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Abstract

We calculate energies and wavefunctions of several systems using the
path integral formulation of quantum physics. The systems considered are
one-dimensional and three-dimensional harmonic oscillators and hydrogen
atom in one and three dimensions. We represent the time-evolution oper-
ator as matrix in a basis consisting of Deslauriers–Dubuc or Daubechies
wavelets. We use Trotter kernels and we also develop an own approxi-
mation for the path integral kernel. For the one-dimensional harmonic
oscillator we use the exact kernel, too. We also develop a method to
calculate wavefunctions with the path integral formulation.

Keywords: path integral, wavelet, harmonic oscillator, hydrogen atom, quan-
tum physics, Fourier transform

1 Introduction
The path integral formulation was developed by Richard Feynman in 1948. It
generalizes the action principle of classical mechanics. In path integral formu-
lation the transient state at time t of a quantum mechanical system is obtained
from the initial state by formula

Ψ(y, t) =

∫
eiS[x,ẋ]ψ0(x(t))Dx. (1)

Here the integration is done over all paths beginning with x(0) = y, the action
is given by

S[x, ẋ] =

∫
L(x(t), ẋ(t))dt, (2)

L(x(t), ẋ(t)) is the Lagrangian of the system, and ψ0 is the initial state. See [1]
for an introduction to the path integral formulation.

The method is often applied by using an imaginary time variable [2]. Ruokosen-
mäki and Rantala [3, 2] have developed a real-time diffusion method for the path
integral formulation. Ruokosenmäki et al. [4] and Gholizadehkalkhoran et al.
[5] have also used the path integral method for the calculation of the Hooke’s
atom. Svensson [6] discusses the computation of the hydrogen atom with the
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path integral method. Ho and Inomata [7] and Steiner [8] present an exact
treatment of the hydrogen atom with path integral formulation. Path integral
treatment of the quantum mechanical harmonic oscillator has been given for
example by Ruokosenmäki and Rantala [3].

Wavelets are a basis function set constructed by dilatations and transla-
tions of so called mother scaling function and mother wavelet. Mathematical
theory of interpolating wavelets has been developed by Chui and Li [9] and
Donoho [10]. Höynälänmaa [11] has generalized these results for the multivari-
ate case. Goedecker [12] gives an application-oriented introduction to interpo-
lating wavelets. Höynälänmaa et al. [13] have made Hartree–Fock calculations
of atoms using an interpolating wavelet basis. Höynälänmaa and Rantala [14]
have also made three-dimensional Hartree-Fock and Density Functional Theory
calculations for some atoms and two-atom molecules.

We use the Deslauriers-Dubuc interpolating wavelets [15, 16] in this arti-
cle. We use atomic units (e = me = ℏ = 4πε0 = 1) and the unitary angular
frequency definition of the Fourier transform throughout this article. We abbre-
viate “atomic units” by a.u and units “Hartree” and “Bohr” by Ha and B. This
research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

2 Path Integral Formulation
The time-evolution operator defines the evolution of quantum mechanical sys-
tem [1]:

Ψ(x, tb) = Û(tb, ta)Ψ(x, ta). (3)

For a stationary system it is given by

Û(tb, ta) = exp(−i(tb − ta)Ĥ) (4)

where Ĥ is the Hamiltonian operator of the system. The time evolution of an
eigenstate of a stationary system is given by

Ψa(x, t) = exp(−iEat)ψa(x) (5)

where ψa is an eigenstate of the time-independent Hamiltonian and Ea is its
energy.

The time-evolution operator can be represented as [1]

Û(tb, ta)Ψa =

∫
Rd

K(xb, tb;xa, ta)Ψa(xa, ta)dxa (6)

where d is the dimensionality of the system (1, 2, or 3) and function K is called
the kernel. In path integral formulation the kernel is given by

K(xb, tb;xa, ta) = lim
N→∞

√
m

2πiϵ

Nd ∫
Rd

· · ·
∫
Rd

exp (iSN ) dx1 · · · dxN−1. (7)

For a one-particle system the quantity SN is given by [17]

SN = ϵ

N∑
n=1

(
m

2

(
xn − xn−1

ϵ

)2

− V (xn, tn)

)
(8)
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and
ϵ =

tb − ta
N

. (9)

We also define ∆t = tb − ta. The Trotter kernel is an approximation of the
path-integral kernel given by [3]

K(xb,xa; ∆t) =
( m

2πi∆t

)d/2
exp

(
i

(
m

2∆t
|xb − xa|2 −

∆t

2
(V (xb) + V (xa))

))
. (10)

3 Stationary State Energies and Wavefunctions
Fourier transform has been used to determine the energy spectrum of a quantum
mechanical system with path integral formulation e.g. by Gholizadehkalkhoran
et al. [5].

A stationary state ψ of a quantum mechanical system can be represented by

ψ(x) =

∞∑
k=0

ckfk(x) (11)

where functions fk are the eigenstates of the Hamiltonian operator of the system
and ck are complex numbers. The time evolution of the stationary states is given
by

Ψ(x, t) =

∞∑
k=0

ck exp(−iEkt)fk(x) (12)

where Ek are the energies of the eigenstates. Suppose that we have a fixed point
x0 ∈ Rd and define g(t) := Ψ(x0, t). By making a Fourier transform we obtain

ĝ(ω) =
1√
2π

∫ ∞

t=−∞
g(t) exp(−iωt)dt (13)

=
1√
2π

∞∑
k=0

ckfk(x0)

∫ ∞

t=−∞
exp(−iEkt) exp(−iωt)dt (14)

=
√
2π

∞∑
k=0

ckfk(x0)δ(ω + Ek). (15)

Thus we may compute the eigenenergies of the system from the Fourier spectrum
of function g.

Suppose that we have a stationary system with initial state ψi(x) = Ψ(x, ti)
and final state ψf (x) = Ψ(x, tf ) and assume that the time interval ∆t := tb− ta
is small. We have

ψf (x)− ψi(x) = (exp(−iEt)− 1)ψi(x) ≈ −iEtψi(x) (16)

from which we obtain

E ≈ − 1

∆t
Im

ψf (x)− ψi(x)

ψi(x)
(17)
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and
⟨E⟩ ≈ − 1

∆t
Im

∫
Rd

(ψf (x)− ψi(x)) (ψi(x))
∗dx. (18)

The initial function of the time evolution should be chosen so that it has a
broad Fourier spectrum and it should also contain both even and odd terms.
So we chose to approximate the sum of delta function and its derivative at the
origin with a scaling function centred at the origin and its derivative in the
one-dimensional case. In some calculations we use function −φjmin,−1 + φjmin,1

instead of the derivative. In three dimensions we use the tensor products of
functions (−1− i)φjmin,−1 + (1 + i)φjmin,0 + (1 + i)φjmin,1.

We use the method described in [18, section 2] to compute the continuous
Fourier transform. We have also generalized it into three dimensions.

Let xj , j = 1, . . . , N be the points where we calculate the wavefunction of
state k. Let gj(t) := Ψ(xj , t) and ∆E be the spacing between points in the
Fourier spectrum ĝj(E). We fit the peak k to the Lorentzian distribution

L(E) =
1

π

γ

(E + Ek)2 + γ2
. (19)

Define
pk,j = |ĝj(−Ek)|2 , (20)

p′k,j =
1

2

(
|ĝj(−Ek +∆E)|2 + |ĝj(−Ek −∆E)|2

)
, (21)

and
Lk,j(E) =

1

π

γk,j
(E + Ek)2 + γ2k,j

. (22)

Note that |ĝj(E)|2 is the Fourier transform of the autocorrelation function of
gj(t) multiplied by a constant. Let dk,j = |ckfk(xj)|2 be the undefined variables.
We now set

pk,j = dk,jLk,j(−Ek) = dk,j
1

π

1

γk,j
(23)

and
p′k,j = dk,jLk,j(−Ek +∆E) = dk,j

1

π

γk,j
∆E2 + γ2k,j

. (24)

It follows that
dk,j = πγk,jpk,j (25)

where
γk,j =

√
qk,j

1− qk,j
|∆E| (26)

and

qk,j =
p′k,j
pk,j

. (27)
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4 Approximation of the Path Integral Kernel
We assume that the potential V does not depend on time. We approximate the
kernel by setting N = 2 and we get

K2(xb,xa; ϵ) :=
( m

2πiϵ

)d ∫
Rd

exp (iS2) dx1. (28)

We have
K2(xb,xa; ϵ) =

( m

2πiϵ

)d
I (29)

where

I :=

∫
x1∈Rd

exp(iS2)dx1 (30)

=

∫
x1∈Rd

exp

(
iϵ

(
m

2

(
x1 − xa

ϵ

)2

− V (x1)

+
m

2

(
xb − x1

ϵ

)2

− V (xb)

))
dx1 (31)

= exp
(
i
(m
2ϵ

(
x2
b + x2

a

)
− ϵV (xb)

))
∫
x1∈Rd

exp
(
i
(m
ϵ
x2
1 − ϵV (x1)

))
exp

(
−i
m

ϵ
(xb + xa) · x1

)
dx1 (32)

=
√
2π

d
exp

(
i
(m
2ϵ

(
x2
b + x2

a

)
− ϵV (xb)

))
ĥ
(m
ϵ
(xb + xa)

)
(33)

and
h(x1) := exp

(
i
(m
ϵ
x2
1 − ϵV (x1)

))
. (34)

Now

K2(xb,xa; ϵ) =
( m

2πiϵ

√
2π
)d

exp
(
i
(m
2ϵ

(
x2
b + x2

a

)
− ϵV (xb)

))
ĥ
(m
ϵ
(xb + xa)

)
.

(35)
We call this kernel the midpoint kernel.

If function h is radially symmetric (i.e. the potential is radially symmetric)
we have

ĥ(k) =
i

2k

(
f̂(k)− f̂(−k)

)
, (36)

where f(r) = rhrad(|r|) and h(r) = hrad(|r|). Note that the Fourier transform
of f in equation (36) is one-dimensional.

5 Quantum Harmonic Oscillator and Hydrogen-
like Atom

The potential of the one-dimensional harmonic oscillator is

V (x) =
mω2

0

2
x2 (37)
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where m is the mass of the particle and ω0 is the angular frequency. The
potential of the isotropic three-dimensional harmonic oscillator is

V (x) =
mω2

0

2
|x|2. (38)

The kernel for the one-dimensional harmonic oscillator can be computed
exactly [1]. We have

K(xb, xa; t) =

(
mω0

2πi sin(ω0t)

)1/2

exp(iScl), (39)

where Scl is the classical action given by

Scl =
mω0

2 sin(ω0t)

(
(x2b + x2a) cos(ω0t)− 2xbxa

)
. (40)

By substituting the potential of the one-dimensional harmonic oscillator to
equation (34) we obtain

h(x1) = exp

(
i
m

ϵ

(
1− ϵ2ω2

0

2

)
x21

)
. (41)

Define

a :=
m

ϵ

(
1− ϵ2ω2

0

2

)
(42)

and assume that a > 0. Now

ĥ(k) =
1

2
(1 + i)

1√
a
exp

(
−i
k2

4a

)
. (43)

Similarly, in the three-dimensional case we have

ĥ(k) =
1

4
(−1 + i)a−3/2 exp

(
−i
k2

4a

)
(44)

using equation (36).
The potential of a hydrogen-like atom is

V (x) = − Z

|x|
(45)

in one dimension and
V (x) = − Z

|x|
(46)

in three dimensions. Here Z is the atomic number.

6 Wavelet Bases

6.1 Interpolating Wavelets
We construct the basis function set in the same way as in [14, section 3]. We
assume that φ is some Deslauriers–Dubuc mother scaling function [9, 10, 11, 15,
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16] and d is the dimensionality of the domain Rd. We use only bases with one
or two resolution levels in this article. Constant jmin is the minimum resolution
level in the basis, see [14]. We define G to be the whole basis, G = Gjmin

or
G = Gjmin ∪Gjmin+1.

The interpolating mother scaling function can be represented as [9, 11]

φ(x) =
∑
α∈Z

s[α]φ(2Jx− α) (47)

where J is some nonnegative integer and s[α], α ∈ Z, are constants that depend
on the mother scaling function and J . We define s0[α] to be the coefficients for
J and s1[α] for J − 1. We now have

ηjmin,k(2
−J−jminp) = s0[p− 2Jk] (48)

for all p ∈ Z,
ηjmin+1,k(2

−J−jminp) = s0[p− 2J−1k] (49)

for all p ∈ Z and k even integer, and

ηjmin+1,k(2
−J−jminp) = s1[p− 2J−1k] (50)

for all p ∈ Z and k odd integer. We also have

η̃jmin,ℓ = φ̃jmin,ℓ = δ(· − 2−jminℓ) (51)

for all ℓ ∈ Z,

η̃jmin+1,ℓ = δ(· − 2−jmin−1ℓ) =
∑
β∈Z

h̃βδ(· − 2−jmin−1(β + ℓ)) (52)

for all ℓ ∈ 2Z, and

η̃jmin+1,ℓ =
∑
β∈Z

g̃βδ(· − 2−jmin−1(β + ℓ− 1)) (53)

for all ℓ ∈ 2Z+ 1.
The matrix of the time evolution operator in the interpolating wavelet basis

is
Kr,q =

∫
Rd

∫
Rd

ζ̃r(y)K(y,x)ζq(x)dxdy. (54)

Note that the dual wavelets ζ̃r are finite sums of delta distributions and con-
sequently the integration over y is actually a weighted sum of values of the
function ∫

Rd

K(y,x)ζq(x)dx

in finite number of points y. When r = 2−jminℓ ∈ Gjmin
we have

Kr,q =

∫
Rd

K(2−jminℓ,x)ζq(x)dx. (55)

In one-dimensional case the integral over x is approximated by∫
R
K(y, x)ζq(x)dx ≈ 2−jmin−J

∑
p∈Z

K(y, 2−jmin−Jp)st(q)(p− 2J−t(q)k) (56)
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where k ∈ Z, q = 2−jmink ∈ Gjmin
or q = 2−jmin−1k ∈ Gjmin+1, and

t(q) :=

{
1 if q ∈ Gjmin+1

0 if q ∈ Gjmin .
(57)

For the three-dimensional case define

ti(q) :=

{
1 if q ∈ Gjmin+1 and 2jmin+1q[i] odd
0 otherwise (58)

for i = 1, 2, 3 and t(q) := (t1(q), t2(q), t3(q). Define also

st(z) := st[1](z[1])st[2](z[2])st[3](z[3]). (59)

Now we can approximate∫
R3

K(y,x)ζq(x)dx ≈ 2−3(jmin+J)
∑
p∈Z3

K(y, 2−jmin−Jp)st(q)(p−w · k) (60)

where k ∈ Z3 and q = 2−jmink ∈ Gjmin or q = 2−jmin−1k ∈ Gjmin+1, and w :=
(2J−t1(q), 2J−t2(q), 2J−t3(q))T . We pick some value J0 ≥ 2 and for r ∈ Gjmin+1

we use value J = J0 − 1 in equation (47) and J = J0 otherwise. The lower
accuracy is used because the matrix elements where q belongs to the finer grid
are significantly more complex to compute as the ones in the coarser grid.

We use 8th order Deslauriers–Dubuc wavelets for one-dimensional calcula-
tions and 4th order Deslauriers–Dubuc wavelets for three-dimensional calcula-
tions.

6.2 Orthonormal Wavelets
See [19] for more information on orthonormal wavelets. We define the basis
indices by I = Ijmin

∪ Ijmin+1 where Ij = {(j, k) : k ∈ Kj} and Kj is a finite set
of integer numbers (usually a range of integers). Now the basis functions are
defined by

ζj,k =

{
φjmin,k = 2j/2φ(2j · −k) j = jmin

ψj−1,k = 2(j−1)/2ψ(2j−1 · −k) j > jmin
(61)

where (j, k) ∈ I, φ is the mother scaling function of the wavelet family, and ψ
is the mother wavelet of the wavelet family. In order to compute the values of
the orthonormal wavelets we use the represention

φ(x) = 2J/2
∑
α∈Z

w[α]φ(2Jx− α) (62)

where J is some nonnegative integer and w[α], α ∈ Z, are constants that depend
on the mother scaling function and J . The matrix elements of the time-evolution
operator are given by

Kj,k,j′,k′ =

∫
R

∫
R
ζj,k(y)K(y, x)ζj′,k′(x)dxdy (63)

with orthonormal wavelets. We use the 20th order Daubechies wavelets in this
study. We use only one-dimensional orthonormal wavelets.
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7 Application to the Harmonic Oscillator and Hy-
drogen Atom

Unless otherwise stated the calculations use Deslauriers–Dubuc wavelets.
We make calculations for the one-dimensional harmonic oscillator with the

exact kernel, Trotter kernel, and midpoint kernel. We compute all these system
with both one and two resolution levels of the basis functions for ∆t = 1.0 a.u.
and one resolution level for ∆t = 0.5 a.u. and ∆t = 0.25 a.u. The mass of the
particle is 1 a.u. and the angular frequency 0.1 radians. All these calculations
yield the ground state energy 0.050265 Ha and first excited state 0.150796 Ha
or 0.149226 Ha. We use the basis (1/4){−48, . . . , 48} for one-level calculations
and (1/4){−48, . . . , 48} ∪ (1/8){−5, . . . , 5} for two-level calculations. We use
scaling function resolution J = 3. The energy spectrum for the exact kernel is
plotted in Fig. 1 and for the midpoint kernel in Fig. 2. Both of these calculations
use two resolution levels. The wavefunction of the one-dimensional harmonic
oscillator calculated with the method described in section 3 is plotted in Fig. 3.

When the Deslauriers–Dubuc (interpolating) wavelets are used for the hy-
drogen atom the calculations work for parameter ∆t = 1 a.u. but not for
∆t = 0.5 a.u. So we calculated this system with Daubechies (orthonormal)
wavelets using both Trotter and midpoint kernels. For one resolution level
calculations we use the basis {(2,−48), . . . , (2, 48)} and for the two-level calcu-
lations {(1,−24), . . . , (1, 24)} ∪ {(2,−6), . . . , (2, 6)} We set the mother scaling
function resolution to J = 5. The resulting ground state energies are presented
in Table 1. It can be seen that for the same time parameter the midpoint ker-
nel yields usually better energy compared to the Trotter kernel but the Trotter
kernel accepts smaller time parameters. The best energy for the Trotter kernel
is E0 = −0.502655 Ha and if the energies smaller that the exact energy are ne-
glected we get E0 = −0.494801 Ha. The best energy for the midpoint kernel is
E0 = −0.496372 Ha. The best energy spectrum for the Trotter kernel is plotted
in Fig. 4 and for the midpoint kernel in Fig. 5. The radial probability density
function of the hydrogen atom calculated in one dimension with the the method
described in section 3 is plotted in Fig. 6.

We make calculations for the three-dimensional harmonic oscillator using the
midpoint kernel and the Trotter kernel. The mass of the particle is 1 a.u. and the
angular frequency 0.1 radians. We use basis {−10, . . . , 10}3 and mother scaling
function resolution J = 2. The resulting ground state energy for the midpoint
kernel is E0 = 0.150796 Ha and the first excited state E1 = 0.249757 Ha for
∆t = 4.0 a.u.. For ∆t = 2.0 a.u. the energies are E0 = 0.150796 Ha and
E1 = 0.251327 Ha. The energy spectrum for ∆t = 2.0 a.u. is plotted in Fig. 7.
For the Trotter kernel the energies are E0 = 0.150796 Ha and E1 = 0.251327 Ha
for both ∆t = 4.0 a.u. and ∆t = 2.0 a.u..

We make three-dimensional calculations of the hydrogen atom using the mid-
point kernel and the Trotter kernel. The basis function set is (1/2){−9, . . . , 9}∪
(1/4){−4, . . . , 4}. The function ĥ(k) for the midpoint kernel is calculated with
formula (36). We have to invert the sign of the midpoint kernel (35) in order to
get the energy computation to work. We get energy E = −0.474380 Ha for the
midpoint kernel with parameter ∆t = 2.0 a.u. and value ∆t = 1.5 a.u. does not
yield reasonable results. For the Trotter kernel we get E = −0.477522 Ha with
parameter ∆t = 0.2 a.u. and value ∆t = 0.125 a.u. does not give reasonable
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Table 1: Energies from the one-dimensional calculations of the hydrogen atom.

kernel res. levels ∆t E0 (Ha) E1 (Ha)

midpoint 1 1 -0.446106 -0.131947
midpoint 2 1 -0.446106 -0.113097
Trotter 1 1 -0.402124 -0.106814
Trotter 2 1 -0.402124 -0.106814
midpoint 1 0.5 -0.471239 -0.119381
midpoint 2 0.5 .0.471239 -0.119310
Trotter 1 0.5 -0.446106 -0.113097
Trotter 2 0.5 -0.452389 -0.113097
midpoint 1 0.25 -0.490088 -0.119381
midpoint 2 0.25 -0.490088 -0.119381
Trotter 1 0.25 -0.471239 -0.119381
Trotter 2 0.25 -0.477522 -0.119381
midpoint 1 0.20 -0.490088 -0.131947
midpoint 2 0.20 -0.483805 -0.144513
Trotter 1 0.20 -0.477522 -0.119381
Trotter 2 0.20 -0.483805 -0.119381
midpoint 1 0.125 -0.496372 -0.113097
midpoint 2 0.125 - -
Trotter 1 0.125 -0.490088 -0.119381
Trotter 2 0.125 -0.490088 -0.119381
midpoint 1 0.1 -0.510509 -
Trotter 1 0.1 -0.494801 -0.117810
Trotter 2 0.1 -0.494801 -0.117810
Trotter 1 0.0625 -0.490088 -0.125664
Trotter 2 0.0625 - -
midpoint 1 0.05 - -
Trotter 1 0.03125 -0.502655 -0.125664
Trotter 1 0.03 - -

results.
Note that we get exactly same energy values for many different calculations

because the energy spectrum ĝ(−E) is approximated by the Discrete Fourier
Transform, for which the energy values are discrete. Ruokosenmäki [17] has
discussed the behavior of the path integral kernel with small values of ∆t, too.
It turned out that when the time step parameter ∆t is the same the midpoint
kernel gives usually better energy than the Trotter kernel for the hydrogen atom
(one and three dimensions) but the Trotter kernel accepts smaller values for ∆t.
The two kernels yield approximately the same energy for the harmonic oscillator.
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Figure 1: Energy spectrum of the one-dimensional harmonic oscillator computed
with the exact kernel.
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Figure 2: Energy spectrum of the one-dimensional harmonic oscillator computed
with the midpoint kernel.
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Figure 3: Probability density function |ψ(x)|2 of the one-dimensional harmonic
oscillator computed with the exact kernel.
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Figure 4: Energy spectrum of the hydrogen atom computed with the Trotter
kernel in one dimension.
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Figure 5: Energy spectrum of the hydrogen atom computed with the midpoint
kernel in one dimension.
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Figure 6: Radial probability density function |P1s(r)|2 of the hydrogen atom
computed with the midpoint kernel in one dimension.
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Figure 7: Energy spectrum of the three-dimensional harmonic oscillator calcu-
lated with the midpoint kernel.
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