DDA 2010, lecture 4:
Applications of Ramsey’s theorem

e Using Ramsey’s theorem, we can show that
these problems can’t be solved in O(1) rounds:

e finding large independent sets in cycles
e graph colourings and maximal matchings in cycles
e petter than 2-approximation of vertex cover

e and many more...



DDA 2010, lecture 4a:
Introduction and background

e Hardness of graph colouring and
other symmetry-breaking problems



Graph colouring

e Graph colouring Is a central symmetry-breaking
primitive in distributed algorithms

e Colouring can be used to schedule the actions of the
nodes: e.g., neighbours don’t transmit simultaneously

e Glven a graph colouring, we can solve other problems:
maximal independent set, maximal matching, etc.

e We can use colours to simulate greedy algorithms:
finding small dominating sets, etc.



Graph colouring

e Graph colouring Is a central symmetry-breaking
primitive in distributed algorithms

e Many problems are as difficult as graph colouring

e Given an algorithm that finds a maximal independent set,
we can use It to find a graph colouring, and vice versa

e To understand the capabilities of distributed
algorithms, it is important to know how fast
we can find a graph colouring



Hardness of graph colouring

e Cole-Vishkin algorithm can be used to colour
cycles in almost constant running time: O(log* n)

e assuming we have unique identifiers

e Could we get exactly constant running time?

e |t seems very difficult to come up with
an O(1)-time algorithm for graph colouring...

e put how could one possibly prove that no such
algorithm exists?

e there are infinitely many algorithms!



Hardness of graph colouring

e Cole-Vishkin algorithm can be used to colour
cycles in almost constant running time: O(log* n)

e assuming we have unique identifiers
e Could we get exactly constant running time?
e This was resolved by Nathan Linial in 1992

e 3-colouring an n-cycle requires Q(log* n) rounds

e Cole-Vishkin technigue is within constant factor
of the best possible algorithm!



Hardness of other problems

e Linial’s result shows that it Is not possible
to solve these problems in cycles in O(1) time:

e vertex colouring, edge colouring,
maximal independent set, maximal matching, ...

e Naor and Stockmeyer (1995): generalisations

e using Ramsey’s theorem

e What about other problems?



Hardness of other problems

e Linial: we can’t find maximal
Independent sets In constant time

e However, could we perhaps find a “fairly large”
Independent set In constant time?

e e.¢g., an independent set with at least n/10 nodes?

e We will see that this Is not possible, either

e strong negative result

e proof uses Ramsey’s theorem



DDA 2010, lecture 4Db:
Finding a non-trivial independent set

e Czygrinow et al. (2008)

e constant-time algorithms can’t find
large independent sets In cycles



Lower-bound result for
finding large independent sets

e Numbered directed n-cycle:
e directed n-cycle, each node has outdegree = indegree = 1

e node identifiers are a permutation of {1, 2, ..., n}
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Lower-bound result for
finding large independent sets

e We will show that the problem is difficult even If
we have a numbered directed cycle

e general case of cycles with unique IDs at least as hard
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Lower-bound result for
finding large independent sets

e Fix any € > 0 and running time T (constants)

e Algorithm A finds a feasible independent set
In any numbered directed cycle in time T

e Theorem: For a sufficiently large n there is
a numbered directed n-cycle C in which
A outputs an independent set with < gn nodes

e can’t find an independent set with > 0.001n nodes

e not even If the running time is 1000000 rounds
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Lower-bound result for
finding large independent sets

e Let T be the running time of A, let k = 2T + 1

e The output of a node Is a function f’ of
a sequence of k integers (unique IDs)

T=2k=53 [ output = £°(11, 9, 5, 2, 7) j

@@@@

[ output = f’(3, 11, 9, 5, 2) j
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Lower-bound result for
finding large independent sets

e | ets focus on increasing sequences of IDs

e Then the output of a node is a function f of
a set of k integers

k = 5 [ OUtpUt = f({6, /7, 11, 13, 21}) j

@@~

" output =f({3, 6,7, 11, 13)) |

14



Lower-bound result for
finding large independent sets

ence we have assigned a colour f(X) € {0, 1}

to each k-subset X c {1, 2, ..., n}

K

= 5 [ OUtpUt = f({6, /7, 11, 13, 21}) j

@@

" output =f({3, 6,7, 11, 13)) |

15



Lower-bound result for
finding large independent sets

e Hence we have assigned a colour f(X) € {0, 1}
to each k-subset X c {1, 2, ..., n}

e Fix a large m (depends on k and &)

e Ramsey: If n is sufficiently large,
we can find an m-subset A c {1, 2, ..., n}

s.t. all k-subset X ¢ A have the same colour
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Lower-bound result for
finding large independent sets

e That Is, If the ID space Is sufficiently large...



Lower-bound result for
finding large independent sets

e That Is, If the ID space is sufficiently large,

we can find a monochromatic subset of m IDs...

f({2, 3, 6, 7, 11}) = f({2, 3, 6, 7, 13}) =
f({2, 3, 6, 7, 21} = f({2, 3, 6, 11, 13}) =
... =f({e, 7, 11, 13, 21})
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Lower-bound result for
finding large independent sets

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes




Lower-bound result for
finding large independent sets

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

Same output

f({2, 3, 6, 7, 11}) =
f({3, 6, 7, 11, 13}) = ...




Lower-bound result for
finding large independent sets

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

Same output

...and it must be 0




Lower-bound result for
finding large independent sets

e Hence there Is an n-cycle with a chain of
m - 2T nodes that output O

. output O | - output O or 1 '
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Lower-bound result for
finding large independent sets

e Hence there Is an n-cycle with a chain of
m - 2T nodes that output O

e \WWe can choose as large m as we want

e Good, more “black” nodes that output O

e However, n increases rapidly if we increase m
e Bad, more “grey” nodes that might output 1

e Trick: choose “unnecessarily large” n so that
we can apply Ramsey’s theorem repeatedly
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Lower-bound result for
finding large independent sets

e Huge ID space...
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Lower-bound result for
finding large independent sets

e Find a monochromatic subset of size m...
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Lower-bound result for
finding large independent sets

e Delete these IDs...
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Lower-bound result for
finding large independent sets

e Still sufficiently many IDs to apply Ramsey...
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Lower-bound result for

finding large independent sets
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Lower-bound result for
finding large independent sets

e Repeat until stuck
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Lower-bound result for
finding large independent sets

e Several monochromatic subsets + some leftovers
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Lower-bound result for
finding large independent sets
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Lower-bound result for
finding large independent sets

e Thus A outputs an independent set with < gn nodes

18 2 27 2 33 23 a2 32 2 39
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DDA 2010, lecture 4c:
Corollaries

e Finding “anything” non-trivial in cycles
IS not possible In constant time
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A strong negative result

e We have used Ramsey’s theorem to show
that constant-time algorithms can’t find
large independent sets In cycles

e moreover, we can get a Q(log* n) lower bound
on the running time of any algorithm
that finds a large independent set

e trick: use a power tower upper bound for Rz(n; k)

e What implications do we have?
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A strong negative result

e |f we could find a graph colouring...
e we could find a maximal independent set...
e which iIs an independent set with at least n/3 nodes

e contradiction

e Corollary: graph colouring can’t be solved
In constant time In cycles

e we got Linial’s result as a simple corollary...
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A strong negative result

e |[f we could find a (2 - €)-approximation of
vertex cover...

e we would have a vertex cover with
at most n - en/2 nodes in an n-cycle (even n)

e |ts complement is an independent set with
at least en/2 nodes

e contradiction

e This Is tight: it is possible to find
a 2-approximation in time independent of n

36



A strong negative result

e Using Ramsey’s theorem, we are able to show
that these problems can’t be solved in O(1) time:

e vertex colouring, edge colouring, ...
e maximal independent set, maximal matching, ...
e (2 - g)-approximation of vertex cover

e (A +1 - ¢)-approximation of dominating set...

e Next lecture: something positive with
O(1) running time...
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