
4 Thermodynamics in an expanding universe

4.1 Phase space density

As we look out in space we can see the history of the universe unfolding in front
of our telescopes. However, at redshift z = 1090 our line of sight hits the last
scattering surface, from which the cosmic microwave background (CMB) radiation
originates. This corresponds to t = 380 000 years. Before that the universe was not
transparent, so we cannot see further back in time. However, the isotropy of the
CMB indicates that matter was distributed almost homogeneously and isotropically
in the early universe, and the spectrum of the CMB shows that this matter, the
“primordial soup” of particles, was in thermal equilibrium. Therefore we can use
thermodynamics to calculate the history of the early universe. As we will see, this
calculation leads to predictions testable by observation (big bang nucleosynthesis, in
particular, has been successfully tested). We will now derive the thermodynamics of
the primordial soup starting from statistical physics. Note that we only deal with the
statistical physics of a gas of particles: thermodynamics of the gravitational degrees
of freedom is poorly understood, and will not be relevant for our discussion. Also,
the interactions responsible for thermal equilibrium are those of non-gravitational
physics. The only role of gravity here is to determine the expansion of space.

From elementary quantum mechanics we are familiar with the “particle in a
box”. Let us consider a cubic box, whose edge is L (and volume V = L3), with
periodic boundary conditions. Solving the Schrödinger equation gives us the energy
and momentum eigenstates, with possible momentum values

p⃗ =
h

L
(n1x̂+ n2ŷ + n3ẑ) (ni = 0,±1,±2, . . .). (4.1)

The state density in momentum space (number of states / ∆px∆py∆pz) is thus

L3

h3
=

V

h3
, (4.2)

and the state density in phase space {(x⃗, p⃗)} is 1/h3. If the particle has g internal
degrees of freedom (e.g. spin), we have

density of states =
g

h3
=

g

(2π)3

(
ℏ ≡ h

2π
≡ 1

)
. (4.3)

This result is true even for relativistic momenta. The state density in phase space
is independent of the volume V , so we can apply it to arbitrarily large systems
(including an infinite universe).

For much of the early universe, we can ignore interaction energies between par-
ticles. Then the particle energy is

E(p⃗) =
√

p2 +m2 , (4.4)

where p ≡ |p⃗| is the magnitude of the three-momentum (not pressure!), and the
states available for the particles are the free particle states discussed above.

Particles fall into two classes, fermions and bosons. Fermions obey the Pauli
exclusion principle: no two fermions can be in the same state.
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In thermodynamic equilibrium the distribution function, or the expectation value
f of the occupation number of a state, depends only on the energy of the state.
According to statistical physics, it is

f(p⃗) =
1

e(E−µ)/T ± 1
(4.5)

where + is for fermions and − is for bosons. (In the case of fermions, for which f ≤ 1,
f gives the probability that a state is occupied.) This equilibrium distribution has
two parameters, the temperature T , and the chemical potential µ. The temperature
is related to the energy density in the system and the chemical potential is related
to the number density n of particles in the system. Note that since we use the
relativistic formula for the particle energy E, which includes the mass m, the mass
is also “included” in the chemical potential µ. Thus, in the nonrelativistic limit
both E and µ differ from the corresponding quantities of nonrelativistic statistical
physics by m, in such a way that E − µ and the distribution functions remain the
same.

If there is no conserved particle number in the system (this is true for e.g. a
photon gas), then µ = 0 in equilibrium.

The particle density in phase space is the density of states times their occupation
number,

g

(2π)3
f(p⃗). (4.6)

We get the particle density in (ordinary) space by integrating over the momentum
space. We thus have the following quantities:

number density ni =
gi

(2π)3

∫
fi(p⃗)d

3p (4.7)

energy density ρi =
gi

(2π)3

∫
Ei(p⃗)fi(p⃗)d

3p (4.8)

pressure pi =
gi

(2π)3

∫
|p⃗|2

3Ei
fi(p⃗)d

3p . (4.9)

The index i here labels different particle species, which have different masses mi and

corresponding energies Ei(p⃗) =
√
p2 +m2

i . The above discussion applies separately

to each particle species.
We won’t need it, but let’s note for the sake of completeness that the general

expression for the energy-momentum tensor for a single species is

Tα
β(t, x⃗) =

g

(2π)3

∫
d3p

E
pαpβf(t, x⃗, p⃗) , (4.10)

where the four-momentum is pα = (E, p⃗), with pαpα = −m2.

4.2 Equilibrium distributions

If particle species i has the above distribution for some µi and Ti, we say the species
is in kinetic equilibrium. If the system is in thermal equilibrium, all species have the
same temperature, Ti = T . If the system is in chemical equilibrium (“chemistry”
here refers to reactions where particles change into other species), the chemical
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potentials of different particle species are related according to the reaction formulae.
For example, if we have a reaction

i+ j ↔ k + l , (4.11)

then
µi + µj = µk + µl . (4.12)

Thus all chemical potentials can be expressed in terms of the chemical potentials
of conserved quantities, e.g. the baryon number chemical potential, µB. There are
thus as many independent chemical potentials as there are independent conserved
particle numbers. For example, if the chemical potential of particle species i is µi,
then the chemical potential of the corresponding antiparticle is −µi.

As the universe expands, T and µ change in such a way that the energy continuity
equation is satisfied and conserved quantum numbers remain constant. In principle,
an expanding universe is not in equilibrium. The expansion is however so slow that
the particle soup usually has time to settle close to local equilibrium. (And since
the universe is homogeneous, the local values of thermodynamic quantities are also
global values). From the remaining numbers of fermions (electrons and nucleons) in
the present universe, we can conclude that in the early universe we had |µ| ≪ T for
them when T ≫ m. (We don’t know the chemical potentials of the three neutrino
species, but they are usually assumed to be small, too.) If the temperature is
much greater than the mass, T ≫ m, the ultrarelativistic limit, we can approximate
E =

√
p2 +m2 ≈ p.

For |µ| ≪ T and m ≪ T , we approximate µ = 0 and m = 0 to get the following
formulae

n =
g

(2π)3

∫ ∞

0

4πp2dp

ep/T ± 1
=


3

4π2
ζ(3)gT 3 fermions

1

π2
ζ(3)gT 3 bosons

(4.13)

ρ =
g

(2π)3

∫ ∞

0

4πp3dp

ep/T ± 1
=


7

8

π2

30
gT 4 fermions

π2

30
gT 4 bosons

(4.14)

p =
g

(2π)3

∫ ∞

0

4
3πp

3dp

ep/T ± 1
=

1

3
ρ ≈

1.0505nT fermions

0.9004nT bosons .
(4.15)

For the average particle energy we get

⟨E⟩ = ρ

n
=


7π4

180ζ(3)
T ≈ 3.151T fermions

π4

30ζ(3)
T ≈ 2.701T bosons .

(4.16)

In the above, ζ is the Riemann zeta function, with ζ(3) ≡
∑∞

n=1 n
−3 = 1.20206.

If the chemical potential vanishes, µ = 0, there are equal numbers of particles
and antiparticles. If µ ̸= 0, we find for fermions in the ultrarelativistic limit T ≫ m
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(i.e. for m = 0, but µ ̸= 0) the “net particle number”

n− n̄ =
g

(2π)3

∫ ∞

0
dp 4πp2

(
1

e(p−µ)/T + 1
− 1

e(p+µ)/T + 1

)
=

gT 3

6π2

(
π2 µ

T
+
(µ

T

)3
)

(4.17)

and the total energy density1

ρ+ ρ̄ =
g

(2π)3

∫ ∞

0
dp 4πp3

(
1

e(p−µ)/T + 1
+

1

e(p+µ)/T + 1

)
=

7

8
g
π2

15
T 4

(
1 +

30

7π2

(µ

T

)2
+

15

7π4

(µ

T

)4
)
. (4.18)

Note that the last forms in equations (4.17) and (4.18) are exact, not just truncated
series. (The difference n− n̄ and the sum ρ+ ρ̄ lead to a nice cancellation between
the two integrals. We don’t get such an elementary form for the individual n, n̄, ρ,
ρ̄, or the sum n+ n̄ and the difference ρ− ρ̄ when µ ̸= 0.)

In the nonrelativistic limit, T ≪ m and T ≪ m− µ, the typical kinetic energies
are much below the mass m, so we can approximate E = m + p2/2m. The second
condition, T ≪ m − µ, leads to occupation numbers ≪ 1, a dilute system. This
second condition is usually satisfied in cosmology when the first one is. (It is violated
in systems of high density, such as white dwarf stars and neutron stars.) We can
then approximate

e(E−µ)/T ± 1 ≈ e(E−µ)/T , (4.19)

so that the boson and fermion expressions become equal2, and we get (exercise)

n = g

(
mT

2π

)3/2

e−
m−µ
T (4.20)

ρ = n

(
m+

3T

2

)
(4.21)

p = nT ≪ ρ (4.22)

⟨E⟩ = m+
3T

2
(4.23)

n− n̄ = 2g

(
mT

2π

) 3
2

e−
m
T sinh

µ

T
. (4.24)

In the general case, where neither T ≪ m, nor T ≫ m, the integrals don’t give
elementary functions, but n(T ), ρ(T ), etc. need to be calculated numerically for the
region T ∼ m.3

By comparing the ultrarelativistic (T ≫ m) and nonrelativistic (T ≪ m) limits
we see that the number density, energy density, and pressure of a particle species

1When the chemical potential is small, the contribution of the antiparticles is often included in
the definition of g, unlike done here.

2This approximation leads to what is called Maxwell–Boltzmann statistics; whereas the previous
exact formulae give Fermi–Dirac (for fermions) and Bose–Einstein (for bosons) statistics.

3If we use Maxwell–Boltzmann statistics, i.e., we drop the term ±1, the integrals give modified
Bessel functions, e.g. K2(m/T ), and the error is often less than 10%.
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falls exponentially as the temperature falls below the mass of the particle. We
have not so far made assumptions about the interactions that are responsible for
maintaining equilibrium. In the cosmological case, these include annihilation and
particle-antiparticle pair formation. At high temperatures, these reactions balance
each other, but as the temperature falls below the mass, the thermal particle energies
are not sufficient for pair production any more, so the reactions happen only in the
annihilation direction. The process of particle-antiparticle annihilation takes place
mainly (about 80%) during the temperature interval T = m → 1

6m, as shown in
figure 1. It is thus not an instantaneous event, but takes several Hubble times.

Figure 1: The fall of energy density of a particle species, with mass m, as a function of
temperature (decreasing to the right).

4.3 Effective number of degrees of freedom

According to the Friedmann equation the expansion of the universe is governed by
the total energy density

ρ(T ) =
∑
i

ρi(T ) ,

where i runs over particle species. Since the energy density of relativistic species is
much greater than that of nonrelativistic species, it suffices to include the relativistic
species only. (This is true in the early universe, but not at late times. Eventually
the rest masses of the particles left over from annihilation begin to dominate and
we enter the matter-dominated era.) We thus have

ρ(T ) =
π2

30
g∗(T )T

4, (4.25)

where

g∗(T ) = gb(T ) +
7

8
gf (T ),

and gb =
∑

i gi over relativistic bosons and gf =
∑

i gi over relativistic fermions.
For pressure we have p(T ) ≈ 1

3ρ(T ).
The above is a simplification of the true situation: Since the annihilation takes

a long time, there are long periods when the annihilation of some particle species is
going on, and its contribution disappears gradually. Using the exact formula for ρ
we define the effective number of degrees of freedom g∗(T ) as

g∗(T ) ≡
30

π2

ρ

T 4
. (4.26)
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We also define

g∗p(T ) ≡
90

π2

p

T 4
≈ g∗(T ) . (4.27)

When there are no annihilations taking place, g∗p = g∗ = const ⇒ p = 1
3ρ. From

the Friedmann equation it then follows that ⇒ ρ ∝ a−4, so we have and ρ ∝ T 4

and T ∝ a−1. We will soon calculate the scale factor-temperature relation more
precisely (including the effects of annihilations).

4.4 Redshift of momenta

The momentum of freely moving particles redshifts with the expansion of the uni-
verse as

p(t2) =
a(t1)

a(t2)
p(t1) . (4.28)

Let us now show that it follows that ultrarelativistic non-interacting particles stay
in kinetic equilibrium.

At time t1 a phase space element d3p1dV1 contains

dN =
g

(2π)3
f(p⃗1)d

3p1dV1 (4.29)

particles, where

f(p⃗1) =
1

e(p1−µ1)/T1 ± 1

is the distribution function at time t1. At time t2 these same dN particles are in a
phase space element d3p2dV2. How is the distribution function at t2, given by

g

(2π)3
f(p⃗2) =

dN

d3p2dV2
,

related to f(p⃗1)? Since d3p2 = (a1/a2)
3d3p1 and dV2 = (a2/a1)

3dV1, we have

dN =
g

(2π)3
d3p1 dV1

e(p1−µ1)/T1 ± 1
(dN evaluated at t1)

=
g

(2π)3
(a2a1 )

3d3p2 (
a1
a2
)3dV2

e
(
a2
a1
p2 − µ1)/T1 ± 1

(rewritten in terms of
p2, dp2, and dV2)

(4.30)

=
g

(2π)3
d3p2 dV2

e(p2−µ2)/T2 ± 1
(defining µ2 and T2) ,

where µ2 ≡ (a1/a2)µ1 and T2 ≡ (a1/a2)T1. Thus distribution retains the thermal
shape; the temperature and the chemical potential just redshift ∝ a−1.

Exercise. Show that for a non-relativistic particle species, the distribution func-
tion retains the thermal shape as the universe expands, with T2 = T1(a(t1)/a(t2))

2 ∝
a(t2)

−2 and µ(t2) = m+ (µ(t1)−m)T2/T1.

4.5 Scale factor-temperature relation

The relation between the temperature T and the scale factor a follows from the
conservation of entropy. The entropy density is s ≡ S/V , is related to the effective
number of entropy degrees of freedom g∗s(t) as

s(T ) ≡ 2π2

45
g∗s(T )T

3 . (4.31)
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Figure 2: The expansion of the universe increases the volume element dV and decreases
the momentum space element d3p so that the phase space element d3pdV stays constant.

The equation (4.31) defines g∗s(T ).
According to the second law of thermodynamics the total entropy of the uni-

verse never decreases: it either stays constant or grows. It turns out that entropy
production in various processes in the universe is insignificant compared to the total
entropy of the universe4, which is huge, and which is dominated by the relativistic
species. Thus it is an excellent approximation to treat the expansion of the universe
as adiabatic, so the entropy stays constant,

d(sa3) = 0. (4.32)

This gives the desired relation between a and T :

g∗s(T )T
3a(t)3 = constant . (4.33)

We will have much use for this formula.
In order to give substance to (4.33), we have to know what is g∗s(T ). For this

we turn to the fundamental equation of thermodynamics,

E = TS − pV +
∑
i

µiNi ,

from which we get

s =
ρ+ p−

∑
i µini

T
. (4.34)

In general, we get the entropy density by summing up the contributions to ρ +
p −

∑
i µini from all particle species, using the exact expressions given earlier. If

4There may be exceptions to this in the very early universe, most notably the end of inflation,
where essentially all of the entropy of the universe may have been produced. Recall that we are
discussing only the entropy of matter: the entropy of gravitational degrees of freedom is a topic
which remains poorly understood. Black holes are thought to have extremely large entropy.
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|µi| ≪ T , we have for a single relativistic species

s =
ρ+ p

T
=


7π2

180 gT
3 fermions

2π2

45 gT 3 bosons .
(4.35)

Adding up all relativistic species and allowing for the possibility that some of them
may have a kinetic temperature Ti different from the temperature T of those species
that remain in thermal equilibrium, we get

g∗(T ) =
∑
bos

gi

(
Ti

T

)4

+
7

8

∑
fer

gi

(
Ti

T

)4

g∗s(T ) =
∑
bos

gi

(
Ti

T

)3

+
7

8

∑
fer

gi

(
Ti

T

)3

, (4.36)

and the sums are over all relativistic species of bosons and fermions.
If some species are “semirelativistic”, i.e. m = O(T ), then ρ(T ) and s(T ) have

to be calculated from the integral formulae of section 4.2. Non-relativistic species
give negligible contribution to the entropy.

As long as all species have the same temperature and p ≈ 1
3ρ, we have

g∗s(T ) ≈ g∗(T ) . (4.37)

We will see that this approximation breaks down in the real universe at around 1 s.


