Due on Saturday September 22 by 14.00 .
From now on, the exercise sessions are in room SCI253 on Thursdays at 9.00-10.50.

1. Redshift. Derive the relation between the scale factor and redshift using conformal time.
2. Einstein-de Sitter model. Consider the case $a \propto t^{2 / 3}$ and $K=0$. (This corresponds to a spatially flat universe filled with non-relativistic matter.)
a) Calculate the age-redshift relationship $t(z)$ and the angular diameter distance $d_{A}(z)$. (Express the age and distance in units of the Hubble time H_{0}^{-1}.)
b) What is the particle horizon today in units of H_{0}^{-1} ? (Defined as the proper distance to $z=\infty$.)
c) What is the age of the universe (in years) today and at $z=1090$ if $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$?
d) What is the angular diameter distance (in Mpc) to redshift $z=1090$ if $H_{0}=70$ $\mathrm{km} / \mathrm{s} / \mathrm{Mpc}$?
e) The function $d_{A}(z)$ has a maximum. At which redshift is it?
3. Effect of spatial curvature on angular diameter distance. Consider the same scale factor as in the previous problem but $K=-0.1 H_{0}^{2}$.
a) At which redshift is the angular diameter distance higher than in the case $K=0$ by 10% ? What about 100% ?
b) To what proper distance do these correspond to?
