COSMOLOGY

Due on Saturday September 22 by 14.00.

From now on, the exercise sessions are in room SCI253 on Thursdays at 9.00-10.50.

- 1. Redshift. Derive the relation between the scale factor and redshift using conformal time.
- 2. Einstein–de Sitter model. Consider the case $a \propto t^{2/3}$ and K = 0. (This corresponds to a spatially flat universe filled with non-relativistic matter.)

a) Calculate the age-redshift relationship t(z) and the angular diameter distance $d_A(z)$. (Express the age and distance in units of the Hubble time H_0^{-1} .)

b) What is the particle horizon today in units of H_0^{-1} ? (Defined as the proper distance to $z = \infty$.)

c) What is the age of the universe (in years) today and at z = 1090 if $H_0 = 70$ km/s/Mpc?

d) What is the angular diameter distance (in Mpc) to redshift z = 1090 if $H_0 = 70$ km/s/Mpc?

e) The function $d_A(z)$ has a maximum. At which redshift is it?

3. Effect of spatial curvature on angular diameter distance. Consider the same scale factor as in the previous problem but $K = -0.1H_0^2$.

a) At which redshift is the angular diameter distance higher than in the case K = 0 by 10%? What about 100%?

b) To what proper distance do these correspond to?