample wait)
0	0	0	1	1 cycle wait
:	:		:	
1	1	1	0	14 cycle wait
1	1	1	1	15 cycle wait

Table 3.15 CS1 Space Normal Cycle Set Values

CS1 space Burst Length Bit (28~29 [bit 3~2] in Figure 3.24)

A1LN1-0 (W) <u>A</u>-Bus CS1 burst <u>LeNgth bit 1-0</u>

The access length (boundary) is indicated while burst accessing in CS1 space. Table 3.16 shows length values.

Bit		Access Settings	
A1LN1	A1LN0		
0	0	No burst access	
0	1	4 Address burst access	
1	0	256 Address burst access	
1	1	No boundary	

Table 3.16 CS1 Space Burst Length Set Values

CS1 space Bus Size Set Bit (30 [bit 0] in Figure 3.24)

A1SZ (W) <u>A-Bus CS1 bus SiZe bit</u>

Sets the A-Bus bus size in the CS1 space. Table 3.17 shows the set values.

Table 3.17 CS1 Space Bus Size Set Values

A1SZ	Bus Size Settings
0	Indicates 16-bit bus
1	Indicates 8-bit bus

CS2 Space Previous Read Effective Bit (1 [bit 31] in Figure 3.25)

A2PRD (W) <u>A</u>-Bus CS<u>2</u> <u>P</u>revious <u>ReaD</u> bit

This bit decides whether the data in the previous read process of CS2 is effective or not. The data previous read process reduces the time from access start until data output. This is effective only for data that is stored in the address that follows the accessed data. Other addresses do not change with normal addresses. A 1 shows it is effective, a 0 shows it is not effective. See Figure 3.25 for the effect when previous read is effective.

Pre-charge Insert Bit After Writing CS2 Space (2 [bit 30] in Figure 3.25) A2WPC (W) <u>A-Bus CS2 after Write Pre-Charge</u> insert bit

A no-process condition of 1 clock can be inserted after writing data to CS2. This is the bit that decides whether the process is effective or ineffective. A 1 shows it is effective, a 0 shows it is ineffective. This bit has no effect on the operation after read. Figure 3.27 shows the operation when this bit has been set.

Pre-charge Insert Bit After Reading CS2 Space (3 [bit 29] in Figure 3.25) A2RPC (W) <u>A</u>-Bus CS<u>2 Read Pre-Charge</u> insert bit

A no-process condition of 1 clock can be inserted after reading data to CS2. This is the bit that decides whether the process is effective or ineffective. A 1 shows it is effective, a 0 shows it is ineffective. This bit does not affect the operation after write. Figure 3.28 shows the operation when this bit has been set.

CS2 Space External Wait Effective Bit (4 [bit 28] in Figure 3.25) A2EWT (W) <u>A</u>-Bus CS<u>2</u> <u>External Wait effective bit</u>

Wait can be entered by force by an external signal when accessing the CS2 space via the A-Bus. Whether the process will be effective or not is decided by this bit. A 1 shows that the process is effective, a 0 shows that the process is ineffective. When the process is effective, wait will continue as long as the external signal is "Low." Figure 3.29 shows differences in timing charts when external wait is effective vs. ineffective.

CS2 Space Burst Length Bit (5~6 [bit 19~18] in Figure 3.25)

A2LN1-0 (W) A-Bus CS2 burst LeNgth bit 1-0

The access length (boundary) is indicated while burst accessing in CS2. Table 3.18 shows the length settings.

Bit		Access Settings	
A2LN1	A2LN0		
0	0	No burst access	
0	1	4 Address burst access	
1	0	256 Address burst access	
1	1	No border	

Table 3.18 CS2 Space Burst Length Set Values

CS2 Bus Size Set Bit (7 [bit 16] in Figure 3.25) A2SZ (W) <u>A</u>-Bus CS<u>2</u> bus <u>SiZ</u>e bit

Sets the A-Bus bus size in the CS2 space. Table 3.19 shows the set values.

X

Table 3.19 CS2 Space Bus Size Set Values

A2SZ	Bus Size Settings
0	Indicates 16-bit bus
1	Indicates 8-bit bus

Dummy Space Previous Read Effective Bit (8 [bit 15] in Figure 3.25) A3PRD (W) <u>A-Bus CS3 Previous ReaD</u> bit

This bit decides whether the data previous read process of dummy space is effective or not. The data previous read process reduces the time from access start until data output. This is effective only for data that is stored in address that follows the accessed data. Other addresses do not change with normal addresses. A 1 shows it is effective, a 0 shows it is not effective. See Figure 3.26 for the result when previous read is effective.

After Pre-charge Insert Bit Dummy Space Write (9 [bit 14] in Figure 3.25)

A3WPC (W) <u>A</u>-Bus CS<u>3</u> after <u>Write Pre-Charge</u> insert bit

Non-process conditions of 1 clock can be inserted after writing data to dummy space. This is the bit that decides whether the process is effective or ineffective. A 1 shows it is effective, a 0 shows it is ineffective. This bit hasno effect on the operation after read. Figure 3.27 shows the operation when this bit has been set.

After Pre-charge Insert Bit Dummy Space Read (10 [bit 13] in Figure 3.25)

A3RPC (W) <u>A</u>-Bus CS<u>3</u> <u>R</u>ead <u>Pre-Charge</u> insert bit

Non-process conditions of 1 clock can be inserted after reading data to dummy space. This is the bit that decides whether the process is effective or ineffective. A 1 shows it is effective, a 0 shows it is ineffective. This bit does not affect the operation after write. Figure 3.28 shows the operation when this bit has been set.

Dummy Space External Wait Effective Bit (11 [bit 12] in Figure 3.25)

A3EWT (W) <u>A</u>-Bus CS<u>3</u> External <u>WaiT</u> effective bit

Wait can be entered by force by an external signal when accessing the dummy space via the A-Bus. Whether the process will be effective or not is decided by this bit. A 1 shows that the process is effective, a 0 shows that the process is ineffective. When the process is effective, wait will continue as long as the external signal is "Low." Figure 3.29 shows differences in timing charts for when external wait is effective vs. when it is ineffective.

Dummy Space Burst Cycle Wait Number Set Bit (12~15 [bit 11~8] in Figure 3.25) A3BW3-0 (W) <u>A</u>-Bus CS<u>3</u> <u>B</u>urst cycle <u>W</u>ait bit <u>3-0</u>

In dummy space, the wait number is set for 1 cycle while a burst access is performed. Table 3.20 shows the set values.

В	Bit	Wait Number		
A3BW2	A3BW1	A3BW0		
0	0	0	No wait (wait not sampled)	
0	0	1	1 cycle wait	
:	:	:		
1	1	0	14 cycle wait	
1	1	1	15 cycle wait	
	B	Bit	Bit	

Table 3.20 Dummy Space Burst Cycle Set Values

Dummy Space Normal Cycle Wait Number Bit (16~19 [bit 7~4] in Figure 3.25) A3NW3-0 (W) <u>A-Bus ĆS 3 Normal cycle Wait bit 3-0</u>

In the dummy space, the wait number is set for 1 cycle during normal accessing. Table 3.21 shows the set values.

Table 3.21	Dummy S	pace Normal	Cycle Set Values
------------	---------	-------------	------------------

	В	lit	Wait Number	
A3NW3	A3NW2	A3NW1	A3NW0	
0	0	0	0	No wait (wait not sampled)
0	0	0	1	1 cycle wait
:	:	:	:	
1	1	1	0	14 cycle wait
1	1	1	1	15 cycle wait

Dummy Space Burst Length Set Bit (20~21 [bit 3~2] in Figure 3.25) A3LN1-0 (W) <u>A</u>-Bus CS <u>3</u> burst <u>Le Ngth bit 1-0</u>

In the dummy space, the length (boundary) to be accessed is designated during burst access. Table 3.22 shows the length set values.

Table 3.22	Dummy Space B	urst Length Set Values
	Bit	Access Settings

		Access Settings	
A3LN1	A3LN0		
0	0	No burst access	
0	1	4 address burst access	
1	0	256 address burst access	
1	1	No boundary	

Dummy Space Bus Size Set Bit (22 [bit 0] in Figure 3.25) A3SZ (W) <u>A</u>-Bus CS<u>3</u> bus <u>SiZ</u>e bit Sets the A-Bus bus size in the dummy space. Table 3.23 shows the set values.

Table 3.23	Dummy	Space	Bus	Size	Set Values
	Danniy	opuoc	Duo	0120	

A3SZ	Bus Size Settings
0	Indicates 16 bit bus
1	Indicates 8 bit bus

A-Bus Refresh Register

Figure 3.30 shows the A-Bus refresh register.

b31	b24 b23	b16 b15	b8 b7	b0
25FE00B8 — — — —			1	2 3 4 5

Figure 3.30 A-Bus Refresh Register (Register: AREF) Initial Value 00000000H

A-Bus Refresh Output Effective Bit (1 [bit 4] in Figure 3.30)

ARFEN (W) <u>A</u>-Bus <u>ReF</u>resh <u>EN</u>able bit

Makes effective the refresh cycle output of A-Bus. A 1 indicates it is effective, a 0 indicates it is not effective.

15 cycle wait

A-Bus Refresh Wait Number Set Bit (2~5 [bit 3~0] in Figure 3.30)

ARWT3-0 (W) <u>A</u>-Bus <u>R</u>efresh <u>WaiT</u> bit <u>3-0</u>

Sets the A-Bus refresh cycle wait number. Table 3.24 shows the details.

Table 3.24	A-Bus Refr	esh Wait Nu	umber	
Bit				Wait Number
ARWT3	ARWT2	ARWT1	ARWT0	
0	0	0	0	No wait
0	0	0	1	1 cycle wait
:	:	•••		
1	1	1	0	14 cycle wait

1

Table 3.24 A-Bus Refresh Wait Number

1

3.7 SCU Control Registers

SCU SDRAM Select Register

The SCU has a register that designates the SDRAM configuration. The SDRAM select register is shown in Figure 3.31. This register is at address 25FE00C4H within the SCU.

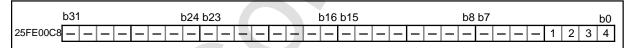

b31	b24 b23	b16 b15	b8 b7	b0
25FE00C4				

Figure 3.31 SCU SDRAM Select Bit (Register: RSEL) Initial Value 00000000H

SD-RAM Select Bit (1 [bit 0] in Figure 3.31) RSEL (R/W) <u>RAM SEL</u>ect bit RSEL=0 indicates 2 Mbit X 2 RSEL=1 indicates 4 Mbit X 2

SCU Version Register

SCU has a register showing the chip version. This register is at the address 25FE00C8H within the SCU. The version register is shown in Figure 3.32.

Figure 3.32 SCU Version Register (Register: VER) Initial Value 00000000H

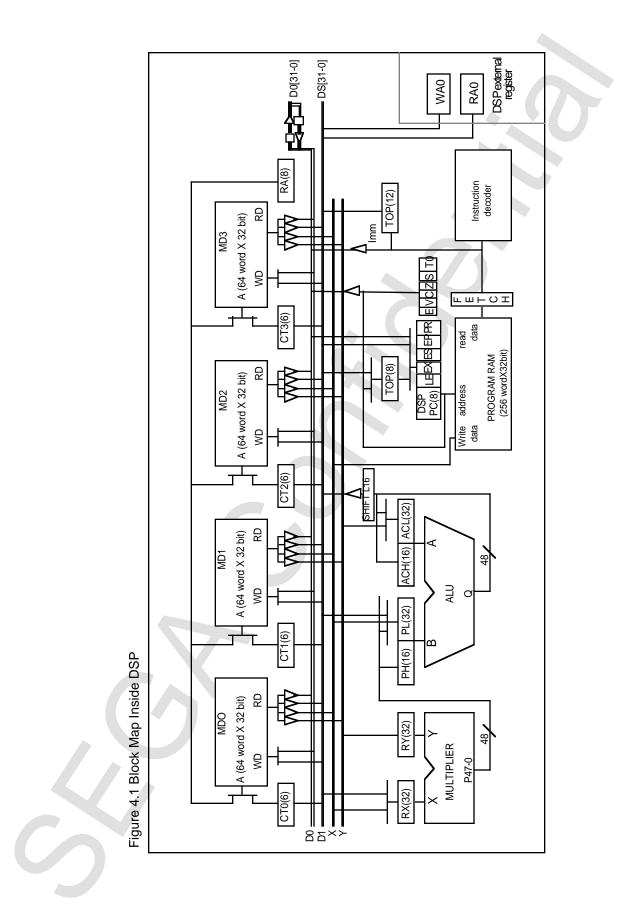
Version Number (1~4 [bit 3~0] in Figure 3.32)

VER 3-0 (R) <u>VER</u>sion number bit <u>3~0</u>

Shows the SCU chip version. Because there are 4 bits, this supports version 0~15 chips.

(This page is blank in the original Japanese document.)

CHAPTER 4 DSP CONTROL


Chapter 4 Contents

4.1	DSP Internal BLOCK MAP76
4.2	List of Commands80
4.3	Operand Execution Methods85
	Jump Command Execution85
	Loop Program Execution
	DMA Command Execution87
	End Command Execution
4.4	Special Process Execution
	Loading a Program by the DMA Command89
	Repeating One Command89
	Executing a SubRoutine Program90
4.5	More About Commands91
	Operation Commands91
	Load Immediate Command120
	DMA Command132
	Jump Commands141
	Loop Bottom Commands153
	END Command156

4.1 DSP Internal BLOCK MAP

Figure 4.1 (on the next page) is an internal block map of the DSP.

- ALU This arithmetic unit is able to output up to 48 bits. Normal calculations are executed at 32 bits. Only product sum operations become 48-bit operations.
- MULTIPLIER

This multiplier outputs a low-order 48 bit from among the 64 bit results obtained by 32 bit X 32 bit. The calculation results are in 48 bit data; the high-order 16 bit is stored in PH and the low order 32 bit is stored in PL (see below).

- TOP (W) This is an 8 bit register that stores the lead address. The jump command and subroutine execution process store the lead address in this register and execute the process.
- LOP (W) This is a 12 bit register that stores the loop counter. The number of loops is set by the process of repeating 1 command.
- CT0-3 (W) This is a 6 bit register that stores the access address of data RAM0-3.
- MDO-3 (R/W) This is a 32 bit unit data port that stores the data of data RAM0-3. There are 64 data ports in each data RAM.
- RA (W) This is the address that stores the register for accessing the data RAM. This register is 8 bit. The RAM designation number (0-3) is stored by a high-order 2 bit. The RAM access address is stored by a low-order 6 bit.
- RX (W) This is the 32 bit X-bus connection register that stores the multiplier input data.
- RY (W) This is the 32 bit Y-bus connection register that stores the multiplier input data.
- PH (W) This register stores the high-order 16 bit within the 48 bit multiplier output data. There is also an input data storage register that stores the high-order 16 bit within ALU arithmetic unit input data B (48bit).
- PL (W) This register stores the low-order 32 bit within the 48 bit of multiplier output data. There is also an input data storage register that stores the low-order 32 bit within ALU arithmetic unit input data B (48bit).

- ACH (W) This register stores the high-order 16 bit within 48 bit data showing the ALU calulation results. There is also an imput data storage register that stores the high-order 16 bit within ALU arithmetic unit input data A(48bit).
- ACL (W) This register stores the low-order 32 bit within the 48 bit data showing the ALU calulation results. There is also an imput data storage register that stores the low-order 32 bit within ALU arithmetic unit input data A(48bit).
- D0 Bus This is a 32 bit data bus for external access. It operates at 28 MHz. It is used in accessing the main CPU.
- X-Bus, Y-Bus This is a 32 bit data bus for aquiring arithmetic unit input data. It operates at 14 MHz.
- RAO (W) This is a 32 bit external address register used in external → DSP DMA transfer. Since it takes a 4 byte unit value, the external address should be shifted right 2 bits.
- WAO (W) This is a 32 bit external address register used in DSP → external DMA transfer. Since it takes a 4 byte unit value, the external address should be shifted right 2 bits.

4.2 List of Commands

уре	Command	Overview of Operation
ation Comma	nds	
ALU Contro	NOP	No operation
	AND	Takes the AND operation of [ACL] and [PL].
	OR	Takes the OR operation of [ACL] and [PL].
	XOR	Takes the exclusive OR of [ACL] and [PL].
	ADD	Adds [ACL] and [PL].
	SUB	Subtracts [PL] from [ACL].
	AD2	Adds [ACH][ACL] and [PH][PL].
	SR	Shifts [ACL] right 1 bit, stores LSB in carry flag
	RR	Rotates [ACL] right 1 bit, stores LSB in carry flag
	SL	Shifts [ACL] left 1 bit, stores 0 in LSB of [ACL], stores MSB in carry flag.
	RL	Rotates [ACL] left 1 bit, stores MSB in carry flag.
	RL8	Rotates [ACL] left 8 bits, stores b24 in carry flag.
X-Bus Cont	rol NOP	No operation
	MOV [s], X	Transfers data from data RAM to [RX]
	MOV MUL, P	[MULTIPLIER] data is transfered to [PH] [PL]
	MOV [s], P	Transfers data from data RAM to [PL]
Y-Bus Cont	rol NOP	No operation
	MOV [s], Y	Transfers data from data RAM to [RY]
	CLR A	Clears to 0 [ACH] and [ACL]
	MOV ALU, A	Transfers [ALU] data to [ACH][ACL]
	MOV [s], A	Transfers data from data RAM to [ACL]
D1-Bus Con	trol NOP	No operation
	MOV SImm, [d]	SImm (short immediate) data is stored in a register or a data RAM designated by [d].
	MOV [s], [d]	Data is transfered to the RAM designated by [s] or data RAM designated by [d] from the register.
ad Immediate Comman		Stores Imm (immediate) data in register or in data RAM designated by [d]
	MVI Imm,[d],Z	(immediate) data is stored in register or in data RAM designated by [d]
	MVI Imm , [d] , N	When Z (zero flag) of the program control port is 0, Imm (immediate) data is stored in register or in data RAM designated by [d]

Table 4.1 List of Commands (1)

Туре	Command	Overview of Operation
Load Immediate commands	MVI Imm , [d] , S	When S (sine flag) of the program control port is 1, Imm (immediate) data is stored in register or in data RAM designated by [d]
	MVI Imm , [d] , NS	When S (sine flag) of the program control port is 0, Imm (immediate) data is stored in register or in data RAM designated by [d]
	MVI Imm , [d] , C	When C (carry flag) of the program control port is 1, Imm (immediate) data is stored in register or in data RAM designated by [d]
	MVI Imm , [d] , NC	When C (carry flag) of the program control port is 0, Imm (immediate) data is stored in register or in data RAM designated by [d]
	MVI Imm , [d] , T0	When T0 (flag while executing D0 bus DMA) of the program control port is 1, Imm (immediate) data is stored in register of in data RAM designated by [d]
	MVI Imm,[d],NT(When T0 (flag while executing D0 bus DMA) of the program control port is 0, Imm (immediate) data is stored in register of in data RAM designated by [d]
	MVI Imm , [d] , ZS	When either S (sine flag) or Z (zero flag) of the program control port is 1, Imm (immediate) data is stored in register of in data RAM designated by [d]
	MVI Imm , [d] , NZ	SWhen both S (sine flag) and Z (zero flag) of the program control port are 0, Imm (immediate) data is stored in register or in data RAM designated by [d]
DMA Commands	DMA D0, [RAM], SImm	SImm (short immediate) data is set in the transfer word number counter ([TN0]) as the transfer counter, and transfers data to the RAM area designated by [RAM] from outside using D0-Bus. Transfer begin address ([RA0]) and transfer word number counter ([TN0]) are updated to the value when transfer ends.
	DMA [RAM], D0, SImm	SImm (short immediate) data is set in the transfer word number counter ([TN0]) as the transfer counter, and transfers data from the RAM area designated by [RAM] using D0-Bus to the outside. Transfer begin address ([WA0]) and transfer word number counter ([TN0]) are updated to the value when transfer ends.

Table 4.2 List of Commands (2)

Тур	e	Command	Overview of Operation
DMA C	ommands	DMA D0, [RAM], [s]	Sets data within the data RAM designated by [s] as the transfer counter to the transfer word number counter ([TN0]), and transfers data to the RAM area designated by [RAM] from outside using D0-Bus. Transfer begin address ([RA0]) and transfer word number counter ([TN0]) are updated to the value when transfer ends.
		DMA [RAM], D0, [s]	Sets data within the data RAM designated by [s] as the transfer counter to the transfer word number counter ([TN0]), and transfers data to the outside from the RAM area designated by [RAM] using D0-Bus. Transfer begin address ([WA0]) and transfer word number counter ([TN0]) are updated to the value at the time that transfer ends.
		DMAH D0, [RAM], SImm	SImm (short immediate) data is set in the transfer word number counter ([TN0]) as the transfer counter, and transfers data to the RAM area designated by [RAM] from outside using D0-Bus. Transfer begin address ([RA0]) and transfer word number counter ([TN0]) keep the value when transfer begins.
		DMAH [RAM], D0, SImm	SImm (short immediate) data is set as the transfer counter in the transfer word number counter ([TN0]), and transfers data from the RAM area designated by [RAM] to the outside using D0-Bus. Transfer begin address ([WA0]) and transfer word number counter ([TN0]) keep the value at the time that transfer ends.
		DMAH D0, [RAM], [s]	Sets data within the data RAM designated by [s] as the transfer counter to the transfer word number counter ([TN0]), and transfers data to the RAM area designated by [RAM] from outside using D0-Bus. Transfer begin address ([RA0]) and transfer word number counter ([TN0]) keep the value at the time that transfer begins.
		DMAH [RAM], D0, [s]	Sets data within the data RAM designated by [s] as the transfer counter to the transfer word number counter ([TN0]), and transfers data to the outside from the RAM area designated by [RAM] using D0-Bus. Transfer begin address ([WA0]) and transfer word number counter ([TN0]) keep the value at the time that transfer begins.
JUMP	Commands	JMP Imm	Moves to the address shown by Imm (immediate)
		JMP Z, Imm	Moves to the address shown by Imm (immediate) when the Z (zero flag) of the program control port is 1.
		JMP NZ, Imm	Moves to the address shown by Imm (immediate) when the Z (zero flag) of the program control port is 0.

Table 4.3 List of Commands (3)

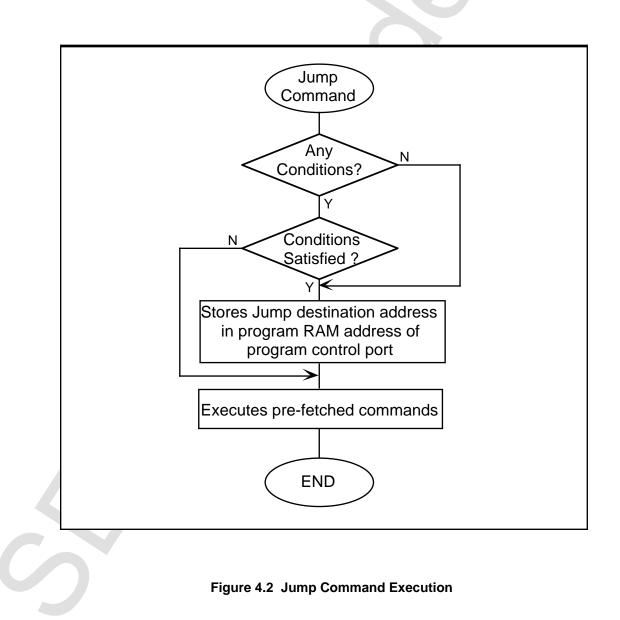
Туре	Command	Overview of Processing
JUMP Commands	s JMP S, Imm	When S (sine flag) of the program control port is 1, moves to address displayed by Imm (immediate)
	JMP NS, Imm	When S (sine flag) of the program control port is 0, moves to address displayed by Imm (immediate)
	JMP C, Imm	When C (carry flag) of the program control port is 1, moves to address displayed by Imm (immediate)
	JMP NC, Imm	When C (carry flag) of the program control port is 0, moves to address displayed by Imm (immediate)
	JMP T0, Imm	When T0 (flag while executing D0 Bus DMA) of the program control port is 1, moves to address displayed by Imm (immediate)
	JMP NT0, Imm	When T0 (flag while executing D0 Bus DMA) of the program control port is 0, moves to address displayed by Imm (immediate)
	JMP ZS, Imm	When either Z (zero flag) or S (sine flag) of the program control port is 1, moves to address displayed by Imm (immediate)
	JMP NZS, Imm	When either Z (zero flag) or S (sine flag) of the program control port is 0, moves to address displayed by Imm (immediate)
LOOP BOTTOM Commands	ВТМ	When loop counter ([LOP]) is any number but 0, the top addres register ([TOP]) is stored in the program counter and the loop counter ([LOP]) is decremented. No operation is done when 0.
	LPS	When loop counter ([LOP]) is any number but 0, the program counter stops, the next command is executed, loop counter ([LOP]) is decremented. This is repeated until the loop counter is 0.
END Commands	END	Program stops and EX (program execute control flag) of the program control port is reset.
	ENDI	Program stops and EX (program execute control flag) of the program control port is reset, and E (program end interrupt flag) is set.

Table 4.4 List of Commands (4)

• Description of Constants Follow the notation in Table 4.5.

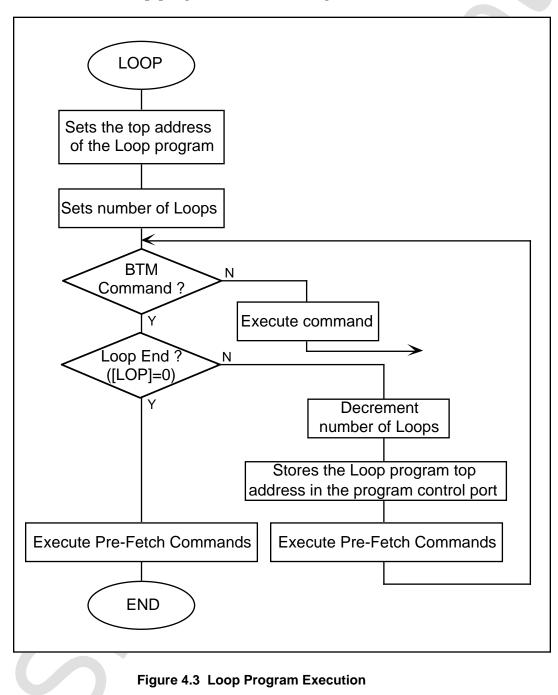
Table 4.5 Descriptions of Constants

Notation	Description	Example
Binary	Place a "%" before numbers	%0010, %1111
Digital	Place nothing before nor after numbers	2, 10, 16, 32
Hexadecimal	Place a "\$" before numbers	\$05, \$0A, \$FF



4.3 Operand Execution Method

DSP controls and executes registers as shown for the following commands.


Jump Command Execution

Jump command execution is attained by storing the jump destination address (Immediate Data) in the program RAM address of the program control port. But you should be aware that commands that are pre-fetched will be executed. The conditional JUMP command examines the condition of the program control port flag, and then, if the conditions are met, stores the jump destination address in the program RAM address of the program control port. See the section on Jump commands under 4.5 "*Commands*" for the command format. Figure 4.2 is a flowchart of the Jump command execution.

Loop Program Execution

Execution of programs between the address designated by the top address register ([TOP]) and the BTM command of the DSP (see Loop Bottom command under 4.5 "*Command*") are repeated only the number of times indicated by the loop counter. Thus, in order to realize this process, it must be executed after setting values in the top address register and loop counter. Values can be set by the DSP load immediate command (see section on Load Immediate Command under 4.5 "*Command*"). Execution flow of the Loop program is shown in Figure 4.3.

DMA Command Execution

This sets the DMA controller register from the DSP and explains the actual process of DMA transfer. The DMA command is divided into the two types, shown below, depending on the transfer direction (read / write).

- 1) Data transfer from the D0-Bus to the DSP.
- 2) Data transfer from the DSP to the D0-Bus.
- Data transfer from D0-Bus to DSP DSP data RAM transfer begin address and external memory transfer begin address are set in registers ([CT0-3] and [RA0]), and transfer is begun by the DMA command. The command formats up to the DMA command are shown below. See 4.5 "Commands" for more information.

MOV	SImm, [CT0]	; Sets DSP data RAM0 transfer begin address
MVI	Imm , [RA0]	; Sets external memory transfer begin address
DMA	D0 , [MD0] , SImm	; Begins DMA transfer using the D0 Bus

Table 4.6 is a collection of the features of DMA transfer. Because DMA transfer is executed by 1 long word units, setting of the transfer word number (SImm of the DMA command mentioned above) must be done in long word units.

Item	Feature
Flag Set	T0 flag of the program control port is set
Start and End	Follows the data ready signal from outside. Transfer is done by this signal in long word units. DMA transfer is ended by the end signal from outside, and the program control port T0 flag is reset by this timing.
Address Update	Each time 1 long word is transfered, 1 is added to the DSP data RAM transfer address ([CT0-3]), and the external memory transfer address ([RA0]) is added according to the address add number.
Hold Status	If the DMA command Hold bit (see item 4.5 "Commands" DMA command section) is set to 1, the transfer word number ([TN0]) and external memory transfer address ([RA0]) keep the transfer begin values.

Table 4.6 Features of Data Transfer from D0 Bus to DSP

• Data transfer from DSP to D0-Bus

The DSP data RAM transfer begin address and external memory begin address are set in registers ([CT0-3]) and (WA0]), and transfer is begun by the DMA command. The command formats up to the DMA command are shown below. See item 4.5 for more information.

MOV	SImm , [CT0]	; Sets DSP data RAM0 transfer begin address
MVI	Imm , [WA0]	; Sets external memory transfer begin address
DMA	[MD0] , D0, SImm	; Begins DMA transfer using the D0 Bus

Table 4.7 is a collection of the features of DMA transfer. Because DMA transfer is executed in single long word units, setting of the transfer word number (SImm of the DMA command mentioned above) must be done in long word units.

 Table 4.7 Features of Data Transfer from DSP to D0 Bus

ltem	Feature
Flag Set	T0 flag of the program control part is set
Start and End	Obeys the data ready signal from outside. Transfer is done by this signal in 1 long word units. DMA transfer is ended by the end signal from outside, and the program control port T0 flag is reset by this timing.
Address Change	Each time 1 long word is transfered, 1 is added to the DSP data RAV transfer address ([CT0-3]), and the external memory transfer address ([WA0]) is added according to the address add number.
Hold Status	If the DMA command Hold bit (see item 4.5 "Commands" DMA command section) is set to 1, the transfer word number ([TN0]) and external memory transfer address ([WA0]) keep the transfer begin values.

END Command Execution

When the END command is recognized, the program control port program RAM address add process is stopped and the program execution control bit (EX flag) is reset. Execution of the DSP program is stopped accordingly. But data transfer by the DMA command continues ignoring this END command until the transfer is completed. The value of the program address when the program termintes stops at the address that follows the address stored in END command.

4.4 Special Process Execution

DSP can execute the following special processes.

- 1) Loading a Program by the DMA command
- 2) Repeating One Command
- 3) Execution of subroutine program

Loading a Program by the DMA command

Loading from the CPU was explained earlier as one method of loading a program (see section 2.3), but a program can be loaded in the DSP program RAM by using the DSP DMA command as well. Loading a program is done in the following formats.

MVI	Imm , [RA0]	; Sets external memory transfer begin address
DMA	D0 , [PRG], SImm	; Sets transfer word number, begins transfer
MVI	Imm , [PC] , SImm	; Sets program execution start address

Repeating One Command

The format for repeating 1 command is shown below. The 1 command repeat execution command (see LPS command in section 4.5 *"Command"* under the part on Loop Bottom) repeat the following commands. The repeat number executes one time more than the set value.

MVI	Imm , [LOP]	; Sets number of repetitions
LPS		; Repeat execution comand
###		; This command is repeatedly executed

Executing a SubRoutine Program

There are no special commands (mnemonic) in the DSP program for executing subroutines. By combining the Load Immediate command to the [PC] with the Loop Bottom command, subroutines are created in the form shown in Figure 4.4.

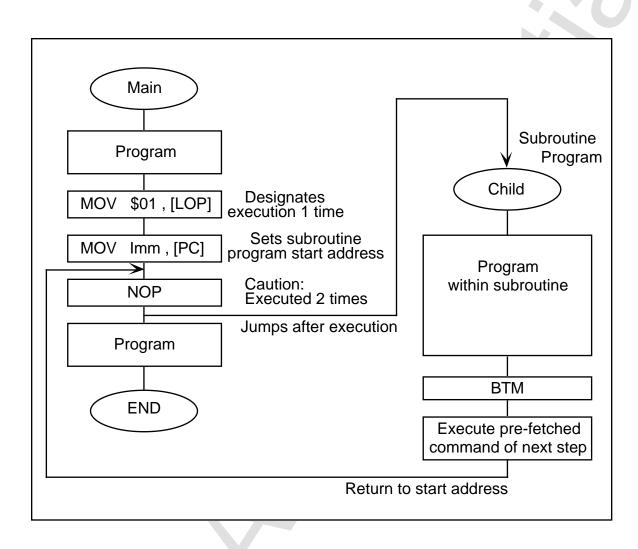


Figure 4.4 Subroutine Program Execution

4.5 More About Commands

Operation Commands

Operation commands use each X, Y, and D1 bus as well as an arithmetic logic unit (ALU). Operation commands can be classified into the following four control types.

- 1) ALU control command
- 2) X-Bus control command
- 3) Y-Bus control command
- 4) D1-Bus control command

The operation command format is as shown in Figure 4.5.

31	30	29	9		26	25	25 20								19 14 13)	
0	0	A	T LU	U Control X-Bus Contro					l ol	Y-Bus Control					D1-Bus Control									I	I										
			1	1	1		1	1	1		I	I		L	1	I		Τ.	Ļ	_	-	-			1	1	L	-	1			L	1	1	

Figure 4.5 Operation Command Format

Operation commands can execute these four types of commands concurrently. Mnemonics should list the ALU control command to the far left. Other required commands should be listed and separated by a space or tab.

• ALU Control Command ALU control commands operate using the ALU. The following pages show more about ALU control commands.

NOP		ALU No Operation
Operation Description	No ALU command pro	cess
Label	NOP	
Instruction Code		
Flag	No change	
Comments		
6		

AND		AND Operation	
Operation Description	Takes the AND operation	of [ACL] and [PL] logical product.	
Label	AND		
Instruction Code			
Flag	S; 1 when operation r Z; 1 when operation r C; is 0.	esult is negative, otherwise it is 0. esult is 0, otherwise it is 0.	
Comments	9		
6			

	OR		OR Operation
	Operation Description	Takes the OR operation o	f [ACL] and [PL] logical sum.
	Label	OR	
	Instruction Code		
	Flag	S; 1 when operation r Z; 1 when operation r C; is 0.	result is negative, otherwise it is 0. esult is 0, otherwise it is 0.
	Comments		
C			

XOR		Exclusive OR Operation	
Operation Description	Takes the exclusive OR o	operation of [ACL] and [PL].	
Label	XOR		
Instruction Code			
Flag	S ; 1 when operation Z ; 1 when operation C ; this is 0.	result is negative, otherwise it is 0. result is 0, otherwise it is 0.	
Comments			

	ADD		Addition
	Operation Description	ADDS [ACL] and [PL].	
	Label	ADD	
	Instruction Code	b31 26	
	Flag	Z: 1 when operation r	result is negative, otherwise it is 0. esult is 0, otherwise it is 0. rs as a result of the operation, otherwise it is 0. rerflow (exceeds 48 bits)opeation result,
	Comments		
C			

SUB	Subtraction
Operation Description	Subtracts [PL] from [ACL].
Label	SUB
Instruction Code	
Flag	 S; 1 when operation result is negative, otherwise it is 0. Z; 1 when operation result is 0, otherwise it is 0. C; 1 when carry occurs as a result of the operation, otherwise it is 0. V; 1 when there is underflow in the opeation result,otherwise it is 0.
Comments	
6	

AD2		Addition
Operation Description	Adds [ACH][ACL] and [PH	I][PL].
Label	AD2	
Instruction Code		
Flag	S; 1 when operation Z; 1 when operation r C; 1 when carry occu V; 1 when there is ov otherwise it is 0.	result is negative, otherwise it is 0. result is 0, otherwise it is 0. rs as a result of the operation, otherwise it is 0 rerflow (exceeds 48 bits)operation result,
Comments		

SR	Right Shift 1 Bit
Operation Description	Shifts the value of [ACL] right 1 bit, and the value of bit 0 is stored in C flag.
	MSB LSB b31 b30 b29 b2 b1 b0 C
Label	SR
Instruction Code	b31 26 0 001000
Flag	 S; 1 when operation result MSB is 1,0 when 0. Z; 1 when operation result is 0, otherwise it is 0. C; 1 when the value of b0 of input data is 1, 0 when 0. ACL; Shifts 1 bit to the right, most significant bit (b31) does not change
Comments	

RR	Right Rotate 1 Bit
Operation Description	Rotates the [ACL] value right 1 bit. MSB LSB b31 b30 b29 b0 C
Label	RR
Instruction Code	
Flag	 S; 1 when operation result MSB is 1,0 when 0. Z; 1 when operation result is 0, otherwise it is 0. C; 1 when the value of b0 of input data is 1, 0 when 0. ACL; Shifts 1 bit to the right, least significant bit (b0) moves to the m significant bit (b31).
Comments	

SL	Left Shift 1 Bit	
Operation Description	Shifts the [ACL] value left 1 bit. MSB LSB b31 b30 b29 0 C	6
Label	SL	
Instruction Code		
Flag	S; 1 when operation result MSB is 1,0 when 0. Z; 1 when operation result is 0, otherwise it is 0. C; 1 when the value of b31 of input data is 1, 0 when 0. ACL; Shifts 1 bit to the left; least significant bit (b0) is 0.	
Comments		
5		

RL		Left Rotate 1 Bit
Operation Description	Rotates the [ACL] value le	LSB
Label	RL	
Instruction Code		
	b31 26	
Flag	S; 1 when operation res Z; 1 when operation res C; 1 when the value of ACL; Shifts 1 bit to the significant bit (b0	ult is 0, otherwise it is 0. b31of input data is 1, 0 when 0. left, most significant bit (b31) moves to the I
Comments		

RL8	Left Rotate 8 Bits	
Operation Description	Rotates the [ACL] value left 8 bits.	0
Label	RL8	
Instruction Code		
Flag	S; 1 when operation result MSB is 1,0 when 0. Z; 1 when operation result is 0, other wise 0. C; 1 when the value of b24of input data is 1, 0 when 0. ACL; Rotates 8bits to the left.	
Comments		
6		

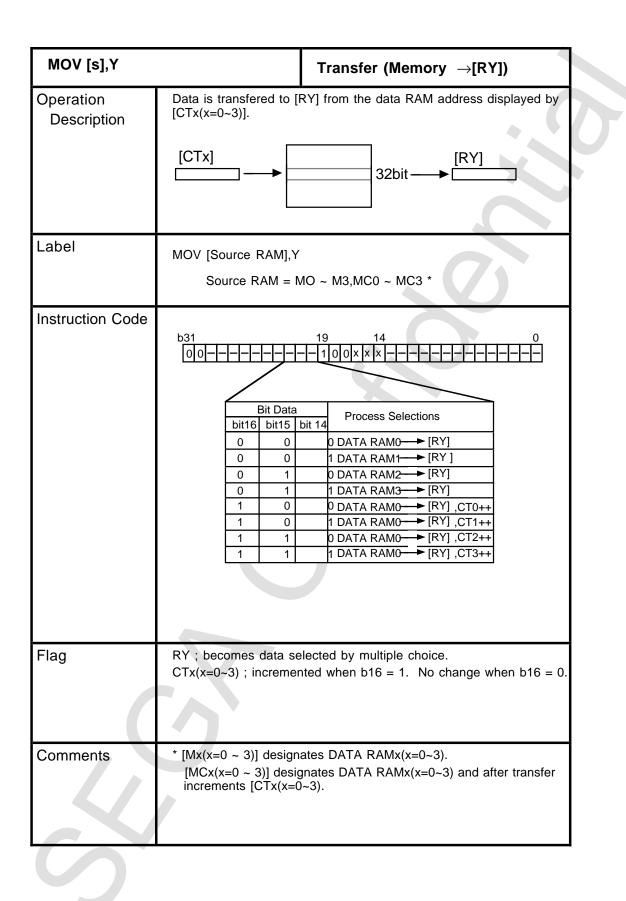
• X-Bus Control Commands

X-Bus control commands transfer data using the X-Bus to the RX register and PH, PL registers. The following pages show more about X-Bus control commands.

NOP		X-Bus No Operation	
Operation Description	No X-Bus control proc	ess	5
Label	NOP		
Instruction Code			
Flag	No change		
Comments			
5			

Description $[CTx(x=0-3)].$ Image: CTx] Image: CTx] Image: CTx] Image: CTx]<	MOV [s],X	Transfer (Memory \rightarrow [RX])
MOV [Source RAM] = MO ~ M3 *,MC0 ~ MC3 * Instruction Code $b31$ 25 20 000 001 001 $bit 22$ $bit 21$ $bit 20$ $bit 22$ $bit 21$ $bit 20$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1	-	[CTx] [RX]
Flag $ \begin{array}{c} & RX ; becomes data selected by multiple choice. \\ CTx(x=0 ~ 3) ; incremented as long as b22 = 1. No change when 0. \\ \hline \\ & Mx(x=0 ~ 3)] designates DATA RAMx(x=0-3). \\ & Mx(x=0 ~ 3)] designates DATA RAMx(x=0-3). \\ & Mx(x=0 ~ 3)] designates DATA RAMx(x=0-3) and after transformation of the selected of the $	Label	
CTx(x=0 ~ 3) ; incremented as long as b22 = 1. No change when 0. Comments * [Mx(x=0 ~ 3)] designates DATA RAMx(x=0~3). [MCx(x=0 ~ 3)] designates DATA RAMx(x=0~3) and after transfer	Instruction Code	$0 0 1 0 0 \times \times \times$
[MCx(x=0 \sim 3)] designates DATA RAMx(x=0 \sim 3) and after transfe	Flag	$CTx(x=0 \sim 3)$; incremented as long as b22 = 1. No change when b
	Comments	[MCx(x=0 ~ 3)] designates DATA RAMx(x=0~3) and after transfer

The high order 16 bit of the MULTIPLIER data 48 bit is transfered to [PH], and the low order 32 bit is transferred to [PL]
MULTIPLIER
16bit 32bit
[PH] [PL]
MOV MUL,P
b31 25 20 0 00010
PH; becomes MULTIPLIER high order 16 bit data PL; becomes the MULTIPLIER low order 32 bit data



MOV [s],P	Transfer (Memory \rightarrow [PL])
Operation Description	Data is transfered to [PL] from the data RAM address displayed by $[CTx(x=0~3)]$. The value of [PH] is changed by the [PL] sign extension.
	[CTx] [PL] 32bit -> [PL]
Label	MOV [Source RAM],P Source RAM = MO ~ M3,MC0 ~ MC3 *
Instruction Code	b1 25 20 0 0 0 1
Flag	PL ; becomes data selected by multiple choice. PH ; changed by [PL] sign extension. CTx(x=0~3) ; incremented when b22 = 1. No change when b22 = 0
Comments	 * [Mx(x=0 ~ 3)] designates DATA RAMx(x=0~3). [MCx(x=0 ~ 3)] designates DATA RAMx(x=0~3) and after transfer increments [CTx(x=0~3).

• Y-Bus Control Commands Y-Bus control commands transfer data using the Y-Bus to the RY register and ACH, ACL registers. The following pages shows more about Y-Bus control commands.

NOP		Y-Bus No Operation
Operation Description	No Y-Bus control proce	ess
Label	NOP	
Instruction Code	b31	
Flag	No change	
Comments		

CLR A		0 Clear
Operation Description	0 clears the [ACH] and	I [ACL] values.
Label	CLR A	
Instruction Code	b31	
Flag	ACH ; becomes 0 ACL ; becomes 0	
Comments		

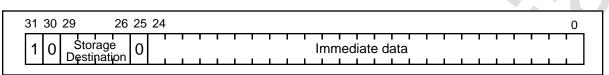
I	
Operation Description	Transfers the value of the [ALU] high order 16 bit to [ACH] and the value of the [ALU] low order 32 bit to [ACL].
	ALU
	16bit 32bit
Label	MOV ALU,A
Instruction Code	
Instruction Code	b31 19 14 0 00
Flag	ACH; becomes ALU high order 16 bit data ACL; becomes ALU low order 32 bit data
Comments	

MOV [s],A	Transfer (Memory \rightarrow [ACL])
Operation Description	Data is transfered to [ACL] from the data RAM address displayed by [CTx(x=0~3)]. The value of [ACH] is changed by the sign extension [ACL].
Label	MOV [Source RAM],A Source RAM = MO ~ M3,MC0 ~ MC3 *
Instruction Code	b31 19 14 0 0 0 0 1 1 x x x 0 1 1 x x x 0 1 1 x x x
Flag	ACL ; becomes data selected by multiple choice. ACH ; is changed by the sign extension of [ACL] CTx(x=0~3) ; incremented when b16 = 1. No change when b16 = 0
Comments	 * [Mx(x=0 ~ 3)] designates DATA RAMx(x=0~3). [MCx(x=0 ~ 3)] designates DATA RAMx(x=0~3) and after transfer increments [CTx(x=0~3).

• D1-Bus Control Commands

D1-Bus control commands control the exchange of data between memory connected to the D1-Bus. The following pages shows more about D1-Bus control commands.

NOP		D1-Bus No Operation
Operation Description	No D1-Bus control pro	cess
Label	NOP	
Instruction Code	b31	
Flag	No change	
Comments		


MOV SImm,[d]		→[destiı	nation])										
Operation Description	SImm data is transfered to the RAM or register designated by [destination]. SImm data is signed 8 bit data.												
	Short Immediate Data \longrightarrow [destination] D31 - 7 \leftarrow b7 D6-0 \leftarrow b6-0												
Label	MOV SIr	-			-	,RX,PL,RA0,W							
	Destin	alion	I — IVI	CU ~	NC3	, NA, FL, NAU, W	AU,LOF, IV	JF,010 ~ 01					
Instruction Code	b31	- - -	- - -		- - -	13 E							
	SImm Data												
	Bit Data												
	b	it11	bit10		bit 8	[d] Selection	s						
		0	0	0	0	DATA RAM0	,CT0++						
		0	0	0	1	DATA RAM1							
		0	0	1	0	DATA RAM2							
		0	0	1	1	DATA RAM3	,CT3++						
		0	1	0	0	[RX] [PL]							
		0	1	1	0	[RA0]							
		0	1	1	1	[WA0]							
		1	0	0	0	unused							
		1	0	0	1	unused							
		1	0	1	0	[LOP]							
		1	0	1	1	[TOP]							
		1	1	0	0	[CT0]							
		1	1	0	1 0	[CT1]							
		1	1	1	1	[CT2] [CT3]							
Flag	Area sel	lected	d by			; becomes Im	m data						
Comments	* [MCx(x: increme					ATA RAMx(x=0)~3) and, a	after transfer,					

MOV [s],[d]	Transfer ([source]→[destination])											
Operation Description Label	RAM data or register data designated by [source] is transfered to t RAM or register designated by [destination]. MOV [Source], [Destination] Source = M0 ~ M3 *,MC0 ~ MC3 *,ALH,ALL											
	Destination = MC0 ~ MC3,RX,PL,RA0,WA0,LOP,TOP,CT0 ~ C1											
Instruction Code	b31 13 8 3 0 00xxxx											
	Bit Data [d] Selections bit11 bit 9 bit 8 [d] Selections 0 0 0 0 DATA RAM0,CT0++ 0 0 1 DATA RAM1,CT1++ 0 0 1 DATA RAM2,CT2++ 0 0 1 DATA RAM3,CT3++ 0 1 0 [RX] 0 1 0 [RA0] 0 1 0 [RA0] 0 1 1 DATA RAM3,CT3++ 0 1 0 IARAM3,CT3++ 0 1 0 IARAM3,CT3++ 0 1 0 DATA RAM3,CT3++ 0 1 0 DATA RAM3,CT3++ 0 1 1 DATA RAM3,CT3++ 0 1 0 DATA RAM3,CT3++ 1 0 0 IARAM3,CT3++ 1 0 0 IARAM3,CT3++ 1 0 0 IARAM3,CT3++											
Flag	Area selected by [d] selection is data of an area selected by [s] sele											
Comments	 * [Mx(x=0 ~ 3)] designates DATA RAM x(x=0~3) [MCx(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transfer increments [CTx(x=0~3). 											

Load Immediate Command

The load immediate command transfers immediate data to the storage destination. Unconditional transfer follows the format in Figure 4.6. Conditional transfer follows the format in Figure 4.7. Details are on the following pages.

Figure 4.6 Load Immediate Command Format 1 (Unconditional Transfer)

31 30 29 2	6 25	24			19	18															C)
1 0 Storage Destination	<mark>،</mark> 1	, , ,	Stat	us I	1		1	1	1	1	mm	ned	liate	e da	ata	1	1	T	1	1	1	

Figure 4.7 Load Immediate Command Format 2 (Conditional Transfer)

	Unconditional Transfer (Imm \rightarrow [destination])
Operation Description	Imm data is unconditional and is transfered to the RAM or register designated by [destination]. Imm data is signed 25 bit data.
Label	MVI Imm,[Destination] Destination = MC0 ~ MC3 *,RX,PL,RA0,WA0,LOP,PC
Instruction Code	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Flag	Area selected by [d] multiple choice ; becomes Imm data * [MCx(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transference

MVI Imm,[d]Z	Conditional Transfer (Z=1 then Imm \rightarrow [destination])
Operation Description	When the Z flag is 1, Imm data is transfered to the RAM or register designated by [destination]. Imm data is signed 19 bit data. Can be used as execution of the subroutine program (see instruction code**) by sending Imm data (subtroutine begin dress) to the PC and saving the PC (jump address after subroutine ends) value to TOP. Be aware that the address next after this command will be executed twice once before the subroutine and once after.
Label	MVI Imm,[Destination],Z Destination RAM = MC0 ~ MC3 *,RX,PL,RA0,WA0,LOP,PC
Instruction Code	b31 18 0 I $0 \times \times \times \times 11000011$ Imm Data Bit Data 0 Data 0 0 0 DATA RAM0 ,CT0++ 0 0 0 1 DATA RAM1 ,CT1++ 0 0 1 0 DATA RAM2 ,CT2++ 0 0 1 1 DATA RAM3 ,CT3++ 0 1 0 0 [RX] 0 1 0 1 [PL] 0 1 1 0 [RA0] 0 1 1 1 0 [RA0] 0 1 1 1 1 [WA0] 1 0 0 0 1 unused 1 0 0 1 1 unused 1 0 0 1 1 unused 1 1 0 1 unused 1 1 0 1 unused 1 1 0 1 unused 1 1 1 1 unused 1 1 1 1 unused
Flag	Area selected by [d] selection ; becomes Imm data
Comments	* [MCx(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transfer, increments [CTx(x=0~3).

MVI =lmm,[d]N2	
Operation Description	When the Z flag is 0, Imm data is transfered to the RAM or register designated by [destination]. Imm data is signed 19 bit data. Can be used as execution of the subroutine program (see instructin code**) by sending Imm data (subtroutine begin dress) to the PC a saving the PC (jump address after subroutine ends) value to TOP. aware that the address next after this command will be executed to once before the subroutine and once after.
Label	MVI Imm,[Destination],NZ Destination = MC0 ~ MC3 *,RX,PL,RA0,WA0,LOP,PC
Instruction Code	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Flag	Area selected by [d] selection ; becomes Imm data
Comments	* [MCx(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transference increments [CTx(x=0~3).

MVI Imm,[d]S	Conditional Transfer (S=1 then Imm \rightarrow [destination])
Operation Description	When the S flag is 1, Imm data is transfered to the RAM or register designated by [destination]. Imm data is signed 19 bit data. Can be used asexecution of the subroutine program (see instruction code**) by sending Imm data (subtroutine begin dress) to the PC an saving the PC (jump address after subroutine ends) value to TOP. address next after this command will be executed twice, once before the subroutine and once after.
Label	MVI Imm,[Destination],S Destination = MC0 ~ MC3 *,RX,PL,RA0,WA0,LOP,PC
Instruction Code	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Flag Comments	Area selected by [d] selection ; becomes Imm data * [MCx(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transfer
	increments [CTx(x=0~3).

MVI Imm,[d]NS Operation Description	Conditional Transfer (S=0 then Imm →[destination]) When the S flag is 0, Imm data is transfered to the RAM or register designated by [destination]. Imm data is signed 19 bit data. Can be used asexecution of the subroutine program (see instruction code**) by sending Imm data (subtroutine begin dress) to the PC a saving the PC (jump address after subroutine ends) value to TOP. aware that the address next after this command will be executed to once before the subroutine and once after.
Label	MVI Imm,[Destination],NS Destination = MC0 ~ MC3 *,RX,PL,RA0,WA0,LOP,PC
Instruction Code	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Flag Comments	 Area selected by [d] selection ; becomes Imm data * [MCx(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transference increments [CTx(x=0~3).

MVI Imm,[d]C	Conditional Transfer (C=1 then Imm \rightarrow [destination])
Operation Description	When the C flag is 1, Imm data is transfered to the RAM or register designated by [destination]. Imm data is signed 19 bit data. Can be used asexecution of the subroutine program (see instruction code**) by sending Imm data (subtroutine begin dress) to the PC and saving the PC (jump address after subroutine ends) value to TOP. Be aware that the address next after this command will be executed twice once before the subroutine and once after.
Label	MVI Imm,[Destination],C Destination = MC0 ~ MC3 *,RX,PL,RA0,WA0,LOP,PC
Instruction Code	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Flag	Area selected by [d] selection ; becomes Imm data
Comments	* [MCx(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transfer, increments [CTx(x=0~3).

	saving the PC (jump address after subroutine ends) value to TOP. aware that the address next after this command will be executed to once before the subroutine and once after.
Label	MVI Imm,[Destination],NC Destination = MC0 ~ MC3 *,RX,PL,RA0,WA0,LOP,PC
Instruction Code	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Flag Comments	 Area selected by [d] selection ; becomes Imm data * [MCx(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transference

MVI Imm,[d],T0		Conditional Transfer (T0=1 then Imm \rightarrow [destination])
Operation Description	design Can b code** saving aware	the T0 flag is 1, Imm data is transfered to the RAM or register ated by [destination]. Imm data is signed 19 bit data. e used asexecution of the subroutine program (see instruction) by sending Imm data (subtroutine begin dress) to the PC and the PC (jump address after subroutine ends) value to TOP. Be that the address next after this command will be executed twice efore the subroutine and once after.
Label	MVI Imm,[Destination],T0 Destination = MC0 ~ MC3 *,RX,PL,RA0,WA0,LOP,PC	
Instruction Code		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Flag	Area	selected by [d] selection ; becomes Imm data
Comments		(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transfer, ments [CTx(x=0~3).

MVI Imm,[d]NT(
Operation Description	When the T0 flag is 0, Imm data is transfered to the RAM or registed designated by [destination]. Imm data is signed 19 bit data. Can be used asexecution of the subroutine program (see instruction code**) by sending Imm data (subtroutine begin dress) to the PC a saving the PC (jump address after subroutine ends) value to TOP. aware that the address next after this command will be executed two once before the subroutine and once after.
Label	MVI Imm,[Destination],NT0 Destination = MC0 ~ MC3 *,RX,PL,RA0,WA0,LOP,PC
Instruction Code	b31 18 0 10x x x x 1001000 1 10000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 1000000
Flag Comments	* [MCx(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transfe

MVI Imm,[d]ZS	Conditional Transfer (Z=1 or S=1 then Imm \rightarrow [destination])		
Operation Description	When the Z flag or S flag is 1, Imm data is transfered to the RAM or register designated by [destination]. Imm data is signed 19 bit data. Can be used asexecution of the subroutine program (see instruction code**) by sending Imm data (subtroutine begin dress) to the PC and saving the PC (jump address after subroutine ends) value to TOP. Be aware that the address next after this command will be executed twice once before the subroutine and once after.		
Label	MVI Imm,[Destination],ZS Destination = MC0 ~ MC3 *,RX,PL,RA0,WA0,LOP,PC		
Instruction Code	b31 18 0 10 x x x 100 0 1 1 Imm Data Bit Data [d] Selections $\overline{bit29 \ bit28 \ bit27 \ bit26}}$ [d] Selections $\overline{bit29 \ bit28 \ bit27 \ bit26}}$ [d] Selections $\overline{bit29 \ bit28 \ bit27 \ bit26}}$ [d] Selections 0 0 0 0 DATA RAM0 ,CT0++ 0 0 0 1 DATA RAM1 ,CT1++ 0 0 1 0 DATA RAM2 ,CT2++ 0 0 1 1 DATA RAM3 ,CT3++ 0 1 0 0 [RX] 0 1 0 1 [PL] 0 1 1 0 [RA0] 0 1 1 1 0 [RA0] 1 0 0 0 unused 1 0 0 1 0 [LOP] 1 0 1 0 1 unused 1 0 1 0 [LOP] 1 0 1 1 unused 1 1 0 1 unused 1 1 0 1 unused 1 1 1 0 1 unused 1 1 1 0 1 unused 1 1 1 1 unused		
Flag	Area selected by [d] selection ; becomes Imm data		
Comments	* [MCx(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transfer, increments [CTx(x=0~3).		

MVI Imm,[d]NZS	
Operation Description	When the Z flag or S flag are both 0, Imm data is transfered to the or register designated by [destination]. Imm data is signed 19 bit Can be used as execution of the subroutine program (see instruct code**) by sending Imm data (subtroutine begin dress) to the PC as saving the PC (jump address after subroutine ends) value to TOP, aware that the address next after this command will be executed to once before the subroutine and once after.
Label	MVI Imm,[Destination],NZS Destination = MC0 ~ MC3 *,RX,PL,RA0,WA0,LOP,PC
Instruction Code	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Flag	Area selected by [d] selection ; becomes Imm data
Comments	* [MCx(x=0 ~ 3)] designates DATA RAM x(x=0~3) and, after transf increments [CTx(x=0~3).

DMA Command

DMA commands transfer data of an external and DSP internal RAM through an external bus. There are two methods, one of which is setting the transfer word number directly by Imm data, and the other is setting the internal RAM transfer word number by designating the number of the internal data RAM. The first method is shown in Figure 4.8 and the second method is shown in Figure 4.9. Details of the command are shown on the pages that follow.

31 30 29 28 27	18 17 15 14 13 12 11 10 8 7	0
1 1 0 0	- Add H 0 dir - RAM	Immediate data

Figure 4.8 DMA Command Format 1

31 30 29 28 27	18 17 15 14 13 12 11 10 8 7	3 2 0
	Add H 1 dir RAM	

Figure 4.9 DMA Command Format 2

DMA D0,[RAM], Operation		DMA Transfer (D0[31-	•0] → RAM) he external address register
Description	and transfer wo the address ad register for stor	ord number register are d number. The transfer	updated (added) according to word number register is a mber in long word units. This
Label	DMA D0,[Desti	nation],Counter	
	Destination	= M0 ~ M3 *	75
Instruction Code	b31 28 1 1 0 Bit Data 0 bit17 bit16 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1	Address Add 0 Address Add 1 Address Add 2 Address Add 4	Topology Topology Display Simm Data Simm Data Bit Data bit9 bit9 bit9 0 0 1 1 0 0 0 1 1 1 1 1
Flag	T0; becomes	1.	
Comments	**When the END has been enter Designating addr becomes DMA0~ Add number is1 w The transfer sour	ed, T0; becomes 0. ess-add adds an add nu DMA64. vhen address add numb	at transfer end from outside umber after the command and per designation is omitted. ance to RA0 and the transfer

DMA D0,[RAM] Operation Description	,[s] DMA Transfer (D0[31-0] → RAM) [s] data designated by bit0~2 is treated as a transfer counter, and consider numbers displayed transfer D0[31-0] data to the RAM. External address register and transfer word number register are updated (added) according to the address add number. The transfer word number register stores transfer word numbers in long word units. The word number becomes 0 or transfer ends when forced to end.
Label	DMA D0,[Destination],[Counter] Counter = M0 ~ M3 *,MC0~MC3* Destination = M0~M3 *,PRG *
Instruction Code b31 11 bit C C C C	0 0 DATA RAM 0 0 0 0 DATA RAM 0 0 1 DATA RAM 1 0 0 1 DATA RAM 1 0 1 0 DATA RAM 2 0 1 DATA RAM 2 1 1 DATA RAM 3 0 1 1 DATA RAM 3
Flag	T0; becomes 1. ** CTx(x0~3); incremented when b2=1. When b2=0, there is no char
Comments	 * [MCx(x=0 ~ 3)] selects DATA RAM x(x=0~3). MCx(x=0~3) selects DATA RAM x(x=0~3), and after transfer increments CTx(x0~3). PRG selects program RAM. **When the END signal informing you that transfer end from outside has been entered, T0; becomes 0. Designating address-add adds an add number after the command becomes DMA0~DMA1. Add number is 1 when address add number designation is omitted. The transfer source address is set in advance to RA0 and the transfer destination RAM address is set in advance to CTx.

DMA [RAN	1],D0,[s] DMA Transfer (RAM \rightarrow D0[31-0])
Operation Descriptior	[s] data designated by bit0~2 is treated as a transfer counter, and onl numbers displayed transfer RAM data to DO[31-0] data. External address register and transfer word number register are updated (added) according to the address add number. The transfer word number register stores transfer word numbers in long word units. But only add numbers 0 and 1 are valid for A-Bus, and write units are 32 bits. For B-Bus, all add numbers (0-64) are valid. Write units are 16 b 32 bit data is divided in half and written at intervals of 16bitX (0-64). transfer word number register stores transfer words in long word units. This word number becomes 0 or transfer ends when forced to end.
Label	DMA D0,[Destination],[Counter] Counter = M0 ~ M3 *,MC0~MC3* Source = M0~M3 *,PR*
Instruction Code	Bit Data Add Mode Selections 0 0 0 Address Add 0 0 0 1 Address Add 1 0 1 0 1 Data RAM 0 0 1 0 1 Data RAM 1 0 1 0 Address Add 2 0 1 0 1 1 Address Add 2 0 1 Data RAM 2 0 1 1 Address Add 4 0 1 Data RAM 2 0 1 1 Address Add 8 1 0 Data RAM 0,CT0++ 1 1 0 Address Add 32 1 1 Data RAM 2,CT2++ 1 1 1 Address Add 64 1 1 Data RAM 3,CT3++ b31 1 0 Data RAM 3,CT3++ 1 1 Data RAM 3,CT3++ b31 1 0 Data RAM 0 Data RAM 1,CT1++ 1 1 b31 1 0 Data RAM 2 Da
Flag	T0 ; becomes 1. ** CTx(x=0~3) ; incremented when b2=1. No changes when b2=0.
Comments	 * [MCx(x=0 ~ 3)] selects DATA RAM x(x=0~3). MCx(x=0~3) selects DATA RAM x(x=0~3), and after transfer increments CTx(x0~3). **When the END signal informing you that transfer end from outside has been entered, T0; becomes 0. Designating address-add adds an add number after the command a becomes DMA0~DMA64. Add number is 1 when address add number designation is omitted. The transfer source RAM address is set in advance to CTx and the transfer destination address is set in advance to WA0.

}

DMAH D0,[RAM],
Operation Description
Label
Instruction Code
Flag
Comments

DMAH [RAM],D0	,SImm DMA Transfer (RAM \rightarrow D0[31-0]) by HOLD Status
Operation Description	RAM data is transfered to D0[31-0]. The external address register and transfer word number register save the value when transfer starts. The transfer word number register is a register for storing the transfer word number in long word units. This word number is either 0 or transfer ends when forced to end.
Label	DMA H [Source],D0,Counter Source = Mo ~ M3 *
Instruction Code	b31 17 15 7 0 1 10 0 10 10 10 10 10 bit17 bit16 bit11 Add Mode Selections bit9 bit8 Selections 0 0 0 Address Add 0 0 0 DATA RAM 0 0 1 0 Address Add 1 0 0 1 DATA RAM 1 1 0 0 Address Add 4 1 1 0 DATA RAM 2 1 1 1 Address Add 8 1 1 1 DATA RAM 3
Flag	T0 ; becomes 1.**
Comments	 * [MCx(x=0 ~ 3)] selects DATA RAM x(x=0~3). **When the END signal informing you that transfer end fromoutside has been entered, T0; becomes 0. Designating address-add adds an add number after the command and becomes DMAH0~DMAH64. Add number is 1 when address add number designation is omitted. The transfer source RAM address is set in advance to CTx and the transfer destination address is set in advance to WA0.

Operation Description	[s] data designated by bit0~2 is treated as transfer counter, and or numbers displayed transfer RAM data to D0(31-0) data. External address register and transfer word number register save the value when starting transfer, to the address add number. The transfer word number register stores transfer word numbers in long word units. T word number becomes 0 or transfer ends when forced to end.		
Label	DMA H D0,[Destination],[Counter] Counter = M0 ~ M3 *,MC0~MC3* Destination = M0~M3 *,PR*		
Instruction Code	Bit Data RAM Selections 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		
Flag	T0; becomes 1. ** CTx(x0~3); incremented when b2=1. When b2=0, there is no cha		
Comments	 * [MCx(x=0 ~ 3)] selects DATA RAM x(x=0~3). MCx(x=0~3) selects DATA RAM x(x=0~3), and after transfer increments CTx(x0~3). **When the END signal informing you that transfer end from outsid has been entered, T0; becomes 0. Designating address-add adds an add number after the command becomes DMAH0~DMAH1. Add number is 1 when address add number designation is omitted. The transfer source address is set in advance to RA0 and the transfer in advance to CTx. 		

DMA [RAM],D0,[s	s] DMA Transfer (RAM \rightarrow D0[31-0]) by HOLD Status
Description	[s] data designated by bit0~2 is treated as transfer counter, and only numbers displayed transfer RAM data to D0[31-0] data. External address register and transfer word number register save the value when starting transfer. The transfer word number register stores transfer words in long word units. This word number becomes 0 or transfer ends when forced to end.
Label	DMAH [Source],DO,[Counter] Counter = M0 ~ M3 *,MC0~MC3* Source = M0~M3 *,PR*
Instruction	Bit Data Add Mode Bit Data
Code	Dr. Data Add Wode Dr. Data [s] Selections bit17 bit16 bit1 Selections bit 2 bit1 bit 0 0 0 0 Address Add 0 0 0 Data RAM 0 0 0 1 Address Add 1 0 0 1 Data RAM 1 0 1 0 Address Add 2 0 1 Data RAM 2 0 1 1 Address Add 4 0 1 1 Data RAM 3 1 0 0 Address Add 32 1 1 Data RAM 0,CT0++ 1 1 0 Address Add 32 1 1 Data RAM 2,CT2++ 1 1 1 Address Add 64 1 1 1 Data RAM 3,CT3++ b31 17 7 0 0 DATA RAM 0 0 1 Data RAM 1,CT1++ b31 17 7 0 Data RAM 3,CT3++ 1 1 Data RAM 3,CT3++ b31 17 7 0 0 DATA RAM 0 0 1 DATA
Flag	T0 ; becomes 1. ** CTx(x=0~3) ; incremented when b2=1. No changes when b2=0.
Comments	 *[MCx(x=0 ~ 3)] selects DATA RAM x(x=0~3). MCx(x=0~3) selects DATA RAM x(x=0~3), and after transfer increments CTx(x0~3). **When the END signal informing you that transfer end from outside has been entered, T0; becomes 0. Designating address-add adds an add number after the command and becomes DMAH0~DMAH64. Add number is 1 when address add number designation is omitted. The transfer source RAM address is set in advance to CTx and the transfer destination address is set in advance to WA0.

JUMP Commands

Jump commands are realized by storing immediate data in the program counter. Figure 4.10 shows the Jump command format. Details of the command are shown in the next few pages.

31 30 29 28 27 26	25 24	19 18	87	0
	Status	<u> </u>		diate

Figure 4.10 Jump Command Format

JMP Imm		Unconditional Jump
Operation Description	Jumps according to a	ddress data (Imm).
Label	JMP [address]	
Instruction Code		19 D D D D D D D D D D D D D
Flag	No change	
Comments		
6	7	

JMP Z, Imm		Conditional Jump (Z = 1)
Operation Description	When the Z flag is 1,	jump is in accordance with address data (Imm).
Label	JMP Z,[address]	
Instruction Code	b31 25	19 001 Imm Data
ag	No change	
Comments		

JMP NZ,Imm		Conditional Jump (Z=0)
Operation Description	When the Z flag is 0, j	ump is in accordance with address data (Imm).
Label	JMP NZ,[address]	
Instruction Code		19 19 19 19 10 1 1 1 1 1 1 1 1 1 1 1 1 1
Flag	No change	
Comments		
6	<u> </u>	

JMP S,Imm		Conditional Jump (S=1)
Operation Description	When the S flag is 1, j	jump is in accordance with address data (Imm)
Label	JMP S,[address]	
Instruction Code		19 010 Imm Data
Flag	No change	
Comments		

When the S flag is 0, jump is in accordance with address data (Imm) JMP NS,[address]
b31 25 19 7 0 11011000010
Imm Data
No change

JMP C,Imm	Conditional Jump (C=1)
Operation Description	When the C flag is 1, jump is in accordance with address data (Im
Label	JMP C,[address]
Instruction Code	b31 25 19 7 0 11011100100
Flag	No change
Comments	

JMP NC,Imm	Conditional Jump (C=0)
Operation Description	When the C flag is 0, jump is in accordance with address data (Imm)
Label	JMP NC,[address]
Instruction Code	b31 25 19 7 0 1101-1000100
Flag	No change
Comments	

JMP T0,Imm	Conditional Jump (T0=1)
Operation Description	When the T0 flag is 1, jump is in accordance with address data (Im
Label	JMP T0,[address]
Instruction Code	b31 25 19 7 0 1101-1101000
Flag Comments	No change
Commenta	

JMP NT0,Imm		Conditional Jump (T0=0)
Operation Description	When the T0 flag is 0,	jump is in accordance with address data (Imm)
Label	JMP NT0,[address]	
Instruction Code		19 0 0 19 7 0 Imm Data
Flag	No change	
Comments		
6		

JMP ZS,Imm		Conditional Jump (Z=1 or S=1)
Operation Description	When the Z flag or S f (Imm).	lag is 1, jump is in accordance with address o
Label	JMP ZS,[address]	
Instruction Code		19 11 11 11 11 11 11 11 11 11
Flag	No change	
Comments		

JMP NZS,Imm		Conditional Jump (Z=S=0)
Operation Description	When the Z flag and S (Imm).	S flag are 0, jump is in accordnce with address o
Label	JMP NZS,[address]	
Instruction Code		19 0111 Imm Data
Flag	No change	
Comments		
6		

LOOP BOTTOM Commands

Loop Bottom commands repeat one to several steps of a program. Figure 4.11 shows the Jump command format. Details of the command are shown in the next few pages.

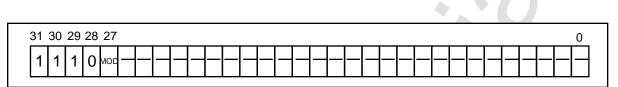


Figure 4.11 Loop Bottom Command Format

ВТМ		Repeat Process Criterion
Operation Description	There is no repeat wh counter returns to [TO Does nothing when the program counter to [T	en the [LOP] flag is 0. Otherwise the program P]. e [LOP] flag is 0; otherwise, it returns the OP].
Label	ВТМ	
Instruction Code		
Flag	LOP ; decremented w	hen LOP≠ 0. Ends when LOP=0.
Comments	9	

LPS	1 Step Repeat
Operation Description	Repeats next 1 step until the [LOP] register is 0.
Label	LPS
Instruction Code	b31 29 27 0 111101
Flag	LOP ; decremented when LOP≠ 0. Ends when LOP=0.
Comments	After the process ends, PC executes LOP+1 time then ends.

END Command

The END command stops the program currently being executed. Figure 4.12 shows the END command format. Details of the command are shown in the next two pages.

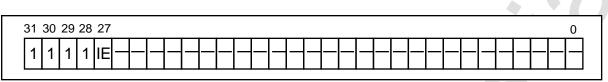


Figure 4.12 END Command Format

END		STOP
Operation Description	Stops the program.	
Label	END	
Instruction Code		
Flag	EX; is0.	
Comments		

		Program End
Operation Description	Stops the program, an	d sets the E flag (program end interrupt flag).
Label	ENDI	
Instruction Code		
Flag	E ; is 1 EX ; is0.	
Comments		

APPENDIX

This appendix contains a list of SCU register address maps.

ро	6	8	g	RD0	8	8			1MS0	2	1 8	1	N N	N N	ΓE	Ti	T		18		1
ь 1 b	P P				T0C1 T0C0		TENB			+	+>	1.	A1SZ	T.		<u> </u> .		RSEL		<u> </u>	-
р2 t	P2		RA2 ÅA1		T0C2 T0	T192 T191			IMS2 IMS1				A1LNO	A3LN0	ARWT2 ARWT1				VER2 VER1		
p3	E3			RD3 RI	T0C3 T0				INS3		+		A1LN1 - A1	A3LN1 'A3	ARWT3 AR				VER3 VE		
b4	P4		RA4 F	RD4 F	T0C4 T	T194 T			INS4		+		A1NW0 · A	A3NW0	ARFEN AR				<u>,</u>		
b5	P5	PD5 P	RA5 F	RD5 F	T0C5 T	T195 T	1	1	IMS5 IN		·	1	A1NW1 A1	A3NW1 A3	<u> </u>	1	li	Ī	1		
P 6	P6	PD6	RA6 F	RD6	T0C6 1	T196 1	1	1	IMS6 I		+	1	A1NW2	A3NW2 A	1	1		T	T	T	
b7	P7	PD7	RA7	RD7	T0C7	T197		1	I ISMI		1	1	A1NW3	A3NW3		1	T	T	$\overline{\Gamma}$	T	
b 8	1	PD8	-	RD8	T0C8	T198	T1MD	1	IMS8		1	1	A1BW0	A3BW0 A	1	1	T	T	1	1	
6 9	1	604	1	RD9	T0C9	I	1	1	I 6SMI	IST9	1	1	A1BW1	A3BW1	1	1			1	1	
b10	1	PD10	1	RD10	1	1	1	Ī	IMS10	IST10	1	1	A1BW2	A3BW2	T	1	Î	Ī	1	1	
b11	1	PD11	1	RD11	1	I	1	1	IMS11	IST11	1		A1BW3	A3BW3		T	1	1	1	1	
b12	1	PD12	1	RD12	1	Ι	1	1	IMS12	IST12	1	1	A1EW1	A3EW1	-	1	1	1	1	1	
b13	1	PD13	1	RD13	1	I	I	1	IMS13	IST13		1	A1RPC	A3RPC	I	1	1	1	1	Ι	
b14	1	PD14	1	RD14	1	1	ł	1	1		1		A1WPC	A3WPC	1	1	1	1	1	Ι	
b 15	۳	PD15		RD15	1	1	1	1	IMS15	1		1	A1PRO	A3PRO	1	1	1	1			
b16	Ĕ	PD16	1	RD16		-	1	1	1	IST16	1	5	A0SZ	A2SZ	1	1	1	1	1		1
3 b17	8	BD17		RD17	1		1		L	3 IST17	1	1		1							
b 18	ш	9 PD18	<u> </u>	8 RD 18		1	1	T		9 IST18	1	1	1 AOLNO	1 A2LN0	1	1	1	1			
0 19	>	0 PD19		0 RD19			L	-		0 IST19		1	0 AOLN1	A2LN1	<u> </u>	1	1				
1 b20	ں ا	1 PD20		1 RD20					1	1 IST20			1 AONWO								
2 b21	N	<u> </u>		2 RD21						2 IST21	1	1	2 AONW1		1	1		1			
3 b22	6	3 PD22		3 RD22	4	-				3 IST2			3 AONW2								
4 b23	2	PD27 PD26 PD25 PD24 PD23 P		RD26 RD25 RD24 RD23 R	<u>'</u>	1	<u> </u>	-		24 IST2	-	 	VO AONM					-		_	
5 b2		25 PD2		25 RD					1	25 IST2			V1 AOBV		 	1	1	-	-		
b26 b25 b24	EP	S6 PD		26 RD:						26 IST	<u> </u>		V2 A0BV								
	R	27 PD:		27 RD	<u> </u>	$\frac{1}{1}$		-		27 IST:			V3 AOBV			<u> </u>					
9 P	$\frac{1}{1}$			28 RD						28 IST			NT AOBV	1						4	
		29 PD28		29 RD		+	 			29IST	-		PC A0EV	PC A2EV							,
24 08		30 PD		30 RD	1		1			30 IST			VPC A0RI	PC A2R							
b31 b30 b29 b28 b27		PD31 PD30 PD29 PD28	-+	RD31 RD30 RD29 RD28 RD27	 					IST31 IST30 IST29IST28 IST27 IST26 IST25 IST24 IST23 IST22	<u>'</u>		RO A0V	RO A2W							
ا ق	<u>' </u> ⊊				<u>'</u>				<u>'</u>		<u>' </u>		30) A0P	71) A2P	<u> </u>	<u>२</u>		<u> </u> -			
	25FE0080(PPAF)	25FE0084(PPD)	25FE0088(PDA)	25FE008C(PDD)	25FE0090(T0C)	25FE0094(T1S)	25FE0098(T1MD)	25FE009C(—)	25FE00A0(IMS)	25FE00A4(IST)	25FE00A8(—)	25FE00AC(—)	25FE00B0(ASR0) AUPRO AUMPC AURPC AUENT AUBW3 AUBW2 AUBW1 AUBW0 AUNW3 AC	25FE00B4(ASR1) a2PR0 a2WPC a2FPC a2EWT	25FE00B8(AREF)	25FE00BC(AIAK)	25FE00C0()	25FE00C4(RSEL)	25FE00C8(VER)	25FE00CC(—)	

Address	Bit	Description
25FE00A&	0	A-Bus interrupt acknowledge output valid bit
	/	(=0: invalid / =1: valid) A-Bus refresh output valid bit (=0: invalid/=1: valid)
		A-Bus refresh wait number
		CS0 space, burst cycle wait number set bit
		CS0 space, external wait effective bit (=0: invalid/=1: valid)
		CS0 space, burst length set bit
		CS0 space, previous read effective bit (=0: invalid/=1: valid)
		CS0 space, pre-charge insert bit after read
		CS0 space, normal cycle wait number set bit
		CS0 space, bus size set bit
		CS0 space, pre-charge insert bit after write
		CS1 space, burst cycle wait number set bit
		CS1 space, external wait effctive bit (=0: invalid/=1: valid)
		CS1 space, burst length set bit
		CS1 space, normal cycle wait number set bit
		CS1 space, previous read effective bit (=0: invalid/=1: valid)
	13	CS1 space, pre-charge insert bit after read
	0	CS1 space, bus size set bit
25FE00B0н	14	CS1 space, pre-charge insert bit after write
25FE00B4н	28	CS2 space, external wait effctive bit (=0: invalid/=1: valid)
25FE00B4н	19 - 18	CS2 space, burst length set bit
25FE00B4H	31	CS2 space, previous read effective bit (=0: invalid/=1: valid)
25FE00B4н	29	CS2 space, pre-charge insert bit after read
25FE00B4н	16	CS2 space, bus size set bit
25FE00B4н	30	CS2 space, pre-charge insert bit after write
25FE00B4н	11 - 8	Dummy space, burst cycle wait number set bit
25FE00B4н	12	Dummy space, external wait effctive bit (=0: invalid/=1: valid)
25FE00B4н	3 - 2	Dummy space, burst length set bit
25FE00B4н	7 - 4	Dummy space, normal cycle wait number set bit
25FE00B4н	15	Dummy space, previous read effective bit (=0: invalid/=1: valid)
		Dummy space, pre-charge insert bit after read
	0	Dummy space, bus size set bit
	14	Dummy space, pre-charge insert bit after write
		DSP program control port, Carry flag
		DMA A-Bus Access Flag (=0: no access/=1: access)
		DMA B-Bus Access Flag (=0: no access/=1: access)
		DMA DSP-Bus Access Flag (=0: no access/=1: access)
		DSP side DMA operate flag (=0: stop/=1: operate)
		DSP side DMA standby flag (=0: stop/=1: standby)
		DMA force-stop bit (=0: DMA operable/=1: DMA force stop)
		DMA level 0 interrupt flag (=0: stop/=1: interrupt)
25FE0008	19 - 0	DMA level 0 transfer byte number
25FE0010H	8	DMA level 0 enable bit (=0: Disable/=1: Enable)
	25FE00B4+ 25FE00B4+ 25FE00B4+ 25FE00B4+ 25FE00B4+ 25FE00B4+ 25FE00B4+	25FE00B8н3 - 025FE00B0H27 - 2425FE00B0H19 - 1825FE00B0H19 - 1825FE00B0H2925FE00B0H23 - 2025FE00B0H23 - 2025FE00B0H23 - 2025FE00B0H3025FE00B0H11 - 825FE00B0H3025FE00B0H11 - 825FE00B0H3 - 225FE00B0H7 - 425FE00B0H3 - 225FE00B0H1325FE00B0H1325FE00B0H1325FE00B0H1425FE00B0H1425FE00B4H2825FE00B4H2925FE00B4H2925FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H3025FE00B4H1325FE00B4H1425FE00B4H1425FE00B4H1425FE00B4H1425FE00B4H1425FE00B4H1425FE0070H2025FE0070H2025FE0070H2125FE0070H2125FE0070H125FE0070H025FE0070H025FE0070H025FE007

Acronym	Address	Bit	Description
D0FT2-0	25FE0014	2 - 0	DMA level 0 starting factor selection bit =000B: V-Blank-IN receive and enable bit set =001B: V-Blank-OUT receive and enable bit set =010B: H-Blank-IN receive and enable bit set =011B: Timer 0 receive and enable bit set =100B: Timer 1 receive and enable bit set =101B: Sound Req receive and enable bit set =110B: Sprite draw end and enable bit set =111B: DMA start bit set and enable bit set
DOGO	25FE0010H	0	DMA level 0 start bit (=0: stop =1: start)
DOMOD	25FE0014	24	DMA level 0 mode bit (=0: direct mode/=1: indirect mode)
DOMV	25FE007CH	4	DMA level 0 operating flag (=0: stop/=1: start)
DORA	25FE000CH	8	DMA level 0 read address add value (=0: no add/=1: adds 4 byte)
DORUP	25FE0014	16	DMA level 0 read address update bit
D0R26-0	25FE0000н	26 - 0	DMA level 0 read address
DOWA2-0	25FE000Q1	2 - 0	DMA level 0 write address add value =000B: no addition =001B: adds 2 bytes =010B: adds 4 bytes =011B: adds 8 bytes =100B: adds 16 bytes =101B: adds 32 bytes =110B: adds 64 bytes =111B: adds 128 bytes
DOWT	25FE007CH	5	DMA level 0 standby flag (=0: stop/=1: standby)
DOWUP	25FE0014	8	DMA level 0 write address update bit
D0W26-0	25FE0004	26 - 0	DMA level 0 write address
D1BK	25FE007CH	17	DMA level 1 interrupt flag (=0: stop/=1: interrupt)
D1C11-0	25FE0028H	11 - 0	DMA level 1 transfer byte number
D1EN	25FE0030н	8	DMA level 1 enable bit (=0: Disable/=1: Enable)
D1FT2-0	25FE0034	2 - 0	DMA level 1 starting factor selection bit =000B: V-Blank-IN receive and enable bit set =001B: V-Blank-OUT receive and enable bit set =010B: H-Blank-IN receive and enable bit set =011B: Timer 0 receive and enable bit set =100B: Timer 1 receive and enable bit set =101B: Sound Req receive and enable bit set =110B: Sprite draw end and enable bit set =111B: DMA start bit set and enable bit set
D1GO	25FE0030H	0	DMA level 1 start bit (=0: stop/=1: start)
D1MOD	25FE0034	24	DMA level 1 mode bit (=0: direct mode/=1: indirect mode)
D1MV	25FE007Он	8	DMA level 1 operating flag (=0: stop/=1: start)
D1RA	25FE002OH	8	DMA level 1 read address add value (=0: no add/=1: adds 4 bytes)
D1RUP	25FE0034	16	DMA level 1 read address update bit
D1R26-0	25FE0020н	26 - 0	DMA level 1 read address

Acronym	Address	Bit	Description
D1WA2-0	25FE002OH	2 - 0	DMA level 1 write address add value
			=000B:does not add
			=001B: adds 2 bytes
			=010 _B : adds 4 bytes
			=011 _B : adds 8 bytes
			=100B: adds 16 bytes
			=101ε: adds 32 bytes =110ε: adds 64 bytes
			=110B. adds 04 bytes =111B: adds 128 bytes
D1WT	25FE0070H	9	DMA level 1 standby flag (=0: stop/=1: standby)
D1WUP	25FE0034	8	DMA level 1 write address update bit
D1W26-0	25FE0024	26 - 0	DMA level 1 write address
D2C11-0	25FE0048	11 - 0	DMA level 2 transfer byte number
D2EN	25FE0050H	8	DMA level 2 enable bit (=0: Disable/=1: Enable)
D2FT2-0	25FE0054	2 - 0	
JZF12-0		2-0	DMA level 2 starting factor selection bits =000B: V-Blank-IN receive and enable bit set
			=000B: V-Blank-IN receive and enable bit set
			=001B. V-Blank-OOT receive and enable bit set =010B: H-Blank-IN receive and enable bit set
			=0108. The matrix receive and enable bit set =011 _B : Timer 0 recieve and enable bit set
			=100 _B : Timer 1 recieve and enable bit set
			=101 _B : Sound Req receive and enable bit set
			=110B: Sprite draw end and enable bit set
			=111B: DMA start bit set and enable bit set
D2G0	25FE0050H	0	DMA level 2 start bit (=0: stop/=1: operation)
D2MOD	25FE0054	24	DMA level 2 mode bit (=0: direct mode/=1: indirect mode)
D2MV	25FE007CH	12	DMA level 2 operation flag (=0: stop/=1: operation)
D2RA	25FE004CH	8	DMA level 2 read address add value
			(=0: no add/=1: adds 4 bytes)
D2RUP	25FE0054	16	DMA level 2 read address update bit
D2R26-0	25FE0040H	26 - 0	DMA level 2 read address
D2WA2-0	25FE004CH	2 - 0	DMA level 2 write address add value
			=000B: no addition
			=001 _B : adds 2 bytes
			=010 _B : adds 4 bytes
			=011 _B : adds 8 bytes
			=100 _B : adds 16 bytes
			=101 _B : adds 32 bytes
			=110 _B : adds 64 bytes
D2WT	25FE007CH	13	=111B: adds 128 bytes
D2WT			DMA level 2 standby flag (=0: stop/=1: standby)
	25FE0054 25FE0044	8	DMA level 2 write address update bit
		26 - 0	DMA level 2 write address
D2W26-0		40	
D2W26-0 E	25FE0080H	18	DSP Program control port, Program end interrupt flag
D2W26-0		18 25	DSP Program control port, Temporary stop execution flag during
D2W26-0 E	25FE0080H		

ES	Address	Bit	Description
ES	25FE0080H	17	DSP Program Control Port, Program Step Execution Control Bi (=0: don't execute / =1: execute)
EX	25FE0080H	16	DSP Program Control Port, Program Execution Control Bit (=0: don't execute / =1: execute)
IMS0	25FE00A0H	0	V-Blank-IN Interrupt Mask Bit
IMS1	25FE00A0H	1	V-Blank-OUT Interrupt Mask Bit
IMS2	25FE00A0H	2	H-Blank-IN Interrupt Mask Bit
IMS3	25FE00A0H	3	Timer 0 Interrupt Mask Bit
IMS4	25FE00A0H	4	Timer 1 Interrupt Mask Bit
IMS5	25FE00A0H	5	DSP End Interrupt Mask Bit
IMS6	25FE00A0H	6	Sound Request Interrupt Mask Bit
IMS7	25FE00A0H	7	SMPC Interrupt Mask Bit
IMS8	25FE00A0H	8	PAD Interrupt Mask Bit
IMS9	25FE00A0H	9	Level 2-DMA End Interrupt Mask Bit
IMS10	25FE00A0H	10	Level 1-DMA End Interrupt Mask Bit
IMS11	25FE00A0H	11	Level 0-DMA End Interrupt Mask Bit
IMS12	25FE00A0H	12	DMA Illegal Interrupt Mask Bit
IMS13	25FE00A0H	13	Sprite Draw End Interrupt Mask Bit
IMS15	25FE00A0H	15	A-Bus Interrupt Mask Bit
ISTO	25FE00A4	0	V-Blank-IN Interrupt Status Bit
IST1	25FE00A4		V-Blank-OUT Interrupt Status Bit
IST2	25FE00A4	2	H-Blank-IN Interrupt Status Bit
IST3	25FE00A4	3	Timer 0 Interrupt Status Bi
			t
IST4	25FE00A4	4	Timer 1 Interrupt Status Bit
IST5	25FE00A4	5	DSP End Interrupt Status Bit
IST6	25FE00A4	6	Sound request Interrupt Status Bit
IST7	25FE00A4	7	SMPC Interrupt Status Bit
IST8	25FE00A4	8	PAD Interrupt Status Bit
IST9	25FE00A4	9	Level 2-DMA End Interrupt Status Bit
IST10	25FE00A4	10	Level 1-DMA End Interrupt Status Bit
IST11	25FE00A4	11	Level 0-DMA End Interrupt Status Bit
IST12	25FE00A4	12	DMA Illegal Interrupt Status Bit
IST13	25FE00A4	13	Sprite Draw End Interrupt Status Bit
IST31-16	25FE00A4	31-16	Outside Interrupt 15-0 Status Bit
LE	25FE0080H	15	DSP Program Control Port, Program Counter Load Enable Bit (
			no execute/=1: execute)
PD31-0	25FE0084	31 - 0	DSP Program RAM Data Port
PR	25FE0080H	26	DSP Program Control Port, Pause Cancel Flag while program is
	25FE00804	7 - 0	executing (=0: no execute/=1: execute) DSP Program RAM Address
	25FE00884	7-0	DSP Program RAM Address
RA7-0		1 21 0	
P7-0 RA7-0 RD31-0 RSEL	25FE0080H 25FE00C4H	31 - 0	DSP Data RAM Data Port SDRAM Selection Bit (=0: 2 Mbit x 2 / =1: 4 Mbit x 2)

TENB	25FE0098H	0	Timer Enable Bit (=0: OFF / =1: ON)
TO	25FE0080H	23	DSP Program Control Port, D0 Bus Use DMA Execute Flag
T0C9-0	25FE0090H	9 - 0	Timer 0 Compare Data
T1MD	25FE0098H	8	Timer 1 ModeBit
			=0: occurs at each line
			=1: occurs only at lines indicated by Timer 0
T1S8-0	25FE0094	8 - 0	Timer 1 Set Data
V	25FE0080H	19	DSP Program Control Port, Overflow Flag
VER3-0	25FE00C8H	3 - 0	SCU Chip Version Number
Z	25FE0080H	21	DSP Program Control Port, Zero Flag

INDEX

Numbers within () shows the page of the "First" heading.

Alphabetic	
A-Bus	
A-Bus Control Register	
A-Bus Interrupt Acknowledge	
A-Bus Interrupt Acknowledge Register	
A-Bus Interrupt Acknowledge Map	
A-Bus Refresh Register	
A-Bus Refresh Register Map	
A-Bus Refresh Wait Number	
A-Bus Set Register (CS0, 1 spaces)	
A-Bus Set Register (CS2 and dummy spaces)	
A-Bus Set Register Map	
Access, Interrupt, Standby, Operation Registers	
B-Bus	(ii)
Blanking Interrupt	
Block Diagram	
Commands	
Commands (1), List of	
Commands (2), List of	
Commands (3), List of	
Commands (4), List of	
Constants, Description of	
CS0 Space Burst Cycle Set Value	
CS0 Space Burst Length Set Value	
CS0 Space Bus Size Set Value	
CS0 Space Single Cycle Set Value	
CS0, 1 Space A-Bus Set Set Register	
CS1 Space Burst Cycle Set Value	
CS1 Space Burst Length Set Value	
CS1 Space Bus Size Set Value	
CS1 Space Single Cycle Set Value	
CS2 Space Burst Cycle Value	
CS2 Space Bus Size Set Value	

Data	ii
Data Write Example (Indirect Mode)	23
Difference in DMA operation by Address Renewal Bit 2	22
Difference in Timing by Setting External Wait Effective Bit	
Direct Mode DMA Transfer Operation 1	.8
DMA Enable Register	15
DMA Command Execution	37
DMA Command Format 1	32
DMA Command Format 2	32
DMA Control Register 4	1
DMA End Interrupt	33
DMA Force-Stop Register 4	17
DMA Force-Stop Register Map	8
DMA Illegal Interrupt	33
DMA Mode	.8
DMA Mode, Address Renewal, Start Factor Select Register 4	6
DMA Status Register	18
DMA Status Register Map	
DMA Transfer (Basic Operation) 1	.6
DMA Transfer Execution by Address Add Value Set 2	
DMA Transferable Area when Started from DSP 1	.7
DMA Transferable Area when Started from Main CPU 1	.7
DMA Write Address while Stopped 4	
DSP	\$4
DSP Control Port	51
DSP Data RAM Address Port 10, 5	
DSP Data RAM Address Port Map 1	.0
DSP Data RAM Data Port	54
DSP Data RAM Data Port Map 1	
DSP End Interrupt	
DSP Program Control Port	
DSP Program Load Step 1	
DSP Program Load Step 2	\$5
DSP Program Load Step 3	
DSP Program RAM Data Port 10, 5	;3
DSP Program RAM Data Port Map 1	.0
Dummy Space Burst Cycle Set Value	'1
Dummy Space Burst Length Set Value	'1
Dummy Space Bus Size Set Value	
Dummy Space Single Cycle Set Value 7	'1

F	Example of transfer between SCU and Processor
-	Features of Data Transfer to DSP from D0 Bus
ŀ	High/Low Level DMA Operation
I	ndirect Mode DMA Transfer
ŀ	ndirect Mode DMA Transfer Flow
ŀ	nterrupt Control Register
I	nterrupt Factor
ŀ	nterrupt Factor, General Names
ŀ	nterrupt Mask Register
I	nterrupt Mask Register Map
ŀ	nterrupt Status Register
ŀ	nterrupt Status Register Contents
I	nterrupt Status Register Map
J	ump Command Execution
J	ump Command Format
	evel 0 Transfer Byte Number
I	evel 2-0 Address Add Value
I	evel 2-0 DMA Authorization Bit
I	evel 2-0 DMA Mode, Address Renewal, Start Factor Select Register
I	evel 2-0 DMA Set Register Map
L	evel 2-0 Read Address
I	evel 2-0 Write Address
I	evel 2-1 Transfer Byte Number
I	oad Immediate Command Format 1 (unconditional transfer)
I	oad Immediate Command Format 2 (conditional transfer)
I	oop Bottom Command Format
I	Loop Program Execution
N	Main CPU
(Dperand Execution Method
(Dperation Command Format
(Dperation when Cache Hit
ŀ	AD Interrupt
ŀ	RAM Page Select
	Read Address Add Value
	Registers, List of
ŀ	Results of Previous Read Process

SCSP	. i
SCU	. i
SCU Control Register	73
SCU Mapping (Cache_address)	4
SCU Mapping (Cache_through_address)	6
SCU Overview	2
SCU SDRAM Select Register Map 1	14
SCU SDRAM Select Bit	73
SCU Version Register Map1	14
SCU Version Register	73
SMPC	ii
SMPC Interrupt	33
Sound Request Interrupt	33
Special Process Execution	39
Sprite Draw End Interrupt	33
Start Factor	46
Subroutine Program Execution	90
System Configuration	2
Timer 0 Compare Register	55
Timer 0 Compare Register Map	11
Timer 0 Interrupt Degree of Occurrence	
Timer 1 Interrupt Degree of Occurrence	
Timer 1 Mode Register 11, 5	56
Timer 1 Mode Register Map	11
Timer 1 Occurrence Select Content	
Timer 1 Set Data Register 11, 5	55
Timer 1 Set Data Register Map	11
Timer Operation Contents	
Timer Register	55
Timing when setting pre-charge insert bit after Read	53
Timing when setting pre-charge insert bit after Write	53
Timing when Writing CS2 Burst Cycle	65
VDP1	. i
VDP2	. i
Work RAM Area Contents	24
Write Address Add Value	43
Write Address Add Value Indication	45

(This page is blank in the original Japanese document.)

SCU User's Manual

Commands

NOP (ALU Operation)	93
AND	94
OR	95
XOR	96
ADD	97
SUB	98
AD2	99
SR	00
RR	01
SL	32
RL	03
RL8	04
NOP (X-Bus Operation)	36
MOV [s] , X	07
MOV MUL , p	38
MOV [s] , P)9
NOP (Y-Bus Control)	11
MOV [s] , Y 11	12
CLR A	13
MOV ALU , A 11	14
MOV [s] , A 11	
NOP (D1-Bus No Operation)	17
MOV SImm , [d] 11	18
MOV [s] , [d] 11	19
MVI Imm , [d]	21
MVI [d] , Imm , Z	22
MVI Imm , [d] , NZ	
MVI Imm , [d] , S	
MVI Imm , [d] , NS	25
MVI Imm , [d] , C 12	26
MVI Imm , [d] , NC	27
MVI Imm , [d] , T0 12	28
MVI Imm , [d] , NT0	
MVI Imm , [d] , ZS 13	30
MVI Imm , [d] , NZS	31

DMA D0, [RAM], SImm	
DMA [RAM] , D0 , SImm	
DMA, D0, [RAM], [s]	
DMA [RAM], D0, [s]	
DMAH , D0 , [RAM] , SImm 137	
DMAH [RAM] , D0 , SImm	
DMAH D0, [RAM], [s]	
DMAH [RAM], D0, [s]	
JMP Imm	
JMP Z , Imm	
JMP NZ , Imm	
JMP S , Imm	
JMP NS , Imm 146	
JMP C , Imm	
JMP NC , mm 148	
JMP T0 , Imm 149	
JMP NT0 , Imm	
JMP ZS , Imm	
JMP NZS , Imm	
BTM	
LPS	
END	
ENDI	