
9 Inflation: perturbations

9.1 The evolution of perturbations

9.1.1 The equations of motion

In the previous chapter, we discussed background evolution during inflation. Let us
now look at how perturbations are generated during inflation and how they evolve.
In order to do a consistent calculation, we would have to consider perturbations
both in the inflaton field and the spacetime metric. Instead of delving into cosmo-
logical perturbation theory, we will go for a simplified treatment where we neglect
perturbations in the metric. (This calculation, properly interpreted, will give the
right result to leading order in the slow-roll parameters.)

We split the inflaton field into a background part that depends only on time and
a perturbation that depends also on space:

ϕ(t,x) = ϕ̄(t) + δϕ(t,x) . (9.1)

This split is not unique, as we could add a time-dependent part to the perturbation
and subtract it from the background. This can be fixed by for example demanding
that the spatial average of δϕ(t,x) vanishes. This still leaves open the question of
how the hypersurface of constant t on which this averags is taken is chosen (the
spacetime is no longer exactly homogeneous and isotropic, so there is no obviously
preferred time slicing). This is related to the gauge freedom of cosmological pertur-
bation theory, and we will not consider it further.

In chapter 8, we derived the equation of motion of the scalar field,

¨̄ϕ+ 3H ˙̄ϕ = −V ′(ϕ̄) , (9.2)

The equation of motion for the full field (neglecting perturbations in the metric) is
similar,

ϕ̈− 1

a2
∇2ϕ+ 3Hϕ̇ = −V ′(ϕ) , (9.3)

where the new addition is the spatial derivatives, ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. Note the a−2

factor, which corresponds to the fact that the measure of proper length is a(t)dxi,
not dxi. Using the decomposition (9.1) and expanding V ′(ϕ) = V ′(ϕ̄) + V ′′(ϕ̄)δϕ+
O(δϕ2), we get to first order in δϕ,

δϕ̈+ 3Hδϕ̇+

(
− 1

a2
∇2 + V ′′(ϕ̄)

)
δϕ = 0 . (9.4)

Although we have neglected metric perturbations, this expression is (in a suitable
coordinate system) correct during slow-roll to leading order in the slow-roll param-
eters.

As the equation of motion is linear, it is easily solved with a Fourier transfor-
mation. Let us assume that the universe is spatially flat (K = 0). We can then
write

δϕ(t,x) =
1

(2π)3/2

∫
d3kδϕk(t)eik·x , (9.5)
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Because the universe expands, the variable k, called the comoving momentum or
comoving wavenumber, is not the physical momentum, which is given by k/a. With
the scale factor normalised to unity today, the comoving momentum of a Fourier
mode is the physical momentum it has today.

Spatial flatness is crucial here. If space was curved, plane waves would not form a
complete set of basis functions, and we would instead have to use more complicated
functions. (There would also be an additional scale present, given by the spatial
curvature term K/a2.)

Different Fourier modes decouple, and (9.4) reduces to

δϕ̈k + 3Hδϕ̇k +

[(
k

a

)2

+m2(ϕ̄)

]
δϕk = 0 , (9.6)

where we have denoted m2(ϕ̄) ≡ V ′′(ϕ̄).

9.2 Fourier decomposition

As a short interjection, let us give a few results regarding Fourier transform and
Fourier series. We will want to interconvert between the two. Following Liddle &
Lyth [1] we have, for any function g(t,x)

g(t,x) =
1

(2π)3/2

∫
g(t,k)eik·xd3k

g(t,k) =
1

(2π)3/2

∫
g(t,x)e−ik·xd3x .

(9.7)

To take the limit of infinite box size, L3 →∞, we replace(
2π

L

)3∑
k

→
∫
d3k

(
L

2π

)3

gk(t) → 1

(2π)3/2
g(t,k)(

L

2π

)3

δkk′ → δ3(k − k′)

(9.8)

It is usually easiest to work with the series and convert to the integral at the end
(to avoid dealing with products of delta functions).

Cosmological perturbations generated by inflation are Gaussian, which means
that different k modes are independent (except for the reality condition g−k =
g∗k), have a Gaussian distribution, and all statistical information is encoded in the
variance. The variance of a quantity whose average vanishes, 〈g(x)〉 = 0 (we don’t
explicitly write the time-dependence here), is1

〈g(x)2〉 =
∑
k

〈|gk|2〉 ≡
(

2π

L

)3∑
k

1

4πk3
Pg(k)

→ 1

4π

∫
d3k

k3
Pg(k) =

∫ ∞
0

dk

k
Pg(k) =

∫ ∞
−∞
Pg(k)d ln k ,

(9.9)

1Note that the result has no x-dependence. Even though the function g(x)2 varies from place
to place, its expectation value is the same everywhere.
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where we have defined the power spectrum Pg(k) as

Pg(k) ≡
(
L

2π

)3

4πk3〈|gk|2〉 =
L3

2π2
k3〈|gk|2〉 . (9.10)

The power spectrum of g gives the contribution of a logarithmic scale interval
to the variance of g(x). For Gaussian perturbations, the power spectrum gives a
complete statistical description, and all statistical quantities can be calculated from
it.

9.2.1 Solutions

Let us now return to the equation of motion (9.6) for the field perturbations and solve
it. During inflation, H and m2 change slowly. Thus, we now make an approximation
where we treat them as constants. The general solution of (9.6) is then

δϕk(t) = a−3/2
[
AkJ−ν

(
k

aH

)
+BkJν

(
k

aH

)]
, (9.11)

where Jν is the Bessel function of order ν, with

ν =

√
9

4
− m2

H2
. (9.12)

The time dependence of the scale factor for constant H is

a(t) ∝ eHt . (9.13)

If the slow-roll approximation is valid, the inflaton has negligible mass, m2 � H2,
since

m2

H2
= 3M2

Pl

V ′′

V
= 3η � 1 . (9.14)

Thus we can drop m2/H2 in (9.12), so

ν =
3

2
. (9.15)

Bessel functions of half-integer order are the spherical Bessel functions which can be
expressed in terms of trigonometric functions. The solution (9.11) now reduces to

δϕk(t) = Akwk(t) +Bkw
∗
k(t) , (9.16)

where the constants Ak, Bk have been redefined to absorb some numerical constants,
compared to (9.11), and

wk(t) =

(
i+

k

aH

)
exp

(
ik

aH

)
. (9.17)

Well before Hubble exit, k � aH, the exponent is large, and the solution os-
cillates rapidly. After Hubble exit, k � aH, the solution stops oscillating and
approaches the constant value i(Ak − Bk). As the equation for the field perturba-
tion is linear, we need some other information to fix the constants of integration in
(9.16), i.e. the initial conditions. They are given by quantum mechanical vacuum
fluctuations.
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9.3 The generation of perturbations

It may sound somewhat odd to discuss the generation of perturbations. This implies
that we consider the state of a system which is homogeneous and isotropic at some
initial time, but where the behaviour is nevertheless different at different positions
at a later time. This may seem impossible, because then we would have to a have a
rule that would say where the perturbations are going to be, which would distinguish
one position from another. Therefore it would seem that perturbations have to be
given as an initial condition, and cannot be calculated from first principles. In a
deterministic theory, this is true. However, quantum theory offers a way out of this
impasse. It is is indeterministic, and there is no rule that will tell what the outcome
of a quantum process will be, only probabilities of various outcomes (i.e. statistical
distributions) are calculable. To discuss quantum behaviour of the inflaton field, we
need to use quantum field theory in an inflating FRW universe. To warm up let us
first consider quantum field theory of a scalar field in Minkowski space.

9.3.1 Vacuum fluctuations in Minkowski space

The field equation for a massive free (i.e. V (ϕ) = 1
2m

2ϕ2) real scalar field in
Minkowski space is

ϕ̈−∇2ϕ+m2ϕ = 0 , (9.18)

or
ϕ̈k + E2

kϕk = 0 , (9.19)

where E2
k = k2 + m2. We recognise (9.19) as the equation for a harmonic oscilla-

tor. Thus each Fourier component of the field behaves as an independent harmonic
oscillator.

In the quantum mechanical treatment of the harmonic oscillator one introduces
the creation and annihilation operators, which raise and lower the energy state of
the system. It will be useful to do that here.

We have a different pair of creation and annihilation operators â†k, âk for every
Fourier mode k. We denote the ground state of the system by |0〉, and call it the
vacuum. Particles are quanta of the oscillations of the field. The vacuum is a state
with no particles. Operating on the vacuum with the creation operator â†k adds one
quantum with momentum k and energy Ek to the system, i.e. creates one particle.
We denote this state with one particle with momentum k by |1k〉. Thus

â†k|0〉 = |1k〉 , (9.20)

and the state is normalised as 〈1k|1k′〉 = δkk′ . This particle has a well-defined mo-
mentum k, and therefore it is completely unlocalised, as dictated by the Heisenberg
uncertainty principle. The annihilation operator acting on the vacuum gives zero,
i.e. not the vacuum state but the zero element of Hilbert space (the space of all
quantum states),

âk|0〉 = 0 . (9.21)

We denote the hermitian conjugate of the vacuum state by 〈0|. Thus

〈0|âk = 〈1k| and 〈0|â†k = 0 . (9.22)
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The commutation relations of the creation and annihilation operators are

[â†k, â
†
k′ ] = [âk, âk′ ] = 0 , [âk, â

†
k′ ] = δkk′ . (9.23)

When going from classical physics to quantum physics, classical observables are
replaced by operators. We can then calculate expectation values for these observ-
ables using the operators. Here the classical observable

ϕ(t,x) =
∑

ϕk(t)eik·x (9.24)

is replaced by the field operator

ϕ̂(t,x) =
∑

ϕ̂k(t)eik·x (9.25)

where2

ϕ̂k(t) = wk(t)âk + w∗k(t)â
†
−k (9.26)

and

wk(t) = L−3/2
1√
2Ek

e−iEkt (9.27)

is the mode function, a solution of the field equation (9.19). (The normalisation has
been fixed to get the right commutation relations, (9.29).) We are using the Heisen-
berg picture, i.e. we have time-dependent operators and the quantum states are
time-independent. Note that since the operator ϕ̂(t,x) is Hermitian (corresponding
to a real field), ϕ̂(t,x)† = ϕ̂(t,x), the corresponding Fourier components satisfy
ϕ̂k(t)† = ϕ̂−k(t). So the Fourier component operators are not Hermitian.

In quantum mechanics, we have two conjugate variables, position and momen-
tum. In quantum field theory, we have the field and the corresponding canonical
momentum, which is in this case just given by the time derivative of the field. Com-
bining (9.26) and (9.27), we have

˙̂ϕk(t) = −iEk
(
wk(t)âk − w∗k(t)â

†
−k

)
. (9.28)

We can now calculate the commutator between the field operator and the cor-
responding velocity operator. A straightforward calculation with the rules (9.23)
gives

[ϕ̂k(t), ˙̂ϕk′(t)] = iL−3δk,−k′ . (9.29)

(Exercise: Show that demanding the canonical commutation relation (9.29) fixes
the normalisation to be the one given in (9.27).)

The Hamiltonian density of the scalar field in Minkowski space is

Ĥ = −1

2
ηµν∂µϕ̂ ∂νϕ̂+ V (ϕ̂)

=
1

2
˙̂ϕ2 − 1

2
δij∂iϕ̂∂jϕ̂+ V (ϕ̂) , (9.30)

2We skip the detailed derivation of the field operator, which belongs to a course of quantum field
theory. See e.g. Peskin & Schroeder, section 2.3 (note the different normalisations of operators and
states, related to doing Fourier integrals rather than sums, and considerations of Lorentz invariance).
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and the Hamiltonian is the spatial integral of the Hamiltonian density,

Ĥ =

∫
d3xĤ . (9.31)

Since the Hamiltonian depends on the field velocity operator, it does not commute
with the field operator,

[Ĥ, ϕ̂] 6= 0 . (9.32)

As a result, the Hamiltonian and the field operator do not share a complete set of
eigenstates. So, in general an eigenstate of the Hamiltonian is not an eigenstate of the
field operator. Eigenstates of the Hamiltonian operator are the energy eigenstates,
and the state with the smallest energy is called the vacuum state. Since the vacuum
is not an eigenstate of the field operator, the eigenvalues of the field operator are
not well defined, instead we have only a distribution of values. In other words, the
scalar field has vacuum fluctuations.

The vacuum fluctuations of the field are Gaussian (we skip the proof), and are
thus completely completely characterised by their variance, which we can express
with the power spectrum as (note that 〈ϕ̂〉 = 0)

〈ϕ̂(x)2〉 =

∫ ∞
0

dk

k
Pϕ(k) . (9.33)

For the vacuum state |0〉, the expectation value of |ϕk|2 is

〈0|ϕ̂kϕ̂
†
k|0〉 =

|wk|2〈0|âkâ†k|0〉+ w2
k〈0|âkâ−k|0〉+ (w∗k)

2〈0|â†−kâ
†
k|0〉+ |wk|2〈0|â†−kâ−k|0〉

= |wk|2〈1k|1k〉 = |wk|2 (9.34)

since all but the first term give 0, and the states are normalised so that 〈1k|1k′〉 =
δkk′ . Therefore the power spectrum is, using the definition (9.10),

Pϕ(k) = L3 k
3

2π2
|wk|2 . (9.35)

From (9.27) we have |wk|2 = 1/(2L3Ek), so we get the final result

Pϕ(k) =
k3

4π2Ek
. (9.36)

In the case of inflation, the mode functions are different because space is expand-
ing, but the reasoning remains the same.

9.3.2 Vacuum fluctuations during inflation

During inflation the field equation for inflaton perturbations is, from (9.4),

δϕ̈k + 3Hδϕ̇k +

[(
k

a

)2

+m2(ϕ̄)

]
δϕk = 0 . (9.37)
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In inflation, the background field is treated classically, and only the perturbations
around the mean value of the field are quantised. In fact, if we were to take into
account perturbations on the metric in a coordinate-independent manner, we would
see that the variables that are quantised are a linear combination of the scalar field
perturbations and metric perturbations. Thus in inflation, part of the spacetime
metric is quantised. Inflation may thus be called the first quantum gravity scenario
which has been confronted with observations – with great success. However, just
like the background scalar field, the background metric is not quantised. How to
quantise the metric in general, and not just small perturbations, remains one of the
most studied and most difficult questions in physics. In this course, we just treat
the field perturbation during inflation the same way that we treated the field in
Minkowski space. That is, the Fourier modes of the field perturbation are written
as

δϕ̂k(t) = wk(t)âk + w∗k(t)â
†
−k , (9.38)

where the mode function wk(t) satisfies the classical equation of motion (9.4), with
the normalisation fixed by the canonical commutation relation,

[δϕ̂k(t), δ ˙̂ϕk′(t)] = i(aL)−3δk,−k′ , (9.39)

where the only difference from the Minkowski space commutator (9.29) is the change
L→ aL on the right-hand side.

Taking the solution of (9.4) given in section 9.2.1, under the approximations

H = const. and m2

H2 = 3η ≈ 0 and fixing the normalisation with (9.39), we get the
solution

wk(t) = L−3/2
H√
2k3

(
i+

k

aH

)
exp

(
ik

aH

)
, (9.40)

where the time-dependence is a(t) ∝ eHt.
When the scale k is well inside the Hubble radius, k � aH, δϕk(t) oscillates

rapidly compared to the Hubble time H−1. If we consider distance and time scales
much smaller than the Hubble scale, spacetime curvature does not matter and things
should behave like in Minkowski space. Considering (9.40) in this limit, one finds
(exercise) that wk(t) indeed becomes (up to a slowly varying phase), equal to the
Minkowski space mode function (9.27), with the lengths scaled by a. (The prefactor
in (9.40) was chosen so that the normalisations would agree.) Therefore the mode
function wk(t) of (9.40) tells how the perturbation behaves as it approaches and
exits the Hubble radius.

The calculation of the power spectrum of inflaton fluctuations is the same as in
Minkowski space, with the same result,

Pδϕ(k) = L3 k
3

2π2
|wk|2 . (9.41)

Well before Hubble exit, k � aH, and on timescales � H−1, the field operator
δϕ̂k(t) agrees with the Minkowski space field operator and we have the same kind of
initial δϕ vacuum fluctuations as in Minkowski space. However, the time evolution
of the perturbations is different. Well after Hubble exit, k � aH, the mode function
approaches a constant

wk(t) → L−3/2
iH√
2k3

, (9.42)
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so the vacuum fluctuations “freeze” and the power spectrum acquires the constant
value

Pδϕ(k) = L3 k
3

2π2
|wk|2 =

(
H

2π

)2

. (9.43)

We have calculated the power spectrum of the inflaton field perturbations by
using the quantum mechanical expectation value of the square of the field perturba-
tion. We now identify this with the expectation value of a probability distribution
of a classical variable, i.e. we assume that the quantum mechanical fluctuations
become classical. Some part of this process is understood (it can be shown that the
quantum mechanical expectation values become equal to those of a classical stochas-
tic distribution, or “squeezed”), but the emergence of (at least the appearance of)
classical reality from a quantum system remains an unsolved problem. In particle
physics appeal is often made to the Copenhagen interpretation according to which
states become classical when they are measured, but for cosmology this is inade-
quate. We simply assume that we can replace an expectation value of a quantum
state with the ensemble average of a classical distribution.

For our purposes, quantum mechanics generates the initial perturbations and
solves the problem of how perturbations can emerge from a state which is homoge-
neous and isotropic. As a remnant of the indeterministic origin of the perturbations,
we cannot predict the specific member of the ensemble which is realised in the uni-
verse, we can only calculate the statistical distribution of perturbations. As noted,
this distribution is Gaussian, so all Fourier modes δϕk are independent random
variables (except for the reality condition δϕ−k = δϕ∗k) with a Gaussian probability
distribution.

9.3.3 The comoving curvature perturbation

We now calculated the inflationary prediction for the power spectrum of the field
perturbation. Relating that prediction to the power spectrum of the density per-
turbation in the late universe requires a number of extra steps. We will not discuss
the details, just outline some main points. Generally, the field perturbation δϕk

is related to the comoving curvature perturbation Rk, which is a measure of how
much the field curves spacetime. The advantage of using Rk is that it is constant on
super-Hubble scales even when the Hubble parameter and the field change, and thus
δϕk changes: we see from (9.37) that δϕk is not in general constant even for super-
Hubble modes. The perturbation Rk is conserved (on super-Hubble scales) not only
during inflation, but during reheating, when the inflaton decays into particles, and
after. In the late universe, we can thus relate Rk to the density perturbation of the
gas formed by those particles, which eventually forms galaxies and other structures.

The result (9.43) was obtained treating H as a constant. However, H does
change, albeit slowly, during inflation. To take into account evolution we use for
each scale k the value of H which is representative for the evolution of that particular
scale through the Hubble radius. That is, we choose the value of H at Hubble exit3,

3A more precise calculation, where the evolution of H(t) is taken into account gives a correction
to the amplitude of PR(k) that is first order in slow-roll parameters and a correction to the spectral
index n that is second order in the slow-roll parameters. Note that H is assumed to be constant
only for each k mode during the time it crosses the Hubble radius. The equations of motion of the
different modes are independent, so in principle H could be very different for modes that exit at
very different times without violating our assumptions.
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so that aH = k. Thus the power spectrum is

Pδϕ(k) = L3 k
3

2π2
|wk|2 =

(
H

2π

)2

aH=k

, (9.44)

where the subscript notation signifies that the value of H for each k is to be taken
at Hubble exit of that particular scale.

Since we have only one quantity which has fluctuations, the inflaton field, and
the perturbations are treated in linear theory, the perturbations of any other quan-
tity are related to the inflaton field fluctuation by linear and local equations. So the
distribution of the perturbations inherits the property of homogeneity and isotropy
from the symmetry of the background on which they are created and evolve. Pertur-
bations generated by inflation are statistically homogeneous and isotropic, i.e. the
power spectrum depends only on the magnitude k of k, not on the direction.

In particular, for the comoving curvature perturbation we have (we skip the
calculation and just give the result)

PR(k) =

(
H
˙̄ϕ

)2

Pδϕ(k) =

(
H
˙̄ϕ

H

2π

)2

aH=k

. (9.45)

This the main result for quantum fluctuations during inflation. The problem has
been completely reduced to the evolution of the background scalar field and the
background Hubble parameter. We just need to specify the inflation potential and
calculate how the background evolves, and plug it in (9.45) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by a vector field instead of a scalar field.)

9.4 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum

PR(k) =

(
H

ϕ̇

H

2π

)2

aH=k

, (9.46)

(In this section, we drop the overbar from the background values.) Let’s now get
back to the inflaton potential and the presentation of the dynamics of slow-roll
inflation in terms of the two slow-roll variables. Applying the slow-roll equations

H2 =
V

3M2
Pl

and 3Hϕ̇ = −V ′ ,

equation (9.46) becomes

PR(k) =
1

12π2
1

M6
Pl

V 3

V ′2
=

1

24π2
1

M4
Pl

V

ε
, (9.47)
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is [2]

PR(k)1/2 ≈ 4.6× 10−5 (9.48)

on cosmological scales. This gives a constraint on inflation(
V

ε

)1/4

≈ 241/4
√
π
√

4.6× 10−5MPl ≈ 0.027MPl = 6.4× 1016 GeV . (9.49)

Since ε < 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.027MPl . (9.50)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl), the

constraint on V translates into H < 6 × 1014 GeV, or in terms of length, H−1 >
3× 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the Hubble radius, we expect PR(k) to be a slowly varying function
of k. We describe this small variation with the spectral index n of the primordial
spectrum, defined as4

n(k)− 1 ≡ d lnPR
d ln k

. (9.51)

If the spectral index is independent of k, we say that the spectrum is scale-free. In
this case the primordial spectrum is a power law

PR(k) = A2

(
k

k∗

)n−1
, (9.52)

where the pivot scale k∗ is some chosen reference scale (for the Planck data, k∗ = 0.05
Mpc−1, and and A is the amplitude at the pivot scale.

If the power spectrum is constant,

PR(k) = const. , (9.53)

corresponding to n = 1, we say that the spectrum is scale-invariant (which is a
special case of a scale-free spectrum). A scale-invariant spectrum is also called the
Harrison–Zel’dovich spectrum.

If n 6= 1, the spectrum is called tilted. A tilted spectrum is called red if n < 1
(more power on large scales) and blue if n > 1 (more power on small scales). If
dn/dk 6= 0, it is said that there is a running spectral index.

Using (9.47) and (9.51), we can calculate the spectral index for slow-roll inflation.
Since PR(k) is evaluated from (9.47) when k = aH, we have

d ln k

dt
=
d ln(aH)

dt
=
ȧ

a
+
Ḣ

H
= (1− ε)H ,

4The −1 is in the definition for historical reasons, related to other ways of defining the power
spectrum of perturbations.
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where we used the fact that in the slow-roll approximation Ḣ = −εH2 in the last
step. Thus

d

d ln k
=

1

1− ε
1

H

d

dt
=

1

1− ε
ϕ̇

H

d

dϕ
= −

M2
Pl

1− ε
V ′

V

d

dϕ
≈ −M2

Pl

V ′

V

d

dϕ
. (9.54)

Let us first calculate the scale dependence of the slow-roll parameters:

dε

d ln k
= −M2

Pl

V ′

V

d

dϕ

[
M2

Pl

2

(
V ′

V

)2
]

= M4
Pl

[(
V ′

V

)4

−
(
V ′

V

)2 V ′′

V

]
= 4ε2 − 2εη

(9.55)
and, in a similar manner (exercise),

dη

d ln k
= . . . = 2εη − ξ , (9.56)

where we have defined a third slow-roll parameter

ξ ≡M4
Pl

V ′

V 2
V ′′′ . (9.57)

The parameter ξ is typically second-order small in the sense that
√
|ξ| is of the same

order of magnitude as ε and η.
We can now calculate the spectral index:

n− 1 =
1

PR
dPR
d ln k

=
ε

V

d

d ln k

(
V

ε

)
=

1

V

dV

d ln k
− 1

ε

dε

d ln k

= −M2
Pl

V ′

V
· 1

V

dV

dϕ
− 4ε+ 2η = −6ε+ 2η .

(9.58)

Slow-roll requires ε � 1 and |η| � 1, so the spectrum is predicted to be close to
scale invariant. This agrees well with observations. Note how, as in the case of dark
matter, things fall into place automatically. In order to have negative pressure, a
scalar field has to roll slowly. Once the background evolution is slowly rolling, the
perturbations are close to scale-invariant, without needing to add new ingredients
or tune anything.

Assuming that at late times the universe is described by the ΛCDM model, the
current constraint on the spectral index from CMB data by the Planck satellite and
the BICEP2/Keck telescope is, assuming the presence of running and possible tensor
perturbations [2]

n = 0.9640± 0.0043 . (9.59)

The value is model-dependent, and with a different cosmological model (different
dark energy model, the presence of cosmic strings, and so on), the preferred value of
the spectral index can change slightly. However, in all but the most exotic models
it remains close to scale-invariant.

From the results of the running of ε and η, we obtain the running of the spectral
index:

dn

d ln k
= 16εη − 24ε2 − 2ξ . (9.60)
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The running is second order in slow-roll parameters, so it’s expected to be even
smaller than the deviation from scale invariance. The observational range is

dn

d ln k
= −0.0071± 0.0068 , (9.61)

Some inflation models have |n − 1| and |dn/d ln k| larger than this, others do not.
Observations have ruled out some inflation models, while a zoo of dozens to hundreds
of viable models remains [3].

CMB experiments have measured the CMB temperature anisotropy over a range
∆ log k ≈ 8, from the largest scales down to Mpc scales. On scales smaller than those
that have been probed, the CMB anisotropy is expected to be negligible, so we expect
there is nothing more to see in the CMB temperature anisotropies. However, it is
possible to probe these smaller scales by observations of large-scale structure. Recall
that for high energy-scale inflation, the number of e-folds until the end of inflation
when the largest observable modes are generated is about 60, so we are only seeing
a small part of inflation.

The above results do not allow an independent determination of the two slow-
roll parameters ε and η. However, it turns out that the spectral index of tensor
perturbations produced by inflation is independent of η (it is −2ε). So if tensor
perturbations are detected (they have a definite signature on the CMB) and their
spectrum is measured, we can get both ε and η. The amplitude of the tensor
perturbations also depends directly on the Hubble parameter during inflation, so it
will provide a measurement of the energy scale of inflation. Typically, large-field
inflation models produce tensor perturbations with much larger amplitude than
small-field inflation models. In the small-field case they may be too small to be
detectable in the near future. It is possible to calculate the spectrum of gravity
waves the same way as we did for the scalar perturbations.

Example: Consider the simple inflation model

V (ϕ) =
1

2
m2ϕ2 . (9.62)

In chapter 8 we already calculated the slow-roll parameters for this model:

ε = η = 2
M2

Pl

ϕ2
(9.63)

and we immediately see that ξ = 0. We thus have

PR =
1

96π2
m2

M2
Pl

(
ϕ

MPl

)4

(9.64)

n = 1− 6ε+ 2η = 1− 8

(
MPl

ϕ

)2

(9.65)

dn

d ln k
= 16εη − 24ε2 − 2ξ = −32

(
MPl

ϕ

)4

. (9.66)

To get the numbers, we need the values of ϕ when the relevant cosmological
scales left the Hubble radius. We know that the number of inflation e-foldings after
that should be about N = 60, depending on the preheating history. We have

N(ϕ) =
1

M2
Pl

∫ ϕ

ϕend

V

V ′
dϕ =

1

M2
Pl

∫
ϕ

2
dϕ =

1

4M2
Pl

(
ϕ2 − ϕend

2
)
, (9.67)
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and we estimate ϕend from ε(ϕend) = 2M2
Pl/ϕend

2 = 1 ⇒ ϕend =
√

2MPl to get

ϕ2 = ϕend
2 + 4M2

PlN = 2M2
Pl + 4M2

PlN ≈ 4M2
PlN . (9.68)

Thus (
MPl

ϕ

)2

=
1

4N
, (9.69)

so we get

PR =
N2

6π2
m2

M2
Pl

=
600

π2
m2

M2
Pl

(9.70)

n = 1− 2

N
= 0.97

dn

d ln k
= − 2

N2
= −0.0006 , (9.71)

where we have input N = 60. For PR we have, according to (9.48) PR = 2.1×10−9,
which gives

m ≈ 8

N
1014 GeV ≈ 1× 1013 GeV ≈ 6× 10−6MPl , (9.72)

for N = 60. We get V 1/4 = (2Nm2M2
Pl)

1/4 ≈ 2 × 1016 GeV as the energy scale
for the period when the perturbations seen in the CMB were generated. Potential
energy at the end of inflation is

V
1/4
end =

(
1

2
m2ϕend

2

)1/4

=

√
m

MPl
MPl ≈ 2× 10−3MPl ≈ 6× 1015 GeV . (9.73)

Because of the high energy scale, the amplitude of tensor perturbations, as quantified
by the tensor-to-scalar ratio r is significant, r = 8/N ≈ 0.13. The current upper
limit from combined Planck and BICEP2/Keck data is r < 0.079 [2]. Therefore, the
simple m2ϕ2 model is ruled out, although it fitted the observations fine until the
Planck data.

Exercise: It can be shown that the power spectrum of gravitational waves
produced by inflation is

Pt(k) =
8

M2
Pl

(
H

2π

)2

aH=k

.

Find the tensor-to-scalar ratio

r ≡ Pt(k)

PR(k)

and the tensor spectral index

nt ≡
d lnPt
d ln k

in terms of the slow-roll parameters to first order.
Exercise: From the limit r < 0.07, calculate the resulting limit on the energy

scale of inflation. Using that, find the maximum amount by which the scale factor
can have expanded from reheating until today, assuming there are only Standard
Model degrees of freedom.
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