
Interpretation of Differentials

Tommi Höynälänmaa

October 8, 2023

We frequently solve geometrical and physical problems by obtaining an ap-
proximate expression for differential dP in terms of differential dQ and then
integrating dP to obtain P . We assume that the expression for P is exact even
though we used an approximate formula for dP . This is justified by saying that
the differentials are infinitely small quantities. For example, when we derive an
expression for the area of a circular disc (see example 1) we set dA = 2πrdr
which is an approximate expression when the diffentials are interpreted as real
numbers. In this article we try to define a method for computing P so that we
don’t need approximate expressions in the derivation.

Theorem 1. Let a, b ∈ R and a < b. Let f be a function from [a, b] into
R and define ∆f = f(x + ∆x) − f(x) where x ∈ R and ∆x ∈ R\{0} and
x, x+∆x ∈ [a, b]. Suppose that

∆f = g(x)∆x+ h(x,∆x)

where x and ∆x are defined as before. Suppose also that g is Riemann integrable
and

lim
∆x→0

h(x,∆x)

∆x
= 0 (1)

for all x ∈ [a, b]. Now df = g(x)dx and

f(x)− f(a) =

∫ x

a

g(t)dt.

Proof. This is a direct consequence of the definition of differentiability and Fun-
damental Theory of Calculus.

The condition (1) can be weakened to

lim
∆x→0+

h(x,∆x)

∆x
= 0. (2)

Theorem 2. A sufficient condition for equation (2) is that there exist S,C ∈ R+

so that
|h(x,∆x)| < C|∆x|2

for all x, x+∆x ∈ [a, b] and 0 < ∆x < S.

Proof. We have ∣∣∣∣h(x,∆x)

∆x

∣∣∣∣ < C|∆x| → 0

as ∆x → 0+.
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Figure 1: The area determined in example 1.

Example 1. Derive an expression for the area of a disc whose inner radius is
ra and outer radius rb.

Solution: Define ∆A to be the area of a disc with inner radius r and width
∆r. We have

2πr∆r ≤ ∆A ≤ 2π(r +∆r)∆r

By setting g(r) := 2πr and h(r,∆r) := 2π(∆r)2 we get A = πr2b − πr2a by
Theorems 1 and 2.

Example 2. Suppose that a particle is moving under influence of a constant
force F = ma for time T and the particle is initially at rest. Derive an ex-
pression for the kinetic energy of the particle. Assume that the work done by a
constant force F is W = Fs where s is the distance that the particle moves in
the direction of the force. Assume also that the kinetic energy of a particle at
rest is 0.

Solution: We define ∆s to be the distance that the particle moves in the
time interval [t, t+∆t]. We have v = at,

at∆t ≤ ∆s ≤ a(t+∆t)∆t,

and
a(t+∆t)∆t = at∆t+ a(∆t)2.
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Set g(t) := at and h(t,∆t) := a(∆t)2 and it follows from Theorems 1 and 2 that
the distance that the particle moves in time T is

s =

∫ T

0

atdt =
1

2
aT 2

By setting vf = aT we obtain

Ek = W =
1

2
FaT 2 =

1

2
ma2T 2 =

1

2
mv2f .

Alternative Solution: Assume that the particle moves distance ∆s in time
∆t. Define ∆W := F∆s. Now the acceleration a = ∆v/∆t is a constant and
we have

∆W = ma∆s = m∆v
∆s

∆t
(3)

Let vmin and vmax be the minimum and maximum velocities of the particle. We
now have

vmin ≤ ∆s

∆t
≤ vmax.

If ∆v ≥ 0 we get
mvmin∆v ≤ ∆W ≤ mvmax∆v,

which is equivalent to

mv∆v ≤ ∆W ≤ m(v +∆v)∆v.

If ∆v < 0 we have
v +∆v ≤ ∆s

∆t
≤ v,

from which it follows that

mv∆v ≤ ∆W ≤ m(v +∆v)∆v.

Define
h(v,∆v) := ∆W −mv∆v.

Now
0 ≤ h(v,∆v) ≤ m∆v2.

By setting g(v) = mv and assuming that the kinetic energy is zero when v = 0
it follows from Theorems 1 and 2 that

Ek = W =
1

2
mv2.
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