
5 Thermal history of the early universe

5.1 Timescale of the early universe

We will now apply the thermodynamics discussed in the previous section to the
evolution of the early universe. It is useful to keep in mind some simple relations
between time, distance and temperature in a radiation-dominated universe. Spatial
curvature can be neglected in the early universe, so the metric is

ds2 = −dt2 + a2(t)
(
dr2 + r2dθ2 + r2 sin2 θ dφ2

)
. (5.1)

and the Friedmann equation is

3H2 = 8πGNρ(T ) =
π2
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where we have written Newton’s constant in terms of the Planck mass, MPl ≡
1/

√
8πGN ≈ 2.436× 1021 MeV. To integrate this equation exactly we would need to

calculate numerically the function g∗(T ), taking into account all the annihilations.
For most of the time, however, g∗(T ) changes slowly, so we can approximate g∗(T ) =
const. Then T ∝ a−1 and H ∝ a−2, so we get the following relation between the
age of the universe t and the Hubble parameter H:
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s . (5.3)

We thus have
a ∝ T−1 ∝ t1/2 .

This approximate result (5.3) will be sufficient for us as far as the time scale is
concerned1, but for the relation between a and T , we need to use the more exact
result derived in section 4.5.

The distance to the horizon (i.e. proper comoving distance to t = 0, or z = ∞)
is

dhor(t) = a(t)

∫ t

0

dt′

a(t′)
= 2t = H−1 . (5.4)

In the radiation-dominated early universe, the distance to the horizon is equal to the
Hubble length, so we can use the terms “horizon length”, “horizon” and “Hubble
length” interchangeably. This is often also done for other eras, when the two are not
equal. In particular, when a period of inflation is added to early times, the particle
horizon will be much larger than the Hubble length at late times – we will come to
this when we discuss inflation.

5.2 Particle content

The primordial soup initially consists of all the different species of elementary par-
ticles. Their masses range from the heaviest known elementary particle, the top
quark (m = 173 GeV) down to the lightest particles, the electron (m = 511 keV),

1Usually the error from ignoring the time-dependence of g∗(T ) is negligible, since the time scales
of earlier events are so much shorter.
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neutrinos (m ≲ 2 eV) and the photon (m = 0). In addition to the particles of the
Standard Model, there are presumably other species that remain undiscovered. In
particular, we will discuss dark matter particles in chapter 7. As the temperature
falls, the various particle species become nonrelativistic and annihilate at different
times.

The particles of the Standard Model are listed in table 1. The internal degrees
of freedom for quarks are 2 for spin, 2 for having both left- and right-handed compo-
nents (this is a better parametrisation than counting particles and antiparticles) and
3 for colour. Electrons, muons and and taus don’t have colour, but otherwise the
counting is the same. In the Standard Model, there are only left-handed neutrinos,
so the only have the spin degeneracy factor. Massless spin 1 particles like the photon
only have 2 spin degrees of freedom, while massive ones like W± and Z have three
(note that W+ and W− are counted separately).

The effective number of degrees of freedom g∗(T ) (solid), g∗p(T ) (dashed) and
g∗s(T ) are plotted in figure 1 as a function of temperature. In table 2 we list some
important events in the early universe.

Table 1: The particles in the Standard Model
Particle Data Group, 2018 [2]

Quarks t 173.0± 0.4 GeV t̄ spin 1
2 g = 2 · 2 · 3 = 12

b 4.18± 0.03 GeV b̄ 3 colours
c 1.275+0.025

−0.035 GeV c̄

s 95+9
−3 MeV s̄

d 4.7+0.5
−0.3 MeV d̄

u 2.2+0.5
−0.4 MeV ū

72

Gluons 8 massless bosons spin 1 g = 2 16

Leptons τ− 1776.86±0.12 MeVτ+ spin 1
2 g = 2 · 2 = 4

µ− 105.658 MeV µ+

e− 510.999 keV e+

12
ντ < 2 eV ν̄τ spin 1

2 g = 2
νµ < 2 eV ν̄µ
νe < 2 eV ν̄e

6

Electroweak W± 80.379± 0.012 GeV spin 1 g = 3
gauge bosons Z0 91.1876±0.0021 GeV

γ 0 (< 1× 10−18 eV) g = 2
11

Higgs boson H0 125.18±0.16 GeV spin 0 g = 1 1

gf = 72 + 12 + 6 = 90
gb = 16 + 11 + 1 = 28
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Figure 1: The functions g∗(T ) (solid), g∗p(T ) (dashed), and g∗s(T ) (dotted) for
Standard Model particle content.

For T > mt = 173 GeV, all known particles are relativistic. Adding up their
internal degrees of freedom we get

gb = 28 gluons 8×2, photons 2, W± and Z0 3×3, and Higgs 1

gf = 90 quarks 12×6, charged leptons 6×2, neutrinos 3×2

g∗ = 106.75 .

The electroweak (EW) crossover takes place at the temperature 160 GeV [1].
Sometimes this process is called the electroweak phase transition. However, in the
Standard Model, it is a smooth crossover from one regime to another, and thermo-
dynamic quantities remain continuous. In some extensions of the Standard Model,
there is a phase transition, where the system is not in thermal equilibrium. This
may have important cosmological consequences (in particular, it may determine the
baryon-antibaryon asymmetry observed in the universe), depending on the way the
electroweak phase transition happens. We will not discuss details of the electroweak
crossover, for our purposes it is enough to know that g∗ is the same before and after
the transition, at least in the Standard Model. Going to earlier times and higher
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Electroweak crossover T ∼ 160 GeV t ∼ 10 ps
QCD crossover T ∼ 100 MeV t ∼ 30µs
Neutrino decoupling T ∼ 1 MeV t ∼ 1 s
Electron-positron annihilation T < me = 0.5 MeV t ∼ 10 s
Big Bang Nucleosynthesis T ∼ 50–100 keV t ∼ 3–30 min
Matter-radiation equality T ∼ 0.8 eV = 9000 K t ∼ 50 000 yr
Recombination + photon decoupling T ∼ 0.3 eV = 3000 K t ∼ 380 000 yr

Table 2: Early universe events.

temperatures, we expect g∗ to get larger than 106.75 as new physics and thus far
unknown particle species come to play.

Let us now follow the history of the universe starting at the time when the
EW crossover has already happened. We have T ∼ 160 GeV, t ∼ 10 ps, and t
quark annihilation is ongoing. (Recall that the transition from relativistic to non-
relativistic behaviour is not complete until about T ≈ m/6 ≈ 30 GeV.) The Higgs
boson annihilates next, and then the gauge bosons W± and Z0. At T ∼ 10 GeV,
we have g∗ = 86.25. Next the b and c quarks annihilate, followed by the τ lepton.
If the s quark would also have had time to annihilate, we would reach g∗ = 51.25.

5.3 QCD crossover

In the middle of the s quark annihilation, matter undergoes the QCD crossover (also
called the quark–hadron crossover). This takes place at T ∼ 100 MeV, t ∼ 30 µs.
The colour forces between quarks and gluons become important, so the formulae
for the energy density for free particles in chapter 4 no longer apply. The quarks
and gluons form bound three-quark systems, called baryons, and quark-antiquark
pairs, called mesons. (Together, these bound states of quarks are known as hadrons.)
Baryons are fermions, mesons are bosons. After that, there are no more free quarks
and gluons; the quark-gluon plasma has become a hadron plasma. The lightest
baryons are the nucleons: the proton and the neutron. The lightest mesons are the
pions: π±, π0.

There are many different species of baryons and mesons, but all except pions
are non-relativistic below the QCD crossover temperature. Thus the only Standard
Model particle species left in large numbers are pions, muons, electrons, neutrinos
and photons. For pions, g = 3, so we have g∗ = 17.25.

Table 3: History of g∗(T )
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T ∼ 200 GeV all present 106.75

T < 170 GeV top annihilation 96.25

T ∼ 160 GeV EW crossover (no effect)

T < 125 GeV H0 95.25

T < 80 GeV W±, Z0 86.25

T < 4 GeV bottom 75.75

T < 1 GeV charm, τ− 61.75

T ∼ 100 MeV QCD crossover 17.25 (u,d,g→ π±,0, 37 → 3)

T < 100 MeV π±, π0, µ− 10.75 e±, ν, ν̄, γ left

T < 500 keV e− (7.25) 2 + 5.25(4/11)4/3 = 3.36

The above table gives the value g∗(T ) would have after the annihilation is over,
assuming the next annihilation would not have begun yet. In reality the annihi-
lations overlap in many cases. The temperature value on the left is (apart from
the crossover temperatures) the approximate mass of the particle in question and
indicates roughly when the annihilation begins. The temperature is much smaller
when the annihilation ends. The top quark receives its mass in the EW crossover,
so its annihilation does not begin before the crossover.

5.4 Neutrino decoupling and electron-positron annihilation

Soon after the QCD crossover, pions and muons annihilate and for T = 20 MeV
→ 1 MeV, we have g∗ = 10.75. Next the electrons annihilate, but to discuss the
e+e− annihilation we need a bit more details.

So far we have assumed that all particle species have the same temperature,
i.e. particle interactions keep them in thermal equilibrium. Neutrinos, however, feel
only the weak interaction. The weak interaction is actually not that weak when
particle energies are close to (or higher than) the masses of the W and Z bosons,
which mediate the interaction. But as the temperature, and thus mean energy of
particles, falls, the weak interaction becomes rapidly weaker.

A particle species falls out of chemical equilibrium when interactions become
too weak to maintain it in touch with the other species as the universe expands.
This happens when the interaction rate Γ becomes smaller than the expansion rate,
Γ < H. The interaction rate Γ has units of 1/time, and it can be interpreted as the
frequency of particle interactions. The limit Γ < H can roughly be understood as
saying that if particles on average have less than one interaction per Hubble time,
the distribution cannot keep up with the expansion. The interaction rate can be
written as Γ = n⟨σv⟩, where n is number density of the particles, σ is interaction
cross section, v is the absolute value of the particle velocity and the brackets are
average over the phase space. If the cross section is independent of velocity, we can
take it out of the average. If the particles are ultrarelativistic, we can approximate
|v| = 1, in which case we have simply Γ = nσ. The cross section has units of area,
and it expresses the strength of the interaction2.

For the weak interaction processes relevant for neutrinos, the cross section is
σ ∼ G2

FT
2, where GF ≈ 1.17× 10−5 GeV−2 is the Fermi constant. The interaction

2This terminology comes from particle physics. The idea is that if you consider a beam of
classical particles randomly directed at a target with total area A, and classical particles take up
an are σ of it, the probability of crossing a particle and hence interacting is σ/A.
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rate is then Γ = nσv ∼ G2
FT

5, where n is the number density and v ≈ 1 is typical

neutrino velocity. According to the Friedmann equation, H ∼
√
ρ/M2

Pl ∼ T 2/MPl.

So we have Γ/H ∼ G2
FMPlT

3 ∼ (T/ MeV)3. So, neutrinos decouple close to T ∼ 1
MeV, after which they move practically freely, without interactions.

Even though neutrinos are no longer in chemical equilibrium, they remain in
thermal equilibrium as long as the temperature of the particle soup also evolves
like T ∝ a−1, so that Tν = T . However, annihilations will cause a deviation from
T ∝ a−1. The next annihilation event is the electron-positron annihilation.

As the number of relativistic degrees of freedom is reduced, energy density and
entropy are transferred from electrons and positrons to photons, but not to neutrinos,
in the annihilation reactions

e+ + e− → γ + γ .

The photons are thus heated relative to neutrinos (the photon temperature does not
fall as much). In the electron-positron annihilation, g∗s changes from

g∗s = g∗ = 2 + 3.5 + 5.25 = 10.75 (5.5)

γ e± ν

to

g∗s = 2 + 5.25

(
Tν

T

)3

. (5.6)

For time 1 before the annihilation and time 2 after it, we have from (4.34)

2a32T
3
2 + 5.25a32T

3
ν2 = 10.75a31T

3
1 . (5.7)

Before the electron-positron annihilation, the neutrino temperature was the same as
the temperature of the other species, so a31T

3
1 = a31T

3
ν1 = a32T

3
ν2, where we have used

the fact that Tν ∝ a−1 throughout, since neutrinos are relativistic and they are not
heated by the electron-positron annihilation. We thus have from (5.7)

10.75 = 2

(
T

Tν

)3

+ 5.25 ,

from which we solve the neutrino temperature after e+e−-annihilation3,

Tν =

(
4

11

)1
3
T = 0.714T

g∗s(T ) = 2 + 5.25 · 4

11
= 3.909 (5.8)

g∗(T ) = 2 + 5.25

(
4

11

)4
3

= 3.363.

3To be more precise, neutrino decoupling was not complete when e+e−-annihilation began, so
some of the energy and entropy did leak to the neutrinos. Therefore the neutrino energy density
after e+e−-annihilation is about 1.3% higher (at a given T ) than the above calculation gives. The
neutrino distribution also deviates slightly from kinetic equilibrium.
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Figure 2: The evolution of the energy density, or rather, g∗(T ), and its different components
through electron-positron annihilation. Since g∗(T ) is defined as ρ/(π2T 4/30), where T
is the photon temperature, the photon contribution appears constant. If we had plotted
ρ/(π2T 4

ν /30) ∝ ρa4 instead, the neutrino contribution would appear constant, and the
photon contribution would increase at the cost of the electron-positron contribution, which
would better reflect what is going on.

These relations remain true for the photon+neutrino background as long as the
neutrinos stay ultrarelativistic (mν ≪ T ). The neutrinos are no longer in chemical or
thermal equilibrium, but they are still in kinetic equilibrium, i.e. their distribution
function has the thermal shape.

If the neutrino masses were small enough to be ignored, the above relation would
apply even today, when the photon (the CMB) temperature is T = T0 = 2.725 K
= 0.2348 meV, giving the neutrino background temperature Tν0 = 0.714 · 2.725 K
= 1.945 K = 0.1676 meV. However, neutrino oscillation experiments in the 1990s
established that neutrinos have masses which are at least in the meV range4, and
there is an upper limit of about 2 eV from direct detection experiments and cos-
mology. Therefore, the neutrino background is non-relativistic today. As neutrinos
become non-relativistic, they fall out of kinetic equilibrium, because the shape of
the thermal distribution function is not preserved as the momenta redshift to the
value p ∼ m. Once neutrinos become very non-relativistic, with typical values of the
momenta p ≪ m, the distribution function again has the thermal shape, but with a
different temperature scaling.

4Specifically, the oscillations show that the mass differences between the neutrinos are of the
order meV. In principle, the lightest neutrino could be massless.
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5.5 Matter

We noted that the early universe is dominated by the relativistic particles, and we
can forget the nonrelativistic particles when we are considering the dynamics of
the universe. We followed one species after another becoming nonrelativistic and
disappearing from the picture, until only photons (the cosmic background radiation)
and neutrinos were left, and the neutrinos had stopped interacting.

We now return to look in more detail what happens to nucleons and electrons. We
found that they annihilated with their antiparticles when the temperature fell below
their respective rest masses. For nucleons, the annihilation began immediately after
they were formed in the QCD crossover. There were however slightly more particles
than antiparticles, and this small excess of particles was left over. (This has to be the
case because we observe electrons and nucleons today – we’ll be more quantitative
in chapter 7.) This means that the chemical potential µB associated with baryon
number differs from zero (it is positive). Baryon number is a conserved quantity in
the eras we are considering (though not before the electroweak crossover). Baryon
number resides today in nucleons (protons and neutrons; since the proton is lighter
than the neutron, free neutrons have decayed into protons, but there are neutrons
in atomic nuclei) because they are the lightest baryons. The universe is electrically
neutral, and the negative charge lies in the electrons, the lightest particles with
negative charge. Therefore the number of electrons equals the number of protons.

We get the number densities etc. of the electrons and the nucleons from the
equations of chapter 4. But what is the value of the chemical potential µ? For each
species, we get µ(T ) from the conserved quantities5. The baryon number resides in
the nucleons,

nB = nN − nN̄ = np + nn − np̄ − nn̄ . (5.9)

Let us define the parameter η, the baryon-photon ratio today,

η ≡ nB(t0)

nγ(t0)
. (5.10)

From observations we know that η ≈ 6 × 10−10. (We will take a closer look at
the observational value in the next chapter.) Since baryon number is conserved,
nBV ∝ nBa

3 stays constant, so
nB ∝ a−3 . (5.11)

After electron-positron annihilation, we have nγ ∝ a−3, so we get

nB(T ) = ηnγ = η
2ζ(3)

π2
T 3 for T ≪ me . (5.12)

We can put (5.11) and (5.12) together and replace a−3 using the relation (4.34)
between the temperature and the scale factor to obtain

nB(T ) = η
2ζ(3)

π2

g∗s(T )

g∗s(T0)
T 3 . (5.13)

5In general, the recipe to find how the thermodynamical parameters evolve in the expanding FRW
universe is to use the conservation laws of the conserved number densities, entropy conservation
and the energy continuity equation to find how the number densities and energy densities evolve.
The other thermodynamical parameters then evolve so as to satisfy these requirements.
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For T < 10 MeV we have

nN̄ ≪ nN and nN ≡ nn + np = nB .

In the next chapter, we will discuss big bang nucleosynthesis, i.e. how the protons
and neutrons form atomic nuclei. Approximately one quarter of all nucleons (all
neutrons and roughly the same number of protons) form nuclei (A > 1) and three
quarters remain as free protons. Let us denote by n∗

p and n∗
n the total number

densities of protons and neutrons including those in nuclei (and also those in atoms),
whereas we shall use np and nn for the number densities of free protons and neutrons,
which are not bound to each other or electrons. We thus write

n∗
N ≡ n∗

n + n∗
p = nB .

In the same manner, for T < 10 keV we have

ne+ ≪ ne− and ne− = n∗
p .

At this time (T ∼ 10 keV → 1 eV) the universe contains a relativistic photon and
neutrino background (“radiation”) and nonrelativistic free electrons, protons, and
nuclei (“matter”). Since ρ ∝ a−4 for radiation, but ρ ∝ a−3 for matter, the energy
density in radiation falls eventually below the energy density in matter—the universe
becomes matter-dominated.

The above discussion is in terms of the known particle species. Today there is
much indirect observational evidence for the existence of what is called cold dark mat-
ter (CDM), which presumably consists of some yet undiscovered species of particles.
The CDM particles interact weakly with normal matter (they decouple early), and
their energy density contribution should be small deep in the radiation-dominated
era, so they do not affect the above discussion much. They become nonrelativistic
early and dominate the matter density of the universe today (there is about five to
six times as much mass in CDM as there is in baryons). Thus CDM causes the uni-
verse to become matter-dominated earlier than if the matter consisted of nucleons
and electrons only. The CDM will be important later when we discuss the formation
of structures in the universe. The time of matter-radiation equality teq is calculated
in an exercise at the end of this chapter.

5.6 Recombination

Radiation (photons) and matter (electrons, protons, and nuclei) remained in thermal
equilibrium for as long as there were lots of free electrons. When the temperature
became low enough the electrons and nuclei combined to form neutral atoms, an
event known as recombination6, and the density of free electrons fell sharply. The
photon mean free path grew rapidly and became longer than the horizon distance.
Thus the universe became transparent. Photons and matter decoupled, i.e. their
interaction was no longer able to maintain them in thermal equilibrium with each
other. After this, by T we refer to the photon temperature. Today, these photons are
the CMB, and T = T0 = 2.725 K. (After photon decoupling, the matter temperature

6This is the first time when nuclei and electrons combine, so the term recombination, adopted
from chemistry, is somewhat of a misnomer.
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fell at first faster than the photon temperature, but structure formation then heated
up the matter to different temperatures in different places.)

The relevant interaction here is not weak interaction, as in the case of the neu-
trinos, but instead electromagnetic interaction between photons and electrons. The
interaction rate is Γ ∼ neσT , where σT = 8π

3 α2/m2
e ≈ 2× 10−3 MeV−2 is the Thom-

son cross-section, and α ≈ 1/137 is the electromagnetic coupling constant. (The
1/m2 factor shows that interactions between photons and nuclei are not important,
as they are suppressed by the large masses of the nuclei.) Finding the photon de-
coupling era is a bit more involved than in the neutrino case, as the evolution of the
electron number density is more complicated.

To simplify the discussion, let us ignore other nuclei than protons (over 90%, by
number, of the nuclei are protons, and almost all the rest are 4He nuclei). Let us
denote the number density of free protons by np, free electrons by ne, and hydrogen
atoms by nH. Since the universe is electrically neutral, np = ne. The conservation
of baryon number gives nB = np + nH. From chapter 4 we have

ni = gi

(
miT

2π

)3/2

e
µi−mi

T . (5.14)

For as long as the reaction
p+ e− ↔ H+ γ (5.15)

is in chemical equilibrium the chemical potentials are related by µp+µe = µH (since
µγ = 0). Using this we get the relation

nH =
gH
gpge

npne

(
meT

2π

)−3/2

eB/T , (5.16)

between the number densities. Here B = mp +me −mH = 13.6 eV is the binding
energy of hydrogen. The numbers of internal degrees of freedom are gp = ge = 2,
gH = 4. Outside the exponent we approximated mH ≈ mp. Defining the fractional
ionisation

x ≡ np

nB
, (5.17)

equation (5.16) becomes

1− x

x2
=

4
√
2 ζ(3)√
π

η

(
T

me

)3/2

eB/T , (5.18)

the Saha equation for ionisation in thermal equilibrium. When B ≪ T ≪ me, the
RHS ≪ 1, so x ∼ 1, and almost all protons and electrons are free. As temperature
falls, eB/T grows, but since both η and (T/me)

3/2 are ≪ 1, the temperature needs
to fall to T ≪ B, before the whole expression becomes large (∼ 1 or ≫ 1).

The ionisation fraction at first follows the equilibrium result of (5.18) closely, but
as this equilibrium fraction begins to fall rapidly, the true ionisation fraction begins
to lag behind. As the number densities of free electrons and protons fall, it becomes
more difficult for them to find each other to “recombine”, and they are no longer
able to maintain chemical equilibrium for the reaction (5.15). To find the correct
ionisation evolution, x(t), requires then a more complicated calculation involving
the reaction cross section of this reaction. See figures 3 and 4.

Although the equilibrium formula is thus not enough to give us the true ionisation
evolution, its benefit is twofold:
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Figure 3: Recombination. In the top panel the dashed curve gives the equilibrium ionisation
fraction as given by the Saha equation. The solid curve is the true ionisation fraction,
calculated using the actual reaction rates (original calculation by Peebles). You can see that
the equilibrium fraction is followed at first, but then the true fraction lags behind. The
bottom panel shows the free electron number density ne and the photon mean free path
λγ . The latter is given in comoving units, i.e., the distance is scaled to the corresponding
present distance. This figure is for η = 8.22× 10−10. (Figure by R. Keskitalo.)
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Figure 4: Same as figure 3, but with a logarithmic scale for the ionisation fraction, and the
redshift scale extended to present time (z = 0 or 1 + z = 1). You can see that a residual
ionisation x ∼ 10−4 remains. This figure does not include reionisation, which happened
around z ∼ 10. (Figure by R. Keskitalo.)
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1. It tells us when recombination begins. While the equilibrium ionisation changes
only very slowly, it is easy to stay in equilibrium. Thus things won’t start to
happen until the equilibrium fraction begins to change a lot.

2. It gives the initial conditions for the more complicated calculation that will
give the true evolution.

A similar situation holds for many other events in the early universe, e.g. big bang
nucleosynthesis.

Recombination is not instantaneous. Let us define the recombination tempera-
ture Trec as the temperature where x = 0.5. Now Trec = T0(1+zrec) since 1+z = a−1

and the photon temperature falls as T ∝ a−1. (Since η ≪ 1, the energy release in
recombination is negligible compared to ργ ; and after photon decoupling photons
travel freely maintaining kinetic equilibrium with T ∝ a−1.)

We get (for η ∼ 10−9)

Trec ∼ 0.3 eV

zrec ∼ 1300.

You might have expected that Trec ∼ B. Instead we found Trec ≪ B. The main
reason for this is that η ≪ 1. This means that there are very many photons for each
hydrogen atom. Even when T ≪ B, the high-energy tail of the photon distribution
contains photons with energy E > B so that they can ionise a hydrogen atom.

The photon decoupling takes place somewhat later, at Tdec ≡ (1+ zdec)T0, when
the ionisation fraction has fallen enough. We define the photon decoupling time to
be the time when the photon mean free path exceeds the Hubble distance. The
numbers are roughly

Tdec ∼ 3000 K ∼ 0.26 eV

zdec ∼ 1100.

The decoupling means that the recombination reaction can no more keep the ion-
isation fraction on the equilibrium track, but instead we are left with a residual
ionisation of x ∼ 10−4.

A long time later (at z ∼ 10) the first stars form, and their radiation reionises
the gas that is left in interstellar space. The gas has now such a low density, however,
that the universe remains transparent.

Exercise: Transparency of the universe. We say the universe is transparent
when the photon mean free path λγ is larger than the Hubble length lH = H−1,
and opaque when λγ < lH . The photon mean free path is determined mainly by
the scattering of photons by free electrons, so that λγ = 1/(σTne), where ne = xn∗

e

is the number density of free electrons, n∗
e is the total number density of electrons,

and x is the ionisation fraction. The cross section for photon-electron scattering
is independent of energy for Eγ ≪ me and is then called the Thomson cross sec-
tion, σT = 8π

3 (α/me)
2, where α is the fine-structure constant. In recombination x

falls from 1 to 10−4. Show that the universe is opaque before recombination and
transparent after recombination. (Assume the recombination takes place between
instantly at z = 1300. You can assume a matter-dominated universe—see below for
parameter values.) The interstellar matter gets later reionised (to x ∼ 1) by the
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Figure 5: The CMB frequency spectrum as measured by the FIRAS instrument on the
COBE satellite [3]. This first spectrum from FIRAS is based on just 9 minutes of measure-
ments. The CMB temperature estimated from it was T = 2.735± 0.060 K. The final result
from FIRAS is T = 2.725±0.002 K (95% confidence) [4]. Using data from other experiments
as well, the best current value is T0 = 2.72548± 0.00057 K (68% confidence) [5].

light from the first stars. What is the earliest redshift when this can happen with-
out making the universe opaque again? (You can assume that most (∼ all) matter
has remained interstellar.) Calculate for Ωm0 = 1.0 and Ωm0 = 0.3 (note that Ωm

includes nonbaryonic matter). Use ΩΛ = 0, h = 0.7 and η = 6× 10−10.

The photons in the cosmic background radiation have thus travelled almost with-
out scattering through space all the way since we had T = Tdec ∼ 1090T0.

7 When we
look at this cosmic background radiation we thus see the universe (its faraway parts
near our horizon) as it was at that early time. Because of the redshift, these pho-
tons which were then largely in the visible part of the spectrum, have now become
microwave photons, so this radiation is now called the cosmic microwave background
(CMB). It still maintains the thermal equilibrium distribution. This was confirmed
to high accuracy by the FIRAS (Far InfraRed Absolute Spectrophotometer) instru-
ment on the COBE (Cosmic Background Explorer) satellite in 1989. John Mather
received the 2006 Physics Nobel Prize for this measurement of the CMB frequency
(photon energy) spectrum, see figure 5.8

We shall now, for a while, stop the detailed discussion of recombination and pho-
ton decoupling. The universe is about 380 000 years old at decoupling. Next, grav-
itationally bound structures start to form as gravity attracts matter into overdense
regions. Before photon decoupling the radiation pressure from photons prevented
this. We will discuss some earlier events (big bang nucleosynthesis, dark matter

7The probability for a photon to have one or more scatterings between decoupling and today is
about 10%.

8He shared the prize with George Smoot, who got it for the discovery of the CMB anisotropy
with the DMR instrument on the same satellite.
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decoupling and inflation) in more detail.

5.7 The Dark Ages

How would the universe after recombination appear to an observer with human eyes?
At first one would see a uniform glow everywhere, since the wavelengths of many of
the CMB photons are in the visible range, though the peak is in the infrared. (It
would also feel rather hot, 3000 K). As time goes on, this glow gets dimmer and
dimmer as the photons redshift towards the infrared, and after a few million years it
gets completely dark, as photons even deep into the tail of the Planck distribution
are redshifted into the infrared. There are no stars yet. This era is often called the
Dark Ages of the universe. It lasts dozens of millions of years. While it lasts, it gets
colder and colder. In the dark, however, masses are gathering together. And then,
one by one, the first stars light up.

It seems that the star formation rate peaked between redshifts z = 1 and z = 2.
Thus the universe at a few billion years was brighter than it is today, since the
brightest stars are short-lived, and the galaxies were closer to each other back then.9

5.8 The radiation and neutrino backgrounds

While the starlight is more visible to us than the cosmic microwave background,
it’s average energy and photon number density in the universe is much less. Thus
the photon density is essentially given by the CMB. The number density of CMB
photons today (T0 = 2.725 K) is

nγ0 =
2ζ(3)

π2
T 3
0 = 410.5 photons/cm3 (5.19)

and the energy density is

ργ0 =
π2

15
T 4
0 = 2.701T0nγ0 = 4.641× 10−31kg/m3 . (5.20)

Since the critical density today is

ρc0 =
3H2

0

8πG
= h2 · 1.8788× 10−26kg/m3 (5.21)

we get for the photon density parameter

Ωγ0 ≡
ργ0
ρc0

= 2.47× 10−5h−2 . (5.22)

While relativistic, neutrinos contribute another radiation component

ρν =
7Nν

8

π2

15
T 4
ν . (5.23)

9Though note that galaxies seen from far away are rather faint objects, difficult to see with the
unaided eye. If you were suddenly transported to a random location in the present universe, you
might not be able to see anything. To enjoy the spectacle, our hypothetical observer should be
located within a forming galaxy, or have a good telescope.
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After e+e− annihilation this gives

ρν =
7Nν

8

(
4

11

) 4
3

ργ , (5.24)

where Nν is the number of neutrino species.
When the number of (light) neutrino species was not yet known from collid-

ers, cosmology was used to constrain it. Big bang nucleosynthesis is sensitive to
the expansion rate in the early universe, and that depends on the energy density.
Observations of CMB and large-scale structure require Nν = 2.99+0.34

−0.33 [6] (though
this limit is somewhat dependent on the precise assumptions about the cosmological
model). Actually any new particle species that would be relativistic around nucle-
osynthesis (T ∼ 50 keV – 1 MeV) and would thus contribute to the expansion rate
through its energy density, but which would not interact directly with nuclei and
electrons, would have the same effect. The presence of such unknown particles at
BBN is thus rather constrained.

If we take (5.24) to define Nν , but then take into account the extra contribution
to ρν from energy leakage during e+e−-annihilation (and some other small effects),
we get (as a result of years of hard work by many theorists)

Nν = 3.046 . (5.25)

(This does not mean that there are 3.046 neutrino species, but that the total energy
density in neutrinos is 3.046 times as much as the energy density one neutrino species
would contribute had it decoupled completely before e+e− annihilation.)

If neutrinos were still relativistic today, the neutrino density parameter would
be

Ων0 =
7Nν

22

(
4

11

) 1
3

Ωγ0 = 1.71× 10−5h−2 , (5.26)

so the total radiation density parameter would be

Ωr0 = Ωγ0 +Ων0 = 4.18× 10−5h−2 ∼ 10−4 . (5.27)

We thus confirm the claim in chapter 3 that the radiation component can be ignored
in the Friedmann equation, except in the early universe. The combination Ωih

2 is
denoted by ωi, so we have

ωγ = 2.47× 10−5 (5.28)

ων = 1.71× 10−5 (5.29)

ωr = ωγ + ων = 4.18× 10−5 . (5.30)

As noted earlier, neutrinos have masses in the meV to eV range. Thus neutrinos
are nonrelativistic today and count as matter, not radiation, so the above result for
the neutrino energy density does not apply. However, unless the neutrino masses
are above 0.2 eV, they would still have been relativistic, and counted as radiation,
at the time of recombination and matter-radiation equality. While the neutrinos are
relativistic, we get neutrino energy density

ρν = Ων0ρc0a
−4 (5.31)
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using Ων0 from (5.26), even though Ων0 does not give the present density of neutrinos.
Today, even though the photon and neutrino backgrounds do not dominate the

energy density of the universe any more, they do dominate the entropy density.

Exercise: Matter–radiation equality. The present density of matter is
ρm0 = Ωm0ρc and the present density of radiation is ρr0 = ργ0 + ρν0 (we assume
neutrinos are massless). What was the age of the universe teq when ρm = ρr? (Note
that in these early times—but not today—you can ignore the curvature and vacuum
terms in the Friedmann equation.) Give numerical value (in years) for the cases Ωm0

= 0.1, 0.3, and 1.0, and H0 = 70 km/s/Mpc. What was the temperature at that
time, Teq?
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