

Quantum reality

Syksy Räsänen University of Helsinki, Department of Physics and Helsinki Institute of Physics

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Quantum century

- Quantum mechanics (and quantum field theory) is the defining physical theory of the 20th century.
- Quantum field theory is one the two fundamental theories of physics at the moment. (The other is general relativity, which describes space, time and gravity.)
- Quantum theory has overturned our conception of reality as concerns matter, being and happening.
- It is the foundation of all modern technology, and its impact on society is difficult to overestimate.

 The view of reality of classical mechanics is close to our everyday ideas.

Classical space and time: the world as a theatre

- Space is a passive stage for action.
- Time indicates at which point of the play we are.
- Both space and time are passive, eternal and unchanging: they do not care about events on-stage (i.e. what matter is doing).

Classical matter and being: the world as a clockwork

- Matter consists of small grains (particles), stuck together. (Classical electromagnetism also includes *fields*; let's not get into them!)
- The grains exist continuously and have a fixed position in space at each time.
 - The world is *definite*. (The state of the world is unambiguous.)
- The grains interact with each other in such a way that, given the position and velocity of every grain at some time, their future and past is determined.
 - The world is *deterministic*. (Every effect has a cause.)
- There is no special present moment.

From the classical to the modern

- In the late 19th and early 20th century, observations could not be explained in the framework of classical physics
- Classical physics gave way to modern physics: quantum mechanics and special relativity.
- Special relativity changed the view of space and time, quantum mechanics changed the view of matter and being.
- These evolved into quantum field theory and general relativity.
- Quantum field theory and general relativity have not yet been fully combined.

UNIVERSITY OF HELSINKI

UNIVERSITY OF HELSINKI

Atomic problems

- In 1911, it was found by Ernest Rutherford that atoms have a positively charged nucleus, surrounded by negatively charged electrons.
- The Rutherford model of the atom is like a solar system.
- According to classical electromagnetism, charged objects in accelerated motion emit electromagnetic radiation.
- An electron would lose energy and fall down into the nucleus in less than a billionth of a second.
- Also, atoms were observed to only emit light at certain discrete wavelengths, instead of a continuum.

Bohr model of the atom

- Niels Bohr proposed a solution in 1913: electrons orbit only at certain discrete distances: *quantisation*.
- If an electron jumps to to a closer orbit, it emits a photon (light particle). It has to absorb a photon to move up.
- Particles still have definite positions and velocities.

Quantum mechanics

- The Bohr model was experimentally successful, but limited, and had no solid basis. It postulated quantisation, instead of explaining it.
- The full theory of *quantum mechanics* was found in 1925.
- Erwin Schrödinger formulated it in terms of the *wave* function, Werner Heisenberg, Max Born, and Pascual Jordan in terms of matrices.
- Both are ways of describing the *state* of the system.

Deterministic state evolution

- The state of the system is the information that describes the system fully.
- In classical mechanics, the state is the positions and velocities of all grains.
- In quantum mechanics, the state cannot be expressed in terms of classical grains of matter.
- In both cases, state evolution is deterministic: given the initial state, the future state can be predicted. (In QM, the past cannot be determined, though.)

Indefiniteness and indeterminism

- In quantum mechanics, two things are new:
 - The state does not correspond one-to-one to observable quantities. (Lack of definiteness.)
 - Relation of the state to observations is not deterministic.(Lack of determinism.)

Wave function

- The state of the system can be represented by a wave function.
- The wave function says:
 - what are the possible results of observations (e.g. which kind of light an atom can emit)
 - what are the probabilities of the possible results

Limits of being, not knowledge

- In classical mechanics, a particle is modelled by a pointlike grain, and the state is its position and velocity.
- In quantum mechanics, a particle is modelled by a wave function. The wave function determines the probability of observing the particle at different points, and with different velocities.
- That is all.
- This is not a question of *not being able to know* more about the particle, but that *there is nothing else to be known*.

Quantum mechanical model of the atom

- Bohr avoided the problem of atom instability (due to electromagnetic emission) by postulating discrete orbits.
- Bohr was wrong.
- In quantum mechanics, there is no problem because particles have no orbits. They do not have definite positions unless they are observed. Hence, they do not move in space along trajectories.

The two-slit experiment

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Interference pattern light: 1803 electron: 1961

To be and not to be

- The following statements about the electron are all incorrect:
 - It goes through the upper hole.
 - It goes through the lower hole.
 - It goes through both of the holes.
 - It doesn't go through either of the holes.
- Classical language of matter as grains, with fixed position and trajectory, is insufficient.
 - Reality is *indefinite*.
- The wave function does not predict where the particle will fall, only the probability for it.
 - Reality is *indeterministic*.

Wave function collapse

- When we observe the electron at one point, we know that the electron was there at the observation time.
- It is said that the wave function *collapses*: instead of a continuous probability distribution, the probability is 100% in one place and 0% everywhere else.
- Because the outcome of the observation is random, state evolution at collapse is indeterministic.
- Thus the present state does not determine the past.
- In quantum mechanics, there is a special moment of happening, when indefinite past is transformed into present certainty.

Schrödinger's cat

- In 1935, Schrödinger illustrated quantum reality with the following thought experiment.
- Put a cat inside a box. In the box, there is a vial of poison gas, attached to a radioactive atom. If the atom decays, the vial is broken and the cat dies. If not, the cat lives.
- If we do not observe inside the box, the atom's state is indefinite. Thus also the state of the cat is indefinite.
- Before we open the box, the cat is neither dead nor alive, it just has a probability of being dead or alive.

Appearance of definiteness

- Indefinite states are seen in the two-slit experiment.
- Why do we never see them in everyday life, for macroscopic objects? (The largest molecule for which the two-slit experiment has been done has 810 atoms.)

The Copenhagen interpretation

- According to the Copenhagen interpretation, the state collapses on observation.
- This is a workable rule for most physics purposes.
- Problems:
 - Puts the observer in a special position. Who qualifies as an observer? What if we put Schrödinger in the box and leave the cat outside?
 - Who observers the observers? (Observer is assumed to be in a definite state.)
 - What about the state of the entire universe?

Decoherence

- Part of the cat problem is solved by *decoherence*.
- System is called decoherent when there is no interference between states corresponding to different observations.
- Interaction between the box and the observers *entangles* them, so that if one is definite, so is the other.
- Thus observers of non-isolated systems see only definite states. (It's difficult to isolate a cat.)
- Decoherence does not explain how the state of the entire system becomes determined (collapse), nor say which of the alternatives is seen (indeterminism).

- The quantum mechanics of 1925 made it possible to calculate atomic spectra more precisely than the Bohr model.
- It also allowed to understand and manipulate the structure of atoms (periodic table), nuclei and molecules.
- All electronics and all modern chemistry –in other words, all modern technology– is based on quantum mechanics.
- The societal effects of electronics, chemistry and so on are incalculable.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Beyond quantum mechanics

- In the 1940's quantum mechanics was unified with special relativity in quantum field theory (QFT).
- (Some of the successes credited to quantum mechanics above require QFT.)
- QFT has allowed us to understand the fundamental building blocks of matter and its interactions at a level beyond atoms, nuclei, protons and neutrons.
- QFT is the most precisely tested theory in history, agreeing with observations at the level of one part 10⁹.
- QFT has not been fully united with general relativity.

Quantum seeds of structure

- Unifying QFT and general relativity has been studied since the 1950s, but remains unaccomplished.
- However, there is one area of overlap where it has been possible to observationally probe quantum gravity.
- In the early universe, during a small fraction of the first second, the expansion of the universe (likely) accelerated.
- The universe, including the probability distribution of perturbations, became smooth.
- As the state became determined (how?), one possibility was realised, and formed the seeds of all cosmic structure.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

http://sci.esa.int/planck/51553-cosmic-microwave-background-seen-by-planck/

Reality beyond imagination

- Quantum theory is the most precisely tested and most technologically fertile theory of physics.
- It has overturned everyday notions of reality in a way that would have been inconceivable a hundred years ago.
- The appearance of definite macroscopic reality is not understood.
- The union of quantum theory and general relativity is yet to be achieved.