COSMOLOGY

Due on December 8 by 14.00. These are the last exercises.

1. Inflaton perturbations. The field equation for the inflaton perturbation is

$$\delta\ddot{\varphi}_{\boldsymbol{k}} + 3H\delta\dot{\varphi}_{\boldsymbol{k}} + \left[\left(\frac{k}{a}\right)^2 + V''(\bar{\varphi})\right]\delta\varphi_{\boldsymbol{k}} = 0 \ .$$

Make the approximations $H = \text{const.} (\Rightarrow a = e^{Ht})$ and $V''(\bar{\varphi}) = 0$. a) Show that

$$\delta\varphi_{\boldsymbol{k}}(t) = C(\boldsymbol{k})\eta^{\frac{3}{2}}H_{\frac{3}{2}}(k\eta)\,,$$

where

$$H_{\frac{3}{2}}(x) = -\sqrt{\frac{2}{\pi x}}e^{-ix}\left(1 + \frac{1}{ix}\right)$$

is a Hankel function with $\eta \equiv -H^{-1}e^{-Ht}$, is a solution.

b) Show that η is the conformal time, and that the solution agrees with the one given in the lecture notes,

$$w_k(t) = \left(i + \frac{k}{aH}\right) \exp\left(\frac{ik}{aH}\right) \,.$$

c) What happens to the perturbation (its amplitude, distance scale and oscillation time scale) as inflation proceeds?

2. Inflaton perturbations as vacuum fluctuations.

a) Starting from the canonical commutation relation for the quantised perturbation, show that with the correct the normalisation factor, $\delta \varphi_{\mathbf{k}}(t)$ of the previous problem is

$$\delta \varphi_{\boldsymbol{k}}(t) = L^{-3/2} \frac{H}{\sqrt{2k^3}} \left(i + \frac{k}{aH} \right) \exp\left(\frac{ik}{aH}\right) \; .$$

b) Show that on time and length scales much smaller than the Hubble scale, $t \ll H^{-1}$, $k \gg aH$, this becomes (up to a slowly varying phase factor) the Minkowski space mode function

$$w_k(t) = (aL)^{-3/2} \frac{1}{\sqrt{2E_k}} e^{-iE_k t}$$
.

c) What is E_k ?

3. Running of the spectral index. Assuming slow-roll, calculate $d\varepsilon/d(\ln k)$, $d\eta/d(\ln k)$ and then $dn/d(\ln k)$ in terms of the slow-roll parameters to first non-trivial order.