
8 Inflation: background

8.1 Motivation

Inflation is a scenario in which there was a period of accelerated expansion in the
very early universe. While it has not been established beyond reasonable doubt
that inflation took place, inflation, like dark matter, is a very successful hypothesis.
Inflationary models have made several detailed predictions that have been observa-
tionally verified, and no competing scenario has had the same success.

The word “inflation” also refers to the period of accelerated expansion, and also
to the accelerated expansion itself. For example, we say that the “the universe
inflates” to mean that the expansion accelerates. The motivation for inflation came
from some unresolved issues of the “Big Bang model”, i.e. the homogeneous and
isotropic FRW model with matter consisting of a gas of particles, which we have
considered thus far.

8.1.1 Homogeneity and isotropy problem, or the horizon problem

One question concerns the origin of the symmetry of the FRW model. There is no
unique way to define a measure on the “set of spacetimes” (though attempts have
been made), but the homogeneous and isotropic universes seem very special. Ho-
mogeneity and isotropy of the universe have two distinct aspects. First, departures
from homogeneity and isotropy are small, i.e. the differences in any physical quan-
tity calculated at two different spatial points are small. This is the case in the early
universe, as we know from the fact that the amplitude of the CMB perturbations is
only ∼ 10−5 (apart from the dipole component which is 10−3 and which is presum-
ably overwhelmingly due to our motion).1. Today, perturbations are locally large
in the sense that differences in the local value of the energy density, expansion rate
and so on are large. The density of a galaxy can typically be 106 times larger than
the mean density, and a void can expand faster than the mean by tens of percent.
However –and this is the second aspect of homogeneity and isotropy– the universe is
still statistically homogeneous and isotropic today, because the initial distribution of
small perturbations had this symmetry. So the homogeneity and isotropy question
is related to the origin of the seeds of structure. Where did the small deviations
come from, and why is their distribution the observed one? A particular aspect
of this the horizon problem. The CMB anisotropies are correlated on all observed
scales. However, at the time of last scattering any regions which are today separated
by more than about 1◦ had not had time to interact in the Big Bang model (i.e.
assuming the FRW metric and ordinary matter).

8.1.2 The flatness problem

Another issue is the spatial flatness of the universe. The density parameter is

Ω− 1 =
K

(aH)2
. (8.1)

1Strictly speaking, this is the amplitude of deviations in the distribution of photons. As baryonic
matter was in equilibrium with the photons, it was also close to homogeneous and isotropic. How-
ever, departures from homogeneity and isotropy were larger in the dark matter, which is decoupled
from photons.
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Figure 1: The horizon problem.

If Ω is unity at some time, it is always unity. If Ω ̸= 1 at any time, it evolves in
time. Assuming that the spatial curvature is initially small, we have

mat. dom. a ∝ t2/3, H ∝ t−1 ⇒ 1

aH
∝ t1/3 ⇒ |1− Ω| ∝ t2/3 ∝ a (8.2)

rad. dom. a ∝ t1/2, H ∝ t−1 ⇒ 1

aH
∝ t1/2 ⇒ |1− Ω| ∝ t ∝ a2 . (8.3)

If the spatial curvature is positive, it will quickly dominate over matter or radia-
tion, and the expansion will stop and turn around, and the universe will collapse. If
the spatial curvature is negative, the universe will quickly become empty and cold.
The flatness problem is thus also called the oldness problem. In the ΛCDM model,
the curvature today is very small, |Ω(t0) − 1| < 10−2. Therefore, at BBN we have
|Ω(tBBN) − 1| ≲ 10−19, which seems like a strong tuning. (Of course, if the spatial
curvature is initially zero, it will remain zero. However, this is a special value, for
which we would like to have an explanation.)

8.1.3 The relic problem

At early times in the Big Bang model the temperature is very high. In grand
unified theories of particle physics there are phase transitions at high temperatures
(in the Standard Model, there are no such phase transitions, only the QCD and
electroweak crossovers). These phase transitions can generate topological defects
such as magnetic monopoles, cosmic strings and domain walls, which correspond
to (approximately) zero-, one- and two-dimensional topological defects. Just like
(given a specific model) we can calculate the relic density of dark matter particles,
we can calculate the density of these relics. In some models the energy density of
monopoles today would be much higher than the observed energy density. This is
related to the fact that monopoles are typically very massive, with masses of the
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order of the grand unified scale. The presence of cosmic strings and domain walls
would also be problematic, as they are also typically very heavy, and their energy
density relative to ordinary matter increases with time (i.e. it goes down more
slowly). In supersymmetric models one particular problem is the overproduction of
gravitinos, the supersymmetric partners of the graviton. If gravitinos are not stable,
their lifetime is very long, because they interact only gravitationally, so they typically
decay after BBN, and ruin its observational success. It is however also possible that
the gravitinos form the dark matter. The constraint on the temperature of the
universe from gravitinos is of the order T ≲ 107 GeV. However, it may be that the
grand unified theories or supersymmetric models do not describe reality, in which
case this is not a problem. Observationally, from BBN, we know only that the
universe has been at least as hot as 1 MeV.

8.1.4 What is needed

All of the above problems are solved if we have a mechanism which produces an
“initial condition” for the universe at T > 1 MeV, where the universe is homogeneous
and isotropic up to small perturbations that are correlated on all observable scales,
where the spatial curvature is very small and matter is in thermal equilibrium (at
least the part which consists of baryons, photons and neutrinos). In specific theories
of particle physics, there may be an upper limit on the temperature.

8.2 Inflation introduced

Inflation is not a replacement for the Hot Big Bang model, but an add-on, occurring
at very early times (somewhere between the energy scales of MeV and 1016 GeV, in
most models closer to the upper end) without disturbing its successes. Inflation is
defined as accelerating expansion:

inflation ⇔ ä > 0 . (8.4)

Often the term inflation is used to refer only to a period of acceleration expansion
in the early universe, and not to the recent phase of accelerated expansion.

Consider how the flatness and horizon problems can be solved by inflation. The
origin of the flatness problem is that |Ω−1| = |K|/(aH)2 = |K|ȧ−2 grows with time
because ȧ falls, i.e. the universe decelerates. If the expansion instead accelerates, Ω
is driven towards unity starting from any value. (This is the case for an expanding
universe. If the universe contracts, the behaviour is reversed.)

Consider now the horizon problem. The problem is that in the standard Big
Bang model the horizon at the time of photon decoupling is small compared to the
part of the universe we can see today. In standard Big Bang picture the universe
is first radiation-dominated and then becomes matter-dominated somewhat before
photon decoupling. (Recall that teq ≈ 50 000 years and tdec ≈ 380 000 years.) In
the radiation-dominated era, the horizon is dhor(t) = 2t = H−1. In the matter-
dominated era, we have dhor(t) = 3t = 2H−1. The horizon at decoupling is between
these values, H−1 < dhor(tdec) < 2H−1. The size of the observable universe today
is of the order of the present Hubble length dhor(t0) ∼ H−1

0 (the precise prefactor
depends on the vacuum energy density, but the order of magnitude is enough for
us). The presently observable universe was a factor of adec/a0 smaller at decoupling.
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In order to compare size of the horizons at different times we can use comoving
lengths, where this change is taken into account. The comoving horizon at decou-
pling is

dchor(tdec) = (1 + zdec)dhor(tdec) ∼ (1 + zdec)H
−1
dec = (adecHdec)

−1 , (8.5)

and dhor(t0) = dchor(t0) ∼ H−1
0 . The horizon problem arises because the first horizon

is much smaller than the second,

dchor(tdec)

dchor(t0)
∼ a0H0

adecHdec
∼ (1 + zdec)

tdec
t0

≈ 0.03 ≪ 1 , (8.6)

where we have for clarity inserted a0, even though it is equal to unity, and used
tdec = 380 000 yr, t0 = 14 × 109 yr and zdec = 1090. In other words, the presently
observed universe was about 30 times larger than the particle horizon at decoupling,
so it contained about 105 regions that had never been in causal contact with each
other. Thus the problem is again that aH decreases with time,

d

dt
(aH) = ä < 0 , (8.7)

so a period with ä > 0 might solve the problem.
Recall that the particle horizon refers to the maximum distance that light could

in principle have travelled from the beginning of the universe until time t. If we add
a new period in the early universe to the matter-dominated era and the radiation-
dominated era, such as like accelerating expansion, the calculation of dchor will depend
on it. We always have dchor(t0) > dchor(tdec) since t0 > tdec, and the interval (0, tdec)
is included in the interval (0, t0). However, in the horizon problem, the relevant
present-day quantity is not actually the distance from which we could in principle
have received signals, but the distance from which we actually measure signals.
Because the universe is opaque before decoupling, the size of the present observable
universe is given by the distance photons have travelled in the interval (tdec, t0), and
this is not affected by what happens before tdec. Thus the relevant present-day scale
is always ∼ H−1

0 .
Note that the comoving Hubble parameter is equal to the conformal Hubble

parameter,

aH =
1

a

da

dη
= ȧ , (8.8)

where η is conformal time. The Hubble length is

lH ≡ H−1 , where H ≡ ȧ

a
, (8.9)

and the comoving Hubble length is

lcH ≡ 1

a
lH =

1

aH
=

1

ȧ
. (8.10)

If aH decreases, then (aH)−1 increases, and vice versa. So we can say that inflation
is any epoch when the comoving Hubble length shrinks:

inflation ⇔ d

dt

(
1

aH

)
< 0 . (8.11)
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It has unfortunately become customary in cosmology to use the word “horizon” also
for the Hubble distance, particularly with regard to inflation. We will try to be
careful not to confuse the two concepts.

Let us consider an example of accelerated expansion that we are already familiar
with from the discussion on dark energy, namely exponential expansion, correspond-
ing to the vacuum energy equation of state w = −1, a(t) ∝ eHt, with constant H.
We will shortly see that this a first approximation for the expansion law during
inflation. The horizon distance is

dhor(t) = a(t)

∫ t

0

dt′

a(t′)
= H−1eHt(1− e−Ht) ≃ H−1eHt , (8.12)

where the last limit is for t ≫ H−1. So in contrast to the radiation- and matter-
dominated eras, the physical particle horizon grows exponentially, and the comoving
particle horizon stays almost constant, dchor(t) ≃ H−1. The present observable
universe has evolved from a small patch of a much larger causally connected region.
See figure 2.

However, even though the particle horizon grows exponentially, the distance over
which it is possible to send signals does not grow. If we consider a light ray, we have
0 = ds2 = −dt2 + a(t)2dr2, so the comoving coordinate separation (which is the
comoving distance, since the universe is spatially flat) between emission at t1 and
reception at t2 is (taking a = eHt)

∆r =

∫ t2

t1

dt′

a(t′)
= H−1(e−Ht1 − e−Ht2) < H−1 . (8.13)

If the coordinate separation between two points is more than the Hubble length, it
is not possible to send signals between them. In this sense, the Hubble length gives
the comoving size of the region during inflation over which it is possible to retain
causal connection. If the universe before inflation is matter-dominated, for example,
observers with separation 2(aH)−1 have been able to send signals to each other,
so causal connection is lost. Also, regardless of what happened before inflation,
during inflation a signal sent at t1 cannot travel a longer coordinate distance than
H−1e−Ht1 , and this distance gets smaller as t1 grows, so causal connection is lost
during inflation. Note that the particle horizon, which expresses the maximum
distance at which parts of the universe can have been in causal contact always
grows as a function of time, it never shrinks. What changes during inflation is just
that regions that once were in causal contact cannot send signals to each other any
more.

The Friedmann equations are

3
ȧ2

a2
= 8πGNρ− 3

K

a2
(8.14)

3
ä

a
= −4πGN(ρ+ 3p) . (8.15)

Thus, in general relativity and assuming the FRW metric, accelerating expansion
requires negative pressure:

inflation ⇔ ρ+ 3p < 0 . (8.16)
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Figure 2: Evolution of the comoving Hubble radius (length, distance) during and after
inflation (schematic).

Note that the energy density of matter for which p/ρ < −1
3 falls down in an

expanding universe slower than a−2, i.e. it grows relative to the spatial curvature.
(If p/ρ < −1, the energy density actually rises as the universe expands.) The flatness
problem of the Big Bang model is simply the feature that for matter composed of a
gas of particles we have p ≥ 0, so the energy density falls at least as fast as a−3, and
the curvature term will at some point overtake the energy density. In inflationary
models, the energy density typically remains nearly constant during a period in
which the scale factor grows by a huge factor, typically by a factor e60 or more.
Thus inflation predicts that Ω0 = 1 to extremely high accuracy.2. See figure 3

As for the relic problem, if unwanted relics are produced before inflation, they
are diluted to practically zero density by the expansion, just like spatial curvature.
However, we have to be careful that they are not produced after inflation, i.e. the
reheating temperature (see below) has to be small enough. This is one constraint
on models of inflation. At the end of inflation, matter is produced in reheating3,
which produces the gas of particles that is the initial condition for the hot Big Bang
model.

Inflation is better called a scenario rather than a theory. It is an idea of a
certain kind of behaviour of the universe, which is realised in hundreds of different

2If it were discovered by observations that Ω0 ̸= 1, this would be a blow to the credibility
of inflation. However, there is a version of inflation, called open inflation, for which Ω0 < 1.
The existence of such models of inflation have led critics of inflation to complain that inflation
is “unfalsifiable” in the sense that no matter what the observation, a model of inflation can be
found that agrees with it. Nevertheless, most models of inflation give similar “generic” predictions,
including Ω0 = 1 to great accuracy, and thus far the observations have been in good agreement
with them.

3“Reheating” may turn out to be as much a misnomer as “recombination”: we don’t know
whether matter was ever in a thermal state before inflation.
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Figure 3: Solving the flatness problem. This figure is for a universe with no dark energy,
where the expansion keeps decelerating after inflation ended in the early universe. Present
observational evidence indicates that actually the expansion began accelerating again a few
billion years ago. Thus the universe is, technically speaking, inflating again, and Ω is again
being driven towards 1. However, this current epoch of inflation is not enough to solve the
flatness problem, or the other problems, since the universe has only expanded by about a
factor of 2 during it.

models. Some of the models are related to extensions of the Standard Model of
particle physics or extensions of general relativity, and some of them are just “toy
models”, which have the right features and are presumably at most an approximate
description of some more complicated physics. One noteworthy inflationary model
is based on the Standard Model Higgs boson coupled to gravity in a non-standard
way.

The important point is that inflation makes many “generic” predictions, i.e. pre-
dictions that are independent of the particular model of inflation, for most models.
(Though exceptional models can be found that would violate one or more of these
general features.) There are also numerical predictions of cosmological observables
that differ from one model of inflation to another, allowing observations to rule out
models (and some have been already ruled out). Present observational data agrees
with the generic predictions (which were made before the advent of the observations
of the CMB anisotropies, which are the most direct way of testing the models),
while alternatives to inflation have not managed to explain the observations in an
equally simple and successful way. Most cosmologists thus consider it likely that
inflation took place in the primordial universe. To quote the cosmologist Douglas
Scott, “something like inflation is something like proven”.

Exercise: Assume that at the beginning of inflation we have |ΩK | = 0.1. Calcu-
late, as a function of the reheating temperature Treh, how many e-folds of inflation
are required to reduce present-day spatial curvature to |ΩK0| < 10−2. (Assume
h = 0.7 and that neutrinos are massless.) Approximate that the expansion rate at
the beginning of inflation is completely dominated by the inflaton, that the inflaton
field value does not change during inflation and that reheating happens instanta-
neously. In which directions do the above approximations change the result? What
is the number of e-folds for Treh = 107 GeV?
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8.2.1 Starting inflation

In the discussion, we have already assumed that we can use the FRWmetric, i.e. that
the universe is homogeneous and isotropic. In order to explain how inflation produces
homogeneity and isotropy and solves the horizon problem, we should consider how
inflation gets started from some generic initial conditions. Inflation certainly makes
the homogeneity and isotropy problem “exponentially smaller” in the sense that it
produces a large homogeneous and isotropic causally connected patch from a small
one. However, how inflation starts remains an open question. What is required is
that starting from inhomogeneous initial conditions, there is at least one region where
inflation starts, and its volume will then overwhelm the other regions. There are
some ideas and studies of how this can happen, but as we have no solid theoretical
understanding (and no observations at all) of the pre-inflationary era, the issue
remains rather speculative. We will comment on this a bit more after discussing the
simplest inflationary models.

We will assume that sufficient inflation has already taken place to make the
universe (within a horizon volume) spatially flat, homogeneous and isotropic, and
follow inflation in detail after that. Thus we will work in the flat FRW universe. In
any case, from the modern point of view, the most important (and testable) aspect
of inflation is the generation of the seeds of structure, as it makes deviation from
homogeneity and isotropy quantitative.

8.3 The inflaton field

As we saw in section 8.2, inflation requires negative pressure. In chapter 5 we
considered systems of particles where interaction energies can be neglected (the
ideal gas approximation). For such systems the pressure is always non-negative.4

However, the particle picture is not fundamental. In the early universe, at high
energy densities, we have to consider the more fundamental entities, fields. Particles
are just excitations of fields. The mean value of a field can have negative pressure,
even if a gas consisting of the particles corresponding to the field does not. The
simplest form of matter which has a negative pressure is a scalar field, so the simplest
inflationary models involve just a single scalar field. The field responsible for inflation
(and the corresponding spin 0 particle) is called the inflaton.

In the FRW model, the energy density and pressure of the scalar field (as mea-
sured by an observer comoving with the matter) are

ρ =
1

2
φ̇2 + V (8.17)

p =
1

2
φ̇2 − V , (8.18)

The pressure is negative when the potential dominates over the kinetic term, i.e.
when the field moves slowly. The equation of state parameter w ≡ p/ρ is

w =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ̇)
=

1− 2V/φ̇2

1 + 2V/φ̇2
, (8.19)

so
−1 ≤ w ≤ 1 . (8.20)

4A gas of interacting particles could have negative pressure.
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Figure 4: An example of inflaton potential.

If the kinetic term 1
2 φ̇

2 dominates, w ≈ 1; if the potential term V (φ) dominates,
w ≈ −1. Different inflaton models have different potentials V (φ). From (8.17), we
can form the useful combinations

ρ+ p = φ̇2

ρ+ 3p = 2
(
φ̇2 − V

)
.

(8.21)

Inserting the energy density and pressure from (8.17) into the continuity equation

ρ̇ = −3H(ρ+ p) (8.22)

gives the equation of motion for the field:

φ̈+ 3Hφ̇ = −V ′ . (8.23)

Note the analogy with a Newtonian particle moving in one dimension: the energy
density corresponds to the total (kinetic plus potential) energy, and the equation of
motion corresponds to Newton’s second law. The effect of expansion is to add the
term 3Hφ̇, which acts like friction and slows down the evolution of φ.

The condition for inflation, ρ+ 3p < 0, is satisfied if

φ̇2 < V . (8.24)

Let us assume that φ is initially far from the minimum of V (φ). The potential
then pulls φ towards the minimum (see figure 4). If the potential has a suitable
(sufficiently flat) shape, the friction term soon makes φ̇ small enough to satisfy
(8.24), even if it was not satisfied initially.

We also need the Friedmann equation,

H2 =
8πG

3
ρ =

1

3M2
Pl

ρ . (8.25)

Inserting the energy density from (8.17), we have

H2 =
1

3M2
Pl

[
1

2
φ̇2 + V

]
. (8.26)

We have ignored other contributions to the energy density and pressure besides
the inflaton. During inflation, the inflaton moves slowly, so the inflaton energy
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density, which is dominated by V (φ), also changes slowly. If there are matter and
radiation components in the energy density, they decrease fast, ρ ∝ a−3 or ∝ a−4,
and soon become negligible, like the spatial curvature. The presence of extra matter
can put some constraints on the initial conditions for inflation to get started and
the inflaton to become dominant. But once inflation begins, we can soon forget
components other than the inflaton.

8.4 Slow-roll inflation

The friction (expansion) term tends to slow down the evolution of φ, so the system
easily reaches a situation where the following conditions hold:

φ̇2 ≪ V (8.27)

|φ̈| ≪ 3H|φ̇| (8.28)

These are the slow-roll conditions. If the slow-roll conditions are valid, we may ap-
proximate (the slow-roll approximation) (8.23) and (8.26) by the slow-roll equations:

H2 =
V

3M2
Pl

(8.29)

3Hφ̇ = −V ′ . (8.30)

The shape of the potential V (φ) determines the slow-roll parameters, defined as

ε(φ) ≡ 1

2
M2

Pl

(
V ′

V

)2

(8.31)

η(φ) ≡ M2
Pl

V ′′

V
. (8.32)

Exercise: Show that

ε ≪ 1 and |η| ≪ 1 ⇐ (8.27) and (8.28) (8.33)

Note that the implication goes only in this direction. The conditions ε ≪ 1 and
|η| ≪ 1 are necessary, but not sufficient for the slow-roll approximation (i.e. the
slow-roll conditions) to be valid. The conditions are not sufficient, because they
only constrain the form of the potential, and identify from the potential a slow-roll
section, where the slow-roll approximation may be valid. Since the field equation
(8.23) is second order, it accepts arbitrary φ and φ̇ as initial conditions. Thus (8.27)
and (8.28) may not hold initially, even if φ is in the slow-roll section. However, it
turns out that the slow-roll solution, the solution of the slow-roll equations (8.29)
and (8.30), is an attractor of the full equations, (8.23) and (8.26). This means that
the solution of the full equations rapidly approaches it, if the initial conditions that
are in the basin of attraction. To be in the basin of attraction means that φ must
be in the slow-roll section; if φ̇ is large, φ needs to be deep in the slow-roll section.

Once the system has reached the attractor, where (8.29) and (8.30) hold, φ̇ is
determined by φ. In fact everything is determined by φ (assuming a fixed potential
V (φ)). The value of φ is the single parameter describing the state of the universe,
and φ evolves down the potential V (φ) as specified by the slow-roll equations.
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Figure 5: The potential V (φ) = 1
2m

2φ2 and its two slow-roll sections.

The ideas “attractor” and “basin of attraction” can be taken further. If the
universe (or a region of it) finds itself initially (or enters) the basin of attraction
of slow-roll inflation, meaning that: there is a sufficiently large region, where the
curvature is sufficiently small, the inflaton makes a sufficient contribution to the
total energy density, the inflaton is sufficiently homogeneous, and lies sufficiently
deep in the slow-roll section, then this region begins inflating, it becomes rapidly
very homogeneous and flat, all other contributions to the energy density besides the
inflaton become negligible, and the inflaton begins to follow the slow-roll solution.

Thus inflation erases all memory of initial conditions, and we can predict the
later history of the universe just from the shape of V (φ) and the assumption that
φ started out far enough in the slow-roll part of it. Note the similarity to thermal
equilibrium. In the stages of the universe we discussed earlier, things were calculable
because in thermal equilibrium, it is sufficient to know the temperature, masses of
particles and conserved quantum numbers in order to have full information about
the system. In the case of inflation, knowing the inflaton field value (and the shape
of the potential) is enough, because of a rather different kind of attractor behaviour.

Example:

V (φ) =
1

2
m2φ2 ⇒ V ′(φ) = m2φ , V ′′(φ) = m2 (8.34)

ε(φ) =
1

2
M2

Pl

(
2

φ

)2

η(φ) = M2
Pl

2

φ2

 ⇒ ε = η = 2

(
MPl

φ

)2

(8.35)

and
ε, η ≪ 1 ⇒ φ2 ≫ 2M2

Pl (8.36)

See figure 5.

8.4.1 Relation between inflation and slow-roll

H =
ȧ

a
⇒ Ḣ =

ä

a
− ȧ2

a2
⇒ ä

a
= Ḣ +H2 (8.37)

Thus the condition for inflation is Ḣ +H2 > 0. This would be satisfied if Ḣ > 0,
but this is not possible here, since it would require p < −ρ, i.e., w ≡ p/ρ < −1,
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which is not possible for a minimally coupled scalar field, see (8.19).5 Thus we have
Ḣ ≤ 0 and:

inflation ⇔ − Ḣ

H2
< 1 . (8.38)

If the slow-roll approximation is valid,

H2 =
V

3M2
Pl

⇒ 2HḢ =
V ′φ̇

3M2
Pl

⇒ H2Ḣ =
V ′Hφ̇

6M2
Pl

3Hφ̇=−V ′
= − V ′2

18M2
Pl

⇒ − Ḣ

H2
=

V ′2

18M2
Pl

9M4
Pl

V 2
=

1

2
M2

Pl

(
V ′

V

)2

= ε ≪ 1 .

So if the slow-roll approximation is valid, inflation is guaranteed. This result
also shows that during slow-roll inflation, the Hubble parameter changes slowly
(while the scale factor changes almost exponentially). Slow-roll is not necessary for
inflation, it is possible to have inflation even when the slow-roll parameters are not
small (called fast-roll inflation). However, slow-roll inflation automatically produces
a spectrum of perturbations that is in close agreement with observations, unlike
fast-roll inflation.

8.5 Models of inflation

A scalar field model of inflation consists of the potential for the inflation and its
couplings to other fields. In most models, couplings to other fields don’t matter
during inflation, and only the inflaton is dynamically important. However, these
couplings usually come into play when inflation ends. Inflation can end because the
slow-roll approximation is no longer valid, as the field has rolled down the potential.
In this case inflation ends when either ε(φ) or |η(φ)| becomes of order unity. Another
possibility is that inflation ends while the inflaton undergoes slow-roll, because other
fields coupled to the inflaton become dynamically important and terminate inflation.
An example of this is hybrid inflation, where there is an extra scalar field in addition
to the inflaton. Inflation models can be divided into two classes:

1. Small field inflation: ∆φ < MPl in the slow-roll section.

2. Large field inflation: ∆φ > MPl in the slow-roll section.

Here ∆φ is the change of φ during (the observationally relevant part of) inflation.
Example: Consider a simple potential of the form V (φ) = Aφn. This is a large

field model, since V ′/V = n/φ ⇒ ε ≪ 1 requires φ2 ≫ 1
2n

2M2
Pl.

See figure 6 for typical shapes of potentials of large field and small field models.

5From the Friedmann equations,(
ȧ

a

)2

=
8πG

3
ρ− K

a2

ä

a
= −4πG

3
(ρ+ 3p)

 ⇒ Ḣ =
ä

a
− ȧ2

a2
= −4πG

(
ρ+ p− K

3a2

)

Thus Ḣ > 0 requires ρ+ p− K
3a2 < 0. In the above, we assume that spatial curvature can already

be neglected, i.e. we can take K = 0.
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Figure 6: Potential for (a) large field and (b) small field inflation. For a typical small-field
model, the entire range of φ shown is ≪ MPl.

Figure 7: After inflation, the inflaton field is left oscillating at the bottom.

8.6 Reheating

During slow-roll inflation, practically all energy density in the universe is in the
inflaton potential V (φ). As inflation ends, this energy is transferred in the reheating
process to a thermal bath of particles produced in the reheating. Thus reheating
creates, from V (φ), all the stuff there is in the later universe. The conversion of the
inflaton energy density into a thermal gas of particles does not affect the spectrum
of density perturbations in single field models of inflation (at least on super-Hubble
scales; see section 8.7 below). (It does change the relationship between the relation
of φk and k/H0 given in (8.48), i.e. the amount that the perturbations are stretched
between the end of inflation and today.) The main constraint on reheating is that the
reheating temperature must be above 1 MeV, but sufficiently low so as not to produce
unwanted relics – where “sufficiently” depends on the theory under consideration.

8.6.1 Scalar field oscillations

After inflation, the inflaton field φ begins to oscillate at the bottom of the potential
V (φ), see figure 7. The inflaton field is still homogeneous, φ(t, x⃗) = φ(t), so it
oscillates in the same phase everywhere (the oscillation is coherent). The oscillation
period soon becomes much shorter than the expansion time scale H−1.

Assume the potential can be approximated as V (φ) = 1
2m

2φ2 near the minimum
of V (φ), where the amplitude of φ is small. The equation of motion is then

φ̈+ 3Hφ̇ = −m2φ . (8.39)
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Figure 8: The time evolution of φ as inflation ends.

In the limit m ≫ H, we can neglect the friction term, and the field undergoes
oscillations with frequency m. We can write the energy continuity equation as

ρ̇+ 3Hρ = −3Hp = −3

2
H

(
m2φ2 − φ̇2

)
. (8.40)

The oscillating factor on the right hand side averages to zero over one oscillation
period (in the limit where the period is ≪ H−1), so on average the energy density
goes like ρ ∝ a−3, just like in a matter-dominated universe. The fall in the energy
density shows as a decrease of the oscillation amplitude, see figure 8.

8.6.2 Inflaton decay

When the inflaton field is oscillating around the minimum of the potential, the
energy stored in the inflaton field is transferred into particles, both by decay into
quanta of the inflaton field, which subsequently decay, and direct decay into other
fields via coupling between them and the inflaton. There can be tension between
achieving efficient reheating and having a long period of inflation. To have a long
duration of inflation, the inflaton field must be weakly coupled, but couplings to
other degrees of freedom are required for reheating.6

If the decay is slow, inflaton energy density satisfies the equation

ρ̇φ + 3Hρφ = −Γφρφ , (8.41)

where Γφ = 1/τφ, the decay width, is the inverse of the inflaton decay time τφ, and
the term −Γφρφ represents energy transfer to other particles.

If the inflaton can decay into bosons, the decay may be very rapid, involving a
mechanism called parametric resonance. The produced particles are far from thermal
equilibrium (only certain bands in momentum space become populated, and their
occupation numbers are huge). In realistic models of inflation, the inflaton can
decay via a mixture of different decay methods. The process by which the inflaton
transfers its energy into particles is called preheating and the thermalisation of the
gas of particles is called reheating. However, terminology varies, and often the term
reheating is used to refer just to the energy transfer, even if the final state is not in
thermal equilibrium.

6In fact, if the scale of inflation is sufficiently high, it is possible to reheat without any couplings
between the inflaton and the Standard Model degrees of freedom by producing particles gravitation-
ally out of the vacuum. This is called gravitational reheating, and it is one of the many delicacies
of inflation we will not have time to sample.
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Figure 9: Remaining number of e-foldings N(t) as a function of time.

8.6.3 Thermalisation

The particles produced from the inflaton will interact, create other particles through
particle reactions, and the resulting soup will eventually reach thermal equilibrium
with some temperature Treh. This reheating temperature is determined by the energy
density ρreh at the end of the reheating epoch:

ρreh =
π2

30
g∗(Treh)T

4
reh . (8.42)

Necessarily ρreh < ρend (end = end of inflation). If reheating takes a long time,
we may have ρreh ≪ ρend. The evolution of the gas of particles into a thermal
state can be quite involved, and it has been studied in various models. Usually it
is just assumed that it happens eventually, since the particles are able to interact.
However, it is possible that some particles (such as gravitinos) never reach ther-
mal equilibrium, since their interactions are too weak. In any case, as long as the
momenta of the particles are much higher than their masses, the energy density of
the universe behaves like radiation, regardless of the momentum space distribution.
So the background expansion rate is the same. After thermalisation of at least the
baryons, photons and neutrinos is complete, the standard Hot Big Bang era begins.

8.7 Scales of inflation

8.7.1 Amount of inflation

During inflation, the scale factor a(t) grows by a huge factor. We define the number
of e-foldings from time t to end of inflation tend

N(t) ≡ ln
a(tend)

a(t)
. (8.43)

See figure 9. We can calculate N(t) ≡ N(φ(t)) ≡ N(φ) from the shape of the
potential V (φ) and the value of φ at time t:

N(φ) = ln
a(tend)

a(t)
=

∫ tend

t
H(t)dt =

∫ φend

φ

H

φ̇
dφ

slow roll
≈ 1

M2
Pl

∫ φ

φend

V

V ′dφ ,

(8.44)

where we have used da
a = d ln a = Hdt = H dφ

φ̇ .
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8.7.2 Evolution of scales

When discussing the evolution of density perturbations and formation of structures
in the universe (to which we will get later), we will be interested in the history
of each comoving distance scale, or each comoving wave number k (from Fourier
expansion in comoving coordinates).

k =
2π

λ
, k−1 =

λ

2π

An important question is whether a distance scale is larger or smaller than the
Hubble length at a given time. A scale is said to be

• super-Hubble, when k < aH
(
k−1 > (aH)−1

)
• at the Hubble radius (exiting or entering the Hubble radius), when k = aH

• sub-Hubble, when k > aH
(
k−1 < (aH)−1

)
.

The terms ”sub-horizon”, ”entering/exiting the horizon” and ”superhorizon” are
also often used, although they are technically wrong, as in inflationary models the
horizon is much larger than the Hubble radius.7. Note that large length scales (large
k−1) correspond to small k, and vice versa, although we often talk about “scale k”.
This can easily cause confusion, so be careful with wording! Recall that (aH)−1

shrinks during inflation, and grows during all other eras. See figures 10 and 11.
We shall later find that the amplitude of primordial density perturbations on a

given comoving scale freezes as this scale exits the Hubble radius during inflation.
The largest observable scales are of the size of the Hubble radius today. (Since the
universe has recently began accelerating again, these scales have just barely entered,
and are now exiting again.)

To identify the distance scales during inflation with the corresponding distance
scales in the present universe, we need a complete history from inflation to the
present. We divide it into the following periods:

1. From the time the scale k of interest exits the Hubble radius during inflation
to the end of inflation (tk to tend).

2. From the end of inflation to the time when thermal equilibrium at high tem-
perature (Hot Big Bang conditions) is achieved, i.e. reheating. We assume
that the universe behaves as if matter-dominated, ρ ∝ a−3, during this period,
as discussed in section 8.6.1 (tend to treh).

3. From reheating to matter-radiation equality (the radiation era, ρ ∝ a−4) (treh
to teq).

4. The matter era, ρ ∝ a−3 from teq to t0.

7As discussed in the first part of the course, there are (at least) three different usages for the
word “horizon”:

1. particle horizon

2. event horizon

3. Hubble length
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Figure 10: The evolution of the Hubble length, and two scales, k−1
1 and k−1

2 , seen in
comoving coordinates.

Figure 11: The evolution of the Hubble length, and the scale k−1 seen in terms of physical
distance.
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Consider a scale k that exits at t = tk, when a = ak and H = Hk

⇒ k = (aH)k = akHk .

To find out how large this scale is today, we relate it to the present Hubble radius
(for clarity, we insert a0 here, even though we have chosen it to be equal to unity):

k

a0H0
=

akHk

a0H0

=
ak
aend

aend
areh

areh
a0

Hk

H0

= e−N(k)

(
ρend
ρreh

)− 1
3
(
ρreh
ρr0

)− 1
4
(
Vk

ρc0

) 1
2

, (8.45)

where we have used the relation ak
aend

= e−N(k), where N(k) is the number of e-
foldings until the end of inflation after the scale k exits the Hubble radius. We
have also taken into account that from the end of inflation until reheating we have
approximately ρ ∝ a−3 and that from reheating until today the radiation component
evolves like ρ ∝ a−4. This is slightly inaccurate, since ρr ∝ a−4 does not take into
account the change in g∗. However, the approximation is good enough for us here, as
the error will only enter logarithmically in the number of e-foldings8. (We assume
that almost all energy density goes into particles with masses smaller than the
reheating temperature.) Finally, we have used H ∝ √

ρ, which follows from the
Friedmann equation, and noted that during slow-roll inflation ρk ≈ Vk, where the
subscript k again refers to the time when the mode with wavenumber k exits the
Hubble radius.

We can rewrite (8.45) as

k

a0H0
= e−N(k) 10

16 GeVρ
1
4
r0

ρ
1
2
c0

V
1
4
k

1016 GeV

(
Vk

Vend

) 1
4
(
ρreh
Vend

) 1
12

, (8.47)

where we have inserted the comparison scale 1016 GeV, taken into account that
ρend ≈ Vend (if inflation ends due to the slow-roll approximation being violated, this

8Accurately this would go as:

g∗sa
3T 3 = const. ⇒ areh

a0
=

[
g∗s(T0)

g∗s(Treh)

] 1
3 T0

Treh
. (8.46)

We approximated this with (
ρr0
ρreh

) 1
4

=

[
g∗(T0)

g∗(Treh)

] 1
4 T0

Treh

Taking g∗s(Treh) = g∗(Treh) ∼ 100, the ratio of these two becomes

g∗s(T0)
1
3

g∗(T0)
1
4 g∗(Treh)

1
12

≈ 3.909
1
3

3.363
1
4 100

1
12

= 0.79 ∼ 1 .

Note that a ∝ ρ
−1/4
r is a better approximation than a ∝ T−1, since these two differ by[

g∗(Treh)

g∗(T0)

] 1
4

∼
(

100

3.363

) 1
4

∼ 2.33 .
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will only be true up to factors of order unity, which we neglect) and rearranged
some of the terms. We don’t know the energy scale of inflation, but there is an
upper limit of approximately 1016 GeV from the lack of observation of primordial
gravity waves, whose amplitude provides a measure of the inflationary energy scale.
Inserting the values ρr0 = 4.18 × 10−5h−2ρc0 (assuming massless neutrinos) and

ρ
1/4
c0 = (

√
3H0MPl)

1/2 ≈ 3.0× 10−12h1/2 GeV, and taking h = 0.7, we obtain for the
number of e-folds

N(φk) = − ln
k

a0H0
+ 61− 1

3
ln

V
1/4
end

ρ
1/4
reh

+ ln
V

1/4
k

V
1/4
end

− ln
1016 GeV

V
1/4
k

, (8.48)

where φk ≡ φ(tk). The terms have been arranged such that the quantities in the
logarithms are bigger than unity. The second term depends on the efficiency of
reheating: if all of the inflaton potential energy is converted into radiation degrees
of freedom instantaneously, it is zero. The third term is expected to be small, since
the potential varies slowly during slow-roll: the dependence on k in the first term is
expected to dominate. The last factor can however be large if the inflation scale is
much lower than 1016 GeV. For example, inflation at the TeV scale would give −30.

For any given present scale, given as a fraction of the present Hubble distance9,
(8.48) identifies the value φk the inflaton had, when this scale exited the Hubble
radius during inflation. The last three terms give the dependence on the energy
scales connected with inflation and reheating. In typical inflation models, they are
relatively small. Usually, the precise value of N is not that important; we are more
interested in the derivative dN/dk, or rather dφk/dk.

Anyway, we see that typically (for high scale inflation) about 60 e-foldings of
inflation occur after the largest observable scales exit the Hubble radius. There is
no similar constraint on the number of e-folds before these scales exited the Hubble
radius, and the number varies from a few to 108 (or more) between different models.

Exercise: Assume that at the beginning of inflation we have |ΩK | = 0.1. a)
Calculate, as a function of the reheating temperature Treh, how many e-folds of infla-
tion are required to reduce present-day spatial curvature to |ΩK0| < 10−2. (Assume
h = 0.7 and that neutrinos are massless.) Approximate that the expansion rate at
the beginning of inflation is completely dominated by the inflaton, that the inflaton
field value does not change during inflation and that reheating happens instanta-
neously. b) In which directions do the above approximations change the result? c)
What is the number of e-folds for Treh = 107 GeV?

8.8 Before inflation

As we discussed earlier, inflation erases all memory of the initial conditions before
inflation, and on the theoretical side we do not have a good theoretical understanding
of what happened in that era. However, there are some ideas. During inflation, the
universe is expanding and (in most models) the energy density is decreasing. We
thus expect that the energy density is higher before inflation than during it or after
it. Often it is assumed that inflation begins right at the Planck scale, ρ ∼ M4

Pl, which
is the limit to how high energy densities we can extend our discussion, which is based

9For example, k/H0 = 10 means that we are talking about a a scale corresponding to a wave-
length λ such that λ/2π is one tenth of the Hubble distance.



8 INFLATION: BACKGROUND 140

Figure 12: Classical regions emerging from spacetime foam.

on classical general relativity, and quantum gravitational effects are expected to be
important. One idea is that the universe at that time, the Planck era, is some kind of
a “spacetime foam”, where the fabric of spacetime itself is subject to large quantum
fluctuations. When the energy density of some region, larger than H−1, falls below
M4

Pl, spacetime in that region begins to behave in a classical manner. See figure 12.
The initial conditions, i.e. conditions at the time when our Universe emerges

from the spacetime foam, are usually assumed chaotic (this word does not refer to
chaos theory!), i.e. φ takes random values at different regions. Since ρ ≥ ρφ, and

ρφ =
1

2
φ̇2 +

1

2

1

a2
∂iφ∂iφ+ V , (8.49)

we must have

φ̇2 ≲ M4
Pl ,

1

a2
∂iφ∂iφ ≲ M4

Pl , V ≲ M4
Pl (8.50)

in a region for it to emerge from the spacetime foam.
Inflation may begin at many different parts of the spacetime foam. Our observ-

able universe is just one small part of one such region which has inflated to a huge
size.

It is also possible that during inflation, for some part of the potential, quantum
fluctuations of the inflaton (not the spacetime!) dominate over the classical evolution
and push φ higher in some regions. These regions will then expand faster, and
dominate the volume. This gives rise to eternal inflation, where, at any given time,
most of the volume of the universe is inflating. (Whether or not this can happen
depends on the shape of the potential and the field value during inflation.) But our
observable Universe is part of a region where φ rolled down and came to a region
of the potential, where the quantum fluctuations of φ were small and the classical
behaviour began to dominate and inflation ended.

Thus the ultra-large scale structure of the universe may be very complicated.
However, this is not observable to us, and all the features of the universe we see
can be explained in terms of what happened in our patch during and after inflation.
These ideas of the spacetime foam and eternal inflation are rather speculative, and
there are also different suggestions for the initial stages of the universe.


