Interpretation of Differentials

Tommi Höynälänmaa

October 8, 2023

We frequently solve geometrical and physical problems by obtaining an approximate expression for differential $d P$ in terms of differential $d Q$ and then integrating $d P$ to obtain P. We assume that the expression for P is exact even though we used an approximate formula for $d P$. This is justified by saying that the differentials are infinitely small quantities. For example, when we derive an expression for the area of a circular disc (see example 1) we set $d A=2 \pi r d r$ which is an approximate expression when the diffentials are interpreted as real numbers. In this article we try to define a method for computing P so that we don't need approximate expressions in the derivation.

Theorem 1. Let $a, b \in \mathbb{R}$ and $a<b$. Let f be a function from $[a, b]$ into \mathbb{R} and define $\Delta f=f(x+\Delta x)-f(x)$ where $x \in \mathbb{R}$ and $\Delta x \in \mathbb{R} \backslash\{0\}$ and $x, x+\Delta x \in[a, b]$. Suppose that

$$
\Delta f=g(x) \Delta x+h(x, \Delta x)
$$

where x and Δx are defined as before. Suppose also that g is Riemann integrable and

$$
\begin{equation*}
\lim _{\Delta x \rightarrow 0} \frac{h(x, \Delta x)}{\Delta x}=0 \tag{1}
\end{equation*}
$$

for all $x \in[a, b]$. Now $d f=g(x) d x$ and

$$
f(x)-f(a)=\int_{a}^{x} g(t) d t
$$

Proof. This is a direct consequence of the definition of differentiability and Fundamental Theory of Calculus.

The condition (1) can be weakened to

$$
\begin{equation*}
\lim _{\Delta x \rightarrow 0+} \frac{h(x, \Delta x)}{\Delta x}=0 \tag{2}
\end{equation*}
$$

Theorem 2. A sufficient condition for equation (2) is that there exist $S, C \in \mathbb{R}_{+}$ so that

$$
|h(x, \Delta x)|<C|\Delta x|^{2}
$$

for all $x, x+\Delta x \in[a, b]$ and $0<\Delta x<S$.
Proof. We have

$$
\left|\frac{h(x, \Delta x)}{\Delta x}\right|<C|\Delta x| \rightarrow 0
$$

as $\Delta x \rightarrow 0+$.

Figure 1: The area determined in example 1.

Example 1. Derive an expression for the area of a disc whose inner radius is r_{a} and outer radius r_{b}.

Solution: Define ΔA to be the area of a disc with inner radius r and width Δr. We have

$$
2 \pi r \Delta r \leq \Delta A \leq 2 \pi(r+\Delta r) \Delta r
$$

By setting $g(r):=2 \pi r$ and $h(r, \Delta r):=2 \pi(\Delta r)^{2}$ we get $A=\pi r_{b}^{2}-\pi r_{a}^{2}$ by Theorems 1 and 2.

Example 2. Suppose that a particle is moving under influence of a constant force $F=$ ma for time T and the particle is initially at rest. Derive an expression for the kinetic energy of the particle. Assume that the work done by a constant force F is $W=F s$ where s is the distance that the particle moves in the direction of the force. Assume also that the kinetic energy of a particle at rest is 0 .

Solution: We define Δs to be the distance that the particle moves in the time interval $[t, t+\Delta t]$. We have $v=a t$,

$$
a t \Delta t \leq \Delta s \leq a(t+\Delta t) \Delta t
$$

and

$$
a(t+\Delta t) \Delta t=a t \Delta t+a(\Delta t)^{2}
$$

Set $g(t):=a t$ and $h(t, \Delta t):=a(\Delta t)^{2}$ and it follows from Theorems 1 and 2 that the distance that the particle moves in time T is

$$
s=\int_{0}^{T} a t d t=\frac{1}{2} a T^{2}
$$

By setting $v_{f}=a T$ we obtain

$$
E_{k}=W=\frac{1}{2} F a T^{2}=\frac{1}{2} m a^{2} T^{2}=\frac{1}{2} m v_{f}^{2} .
$$

Alternative Solution: Assume that the particle moves distance Δs in time Δt. Define $\Delta W:=F \Delta s$. Now the acceleration $a=\Delta v / \Delta t$ is a constant and we have

$$
\begin{equation*}
\Delta W=m a \Delta s=m \Delta v \frac{\Delta s}{\Delta t} \tag{3}
\end{equation*}
$$

Let $v_{\min }$ and $v_{\max }$ be the minimum and maximum velocities of the particle. We now have

$$
v_{\min } \leq \frac{\Delta s}{\Delta t} \leq v_{\max }
$$

If $\Delta v \geq 0$ we get

$$
m v_{\min } \Delta v \leq \Delta W \leq m v_{\max } \Delta v
$$

which is equivalent to

$$
m v \Delta v \leq \Delta W \leq m(v+\Delta v) \Delta v
$$

If $\Delta v<0$ we have

$$
v+\Delta v \leq \frac{\Delta s}{\Delta t} \leq v
$$

from which it follows that

$$
m v \Delta v \leq \Delta W \leq m(v+\Delta v) \Delta v
$$

Define

$$
h(v, \Delta v):=\Delta W-m v \Delta v .
$$

Now

$$
0 \leq h(v, \Delta v) \leq m \Delta v^{2}
$$

By setting $g(v)=m v$ and assuming that the kinetic energy is zero when $v=0$ it follows from Theorems 1 and 2 that

$$
E_{k}=W=\frac{1}{2} m v^{2} .
$$

