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Abstract—We consider parameter estimation in non-linear
state space models by using expectation–maximization based
numerical approximations to likelihood maximization. We present
a unified view of approximative EM algorithms that use either
sigma-point or particle smoothers to evaluate the integrals in-
volved in the expectation step of the EM method, and compare
these methods to direct likelihood maximization. For models that
are linear in parameters and have additive noise, we show how
the maximization step of the EM algorithm is available in closed
form. We compare the methods using simulated data, and discuss
the differences between the approximations.

I. INTRODUCTION

We consider state space models of the following form:

xk = f(xk−1,θ) + qk−1

yk = h(xk,θ) + rk,
(1)

where the initial point is given by x0 ∼ p(x0), and xk

is the discrete-time state sequence, yk is the measurement
sequence, qk ∼ N (0,Q) is the process noise sequence, and
rk ∼ N (0,R) is the measurement error sequence. When the
parameters θ are known, the filtering problem is to compute
the posterior distribution of the state xk at time step k given the
history of the measurements up to the time step, p(xk | y1:k),
and the corresponding smoothing problem is to compute the
posterior distribution p(xk | y1:T ) of the state xk at time step
k given all the measurements.

In the general case, analytical solutions to the filtering and
smoothing problems are not available and one has to resort to
approximative numeric algorithms. In this paper, we employ
two types of approximative filtering and smoothing algorithms:
(i) sigma-point methods (see [1]–[7]) where discrete sigma-
points are used to form Gaussian approximations of the
filtering and smoothing distributions, and (ii) particle filters
[8]–[10] where the filtering and smoothing distributions of the
states are approximated by discrete distributions. For a general
overview of Bayesian filtering and smoothing, see [11].

In this paper, we focus on estimating the parameters θ of
the model (1) using likelihood-based approaches, where the
likelihood p(y1:T | θ) is maximized. When direct maximiza-
tion of the likelihood is not feasible, expectation–maximization
(EM, see [12]–[15]) may be used to approximately maximize
the likelihood. The EM algorithm consists of iterating the

expectation step (E), which computes a bound for the log-
likelihood function using the current parameter values, and the
maximization step (M), where the bound is maximized with
respect to parameters. In the E-step, one needs to evaluate
the density of the latent variables, p(x0:T | y1:T ,θ), which
in the case of state space models corresponds to solving the
smoothing problem.

When an exact solution to the smoothing problem is not
available, one may employ approximative smoothing algo-
rithms for the E-step. In this context, Schön et al. [16] used
particle smoothers. The use of sigma-point smoothers has been
suggested by Väänänen [17] as well as by Gašperin and Juričić
[18], who used the unscented transform and compared their
approach to particle smoother EM. In this paper, we develop
a unified view of EM algorithms based on either sigma-point
or particle smoothers and compare these approximative EM
algorithms to direct likelihood maximization. Furthermore, for
models that are linear-in-parameters with additive Gaussian
noise, we explicitly show how to perform the maximization in
the M-step analytically.

In Bayesian inference, the interest lies in posterior distri-
butions p(θ | y1:T ) of the parameters instead of maximum
likelihood point estimates. The EM algorithm can be extended
to computing maximum a posteriori estimates by modifying
the M-step to maximize the posterior instead of the likelihood.
For estimating the distributions, a common approach is to
use Markov chain Monte Carlo samplers (MCMC, see, e.g.,
[19]). Particle MCMC [20] algorithms are a special class of
MCMC samplers for state space models, where particle filter
algorithms are used to produce new samples of the state
variables x within the MCMC sampler. In the experiment
section of this paper, we compare the point estimates produced
by the direct likelihood-based and EM methods to posterior
distributions computed by particle MCMC.

This paper is structured as follows. The schemes for sigma-
point based (Sec. II) and particle filtering based (Sec. III)
non-linear filtering and smoothing are gone through in brief.
Direct likelihood-based parameter estimation is covered in
Section IV. We revise the EM algorithm in the context of
state space models (Sec. V). The linear-in-parameters case is
explicitly written out separately. Section VII is dedicated to
comparisons between sigma-point and particle EM in a highly
non-linear one-dimensional example and a high-dimensional
coordinated turn model. Finally, the results are discussed.



II. SIGMA-POINT FILTERING AND SMOOTHING

In assumed density Gaussian filtering (see [3], [7], [11]), the
idea is to assume that the filtering distribution is approximately
Gaussian. That is, we assume that there exist means mk|k and
covariances Pk|k such that

p(xk | y1:k) ≈ N (xk |mk|k,Pk|k). (2)

The filtering equations of the resulting Gaussian filter [3],
[5] consist of the prediction step and the update step. The
prediction step for the state mean and covariance is:

mk|k−1 = E[f(xk−1)],

Pk|k−1 = E[(f(xk−1)−mk|k−1)

× (f(xk−1)−mk|k−1)
T] +Q,

(3)

where all the expectations are taken with respect to the distri-
bution xk−1 ∼ N (mk−1|k−1,Pk−1|k−1). The corresponding
update step for the mean and covariance of the state distribu-
tion given the measurement yk is:

µk = E[h(xk)],

Sk = E[(h(xk)− µk) (h(xk)− µk)
T] +R,

Ck = E[(xk −mk|k−1) (h(xk)− µk)
T],

Kk = Ck S
−1
k ,

mk|k = mk|k−1 +Kk (yk − µk),

Pk|k = Pk|k−1 −Kk Sk K
T
k ,

(4)

where all the expectations are taken with respect to the
distribution xk ∼ N (mk|k−1,Pk|k−1). The backward pass
can be calculated by the Rauch–Tung–Striebel smoother as
follows:

mk+1|k = E[f(xk)],

Pk+1|k = E[(f(xk)−mk+1|k)

× (f(xk)−mk+1|k)
T] +Q,

Dk+1 = E[(xk −mk|k) (f(xk)−mk+1|k)
T],

Gk = Dk+1 [Pk+1|T ]
−1,

mk|T = mk|k +Gk (mk+1|T −mk+1|k),

Pk|T = Pk|k −Gk (Pk+1|T −Pk+1|k)G
T
k ,

(5)

where all the expectations are taken with respect to the
distribution xk ∼ N (mk|k,Pk|k).

For implementing the EM algorithm, we need the smooth-
ing distribution p(xk | y1:T ) ≈ N (x |mk|T ,Pk|T ). Addition-
ally, we also need the pairwise smoothing distributions, which
can be expressed in terms of the above results:

p(xk,xk−1 | y1:T ) ≈

N
((

xk

xk−1

) ∣∣∣∣ ( mk|T
mk−1|T

)
,

(
Pk|T Pk|TG

T
k−1

Gk−1Pk|T Pk−1|T

))
.

(6)

EM algorithms appearing in literature (see, e.g., [13], [15])
sometimes suggest a separate recursion to be carried out
for the cross-terms. The formulation in Equation (6) makes
any additional recursions unnecessary, as the terms can be
evaluated directly during the smoother backward pass.

A. Sigma-Points in Cubature Integration

The state mean and covariance is dependent upon comput-
ing Gaussian integrals of the form:

E[f(x)] =
∫
Rn

f(x)N (x |m,P) dx, (7)

where f : Rn → Rd and N (x | m,P) is a multi-dimensional
Gaussian density with mean m and covariance matrix P. One
way of computing these integrals is by using multidimensional
generalizations of Gaussian quadratures, which are sometimes
referred to as Gaussian cubatures [21], which give approxima-
tions of the form

E[f(x)] ≈
∑
i

wi f(xi), (8)

where the weights wi and the sigma-points xi are functions
of the mean m and covariance P of the Gaussian term. The
sigma-points are selected as follows:

xi = m+ L ξi, (9)

where ξi are method specific unit sigma-points, and L is a
matrix square-root factor such that P = LLT. The differences
in the methods come from different choices of weights and
unit sigma-points, where common methods are based on the
Gauss–Hermite quadrature [3], [5] and the unscented transform
[1], [2].

III. PARTICLE FILTERING AND SMOOTHING

In particle filtering [9], also called sequential importance
resampling, the filtering distribution p(xk | y1:k) is approx-
imated by a weighted set of discrete particles {(w(i)

k , x̃
(i)
k ) :

i = 1, . . . , N}, which corresponds to the approximation

p(xk | y1:k) ≈
N∑
i=1

w
(i)
k δ(xk − x̃

(i)
k ), (10)

where N is the number of particles and δ(·) is the Dirac delta
function. In the particle filter, the prediction step is replaced
by sampling new particle values according to an importance
distribution:

x̃
(i)
k+1 ∼ π(xk+1 | x̃(i)

k ,yk+1), (11)

and the update step consists of updating the particle weights
based on the dynamic model and measurement likelihoods as
follows:

w
(i)
k ∝ w

(i)
k−1

p(yk | x̃(i)
k )p(x̃

(i)
k | x̃

(i)
k−1)

π(x̃k | x̃(i)
k−1,yk)

. (12)

To avoid the so-called degeneracy problem where only one
or few particles hold significant weight, the particles may
be resampled after the weight update step. In resampling,
new particles x̃k are sampled from the old particles with
probabilities w(i)

k , and the weights are reset to 1/N . In adaptive
resampling, the resampling step is performed only if the
effective sample size (see [22]) is below a threshold. A particle



smoother aims to form a similar discrete approximation of the
smoothing distribution:

p(xk | y1:T ) ≈
N∑
i=1

w
(i)
k|T δ(xk − x̃

(i)
k ). (13)

The basic particle smoother proposed by Hürzeler and Künsch
[8] as well as by Doucet et al. [9] computes the smoothing
weights from the filtering weights in a backward pass while
preserving the particle values x̃. The equation for computing
the smoothing weights is

wk|T =

N∑
j=1

w
(j)
k+1|N

w
(i)
k p(x̃

(j)
k+1 | x̃

(i)
k )∑N

l=1 w
(l)
k p(x̃

(j)
k+1 | x̃

(l)
k )

. (14)

In EM, we also need an approximation for the pairwise joint
distribution of consecutive states:

p(xk+1,xk | y1:T ) ≈
N∑
i=1

N∑
j=1

w
(ij)
k|T δ(xk−x̃(i)

k )δ(xk+1−x̃(j)
k+1).

(15)
Schön et al. [16] show that weights for the pairwise joint
distribution can be obtained as follows:

w
(ij)
k|T = w

(j)
k+1|T

w
(i)
k p(x̃

(j)
k+1 | x̃

(i)
k )∑N

l=1 w
(l)
k p(x̃

(j)
k+1 | x̃

(l)
k )

. (16)

Furthermore, these weights can be easily obtained as an
intermediate step during the particle smoother.

IV. DIRECT LIKELIHOOD-BASED PARAMETER
ESTIMATION

We use the term ‘direct likelihood-based’ for parameter estima-
tion schemes that directly utilize the (approximate) likelihood
returned by the non-linear filtering scheme. This is contrary to
‘indirect likelihood’ schemes which only aim to approximate
this likelihood (such as the EM algorithm, see Section V). Di-
rect likelihood-based estimation maximizes the log-likelihood,

θML = argmax
θ

log p(y1:T | θ), (17)

or in case of maximum a posteriori estimation:

θMAP = argmax
θ

(log p(y1:T | θ) + log p(θ)) . (18)

The log-likelihood may be approximated based on the filtering
outcome (see Eq. 4):

log p(y1:T | θ) ≈

− 1

2

T∑
k=1

log |2πSk| −
1

2

T∑
k=1

(yk − µk)
T
S−1
k (yk − µk) .

(19)

Furthermore, the gradient of the log-likelihood can be written
in terms of the filtering equations (see, e.g., [11], [23]) allowing
the use of efficient conjugate-gradient optimization algorithms.
Alternatively, Fisher’s identity (see [11], [16]), which links the
gradient to the expectation of the gradient of the complete data
log likelihood, may be used. In addition, particle filters may
also be used to approximate the likelihood and its gradient (see
[10]).

V. EXPECTATION–MAXIMIZATION BASED PARAMETER
ESTIMATION

When the direct likelihood based approach is not feasible,
the indirect approach by expectation–maximization allows us
to use the smoothing scheme for maximizing the likelihood
without explicitly using it as the optimization target function.
Expectation–maximization is an iterative algorithm for finding
maximum likelihood (or maximum a posteriori) parameter
estimates in a setting with some unobserved variables, in state
space context the state variables x. In the following, we use
the formulation by Neal and Hinton [14] and notation of Schön
et al. [16].

A. The EM Algorithm

The EM algorithm is based on the following lower bound
of the log-likelihood:

log p(y1:T | θ) ≥
∫

q(x0:T ) log
p(x0:T ,y1:T | θ)

q(x0:T )
dx0:T

(20)
with an arbitrary distribution q. The algorithm consists of
iteratively maximizing the lower bound with respect to q
(holding θ fixed) and with respect to θ (holding q fixed).
Furthermore, when θ = θ(n) is fixed, the maximum with
respect to q is obtained by

q(x0:T ) = p(x0:T | y1:T ,θ
(n)), (21)

and thus the bound equals∫
p(x0:T | y1:T ,θ

(n)) log
p(x0:T ,y1:T | θ)

p(x0:T | y1:T ,θ(n))
dx0:T

=

∫
p(x0:T | y1:T ,θ

(n)) log p(x0:T ,y1:T | θ) dx0:T

−
∫

p(x0:T | y1:T ,θ
(n)) log p(x0:T | y1:T ,θ

(n)) dx0:T .

The latter term is independent of θ and may thus be omitted
when maximizing with respect to θ. The first term is the
conditional expectation of log p(x0:T ,y1:T | θ) with respect
to y and θ(n), denoted by

Q(θ,θ(n)) = E[log p(x0:T ,y1:T | θ) | y1:T ,θ
(n)]. (22)

Thus, maximization of Equation (20) with respect to q
corresponds to computing Q(θ,θ(n)), which is called the ex-
pectation step, and maximization of Equation (20) with respect
to θ corresponds to maximizing Q(θ,θ(n)) with respect to
θ, which is called the maximization step. The resulting EM
algorithm consists of initializing the parameters to θ(0) and
for n = 0, 1, . . . iterating the following two steps:

• E-step: compute Q(θ,θ(n)).

• M-step: θ(n+1) ← argmaxθQ(θ,θ(n)).

If a maximum a posteriori estimate is desired, maxi-
mization of Q in the M-step is replaced by maximiza-
tion of Q + log p(θ). Due to the Markov property of



state space models, Q(θ,θ(n)) further factorizes such that
Q(θ,θ(n)) = I1(θ,θ

(n)) + I2(θ,θ
(n)) + I3(θ,θ

(n)), where

I1(θ,θ
(n)) = E[log p(x0 | θ) | y1:T ,θ

(n)], (23)

I2(θ,θ
(n)) =

T∑
k=1

E[log p(xk | xk−1) | y1:T ,θ
(n)], (24)

I3(θ,θ
(n)) =

T∑
k=1

E[log p(yk | xk) | y1:T ,θ
(n)]. (25)

Hence, computation of Q requires the smoothing distribu-
tions p(xt | y1:T ,θ

(n)) and the joint smoothing distributions
p(xk,xk+1 | y1:T ,θ

(n)). As these are not available analyti-
cally in the general case, one has to resort to approximations.
In the following, we review how to approximate Q either by
sigma-point based smoothers or by particle smoothers.

Figure 1 visualizes the likelihood curve and the corre-
sponding EM bound approximation for two iteration steps. The
approximative nature of EM is clearly visible in the dashed
lines, while the particle filter evaluated likelihood reminds that
even the sigma-point likelihood is just an approximation (for
details, see Sec. VII-A).

B. Approximating the E-Step Using Sigma-Point Smoothers

In terms of sigma-point smoothing outcomes, the expres-
sion for Q for the non-linear state space model can be written
as

Q(θ,θ(n))

≈ −1

2
log |2πP0| −

T

2
log |2πQ| − T

2
log |2πR|

− 1

2
tr
{
P−1

0

[
P0|T + (m0|T −m0) (m0|T −m0)

T
]}

− 1

2

T∑
k=1

tr
{
Q−1 E

[
(xk − f(xk−1)(xk − f(xk−1)

T | y1:T

]}
− 1

2

T∑
k=1

tr
{
R−1 E

[
(yk − h(xk, )(yk − h(xk, )

T | y1:T

]}
,

(26)

where the model parameters are set to θ and the expectations
are over the distributions obtained from the Gaussian smoother
with parameters θ(n). In practice, we can approximate the
Gaussian smoother and the Gaussian integrals above as de-
scribed in Section II.

C. Approximating the E-Step Using Particle Smoothers

The use of particle smoothers to approximate the function
Q(θ,θ(n)) was proposed by Schön et al. [16]. From Equa-

−15 −10 −5 0 5 10 15

θ(n) θ(n+1)

Parameter a

Likelihood
(particle)
Likelihood
(sigma-point)
EM bound

Fig. 1. Visualization of the one-step evolution of the EM algorithm for the
univariate estimation of parameter a. The dotted line represents the particle
filter likelihood estimate, while the solid line is the sigma-point filter likelihood
approximation. The dashed lines correspond to the sigma-point EM bounds
for iterations n and n+ 1.

tions (23–25), we obtain

Q(θ,θ(n)) ≈
N∑
i=1

w
(i)
0|T log p(x̃

(i)
0 | θ)

+

T−1∑
k=0

N∑
i=1

N∑
j=1

w
(ij)
k|T log p(x̃

(j)
k+1 | x̃

(i)
k ,θ)

+

T∑
k=1

N∑
i=1

w
(i)
k|T log p(yk | x̃(i)

k ,θ), (27)

where the weighted discrete approximation for the smoothing
distributions (Eq. 13) and the pairwise joint smoothing distri-
butions (Eq. 15) are obtained by running a particle filter and
smoother (see Sec. III) over the data conditional on parameters
θ(n).

VI. EVALUATION OF THE M-STEP FOR
LINEAR-IN-PARAMETERS MODELS

In general, maximizing Q in the M-step requires a numerical
optimization algorithm. However, if the parameters appear as
linear coefficients inside the non-linear dynamic and mea-
surement models, an analytical solution can be obtained. In
practice, this type of models may occur in estimation of scale
parameters or if the model functions are linear combinations
of nonlinear functions. These linear-in-parameter models can
be represented as follows:

f(x,θ) = A(θ) f̃(x),

h(x,θ) = H(θ) h̃(x),
(28)

where the model parameters appear in the matrix coefficients
A and H only, and the functions f̃(x) and h̃(x) hold the
non-linearities. The expression of Q for this type of linear-in-



parameters model with additive noise can be written as:

Q(θ,θ(n)) =

− 1

2
log |2πP0| −

T

2
log |2πQ| − T

2
log |2πR|

− 1

2
tr
{
P−1

0

[
P0|T + (m0|T −m0) (m0|T −m0)

T
]}

− T

2
tr
{
Q−1

[
Σ−CAT −ACT +AΦAT

]}
− T

2
tr
{
R−1

[
D−BHT −HBT +HΘHT

]}
,

where the model parameters A,H,m0 are evaluated at θ and
the quantities Σ,Φ,Θ,B,C,D can be evaluated based on
both the sigma-point and particle smoother results run with
fixed parameter values θ(n). This generalizes the formulation
that was presented for linear state space models in [11].

The convenient formulation of Q given above implies
that if the parameters appear linearly in one of the model
matrices (e.g., are some subcomponents in the matrices), by
setting the gradients of ∂Q(θ,θ(n))/∂θ to zero for each
θ = {A,H,Q,R,P0,m0} separately, we get the following
results:

• When θ = A, we get A∗ = CΦ−1.

• When θ = H, we get H∗ = BΘ−1.

• When θ = Q, we get

Q∗ = Σ−CAT −ACT +AΦAT.

• When θ = R, we get

R∗ = D−HBT −BHT +HΘHT.

• When θ = m0, we get m∗
0 = m0|T .

• Finally, the maximum with respect to the initial co-
variance θ = P0 is

P∗
0 = P0|T + (m0|T −m0) (m0|T −m0)

T.

A. Evaluating the Quantities by Sigma-Point Smoothing

If a sigma-point smoother is used, the required matrix
quantities can be evaluated by evaluating the following set of
sums based on the smoothing outcome:

Σ =
1

T

T∑
k=1

Pk|T +mk|T [mk|T ]
T, (29)

Φ =
1

T

T∑
k=1

E
[
f̃(xk−1) f̃

T(xk−1) | y1:T

]
, (30)

Θ =
1

T

T∑
k=1

E
[
h̃(xk) h̃

T(xk) | y1:T

]
, (31)

B =
1

T

T∑
k=1

yk E
[
h̃T(xk) | y1:T

]
, (32)

C =
1

T

T∑
k=1

E
[
xk f̃

T(xk−1) | y1:T

]
, (33)

D =
1

T

T∑
k=1

yk y
T
k , (34)

where f̃(·), h̃(·) are the non-linear components of the dynamic
and measurement model functions as defined in Equation (28).
The expectations are evaluated by the Gaussian integral ap-
proximation (Eq. 7), where the densities are outcomes from
the smoothing backward pass results (in Sec. II). The pairwise
smoothing distributions needed for evaluating C are directly
accessible in the smoothing outcome (see Eq. 6).

B. Evaluating the Quantities by Particle Smoothing

In the case of particle smoothing, the expectations in
Equations (29–34) are evaluated as weighted sums of the
particles:

Σ =
1

T

T∑
k=1

N∑
i=1

w
(i)
k|T x̃

(i)
k [x̃

(i)
k ]T, (35)

Φ =
1

T

T∑
k=1

N∑
i=1

w
(i)
k−1|T f̃(x̃

(i)
k−1) f̃

T(x̃
(i)
k−1), (36)

Θ =
1

T

T∑
k=1

N∑
i=1

w
(i)
k|T h̃(x̃

(i)
k ) h̃T(x̃

(i)
k ), (37)

B =
1

T

T∑
k=1

yk

N∑
i=1

w
(i)
k|T h̃

T(x̃
(i)
k ), (38)

C =
1

T

T∑
k=1

N∑
i=1

N∑
j=1

w
(ij)
k−1|T x̃

(j)
k f̃T(x̃

(i)
k−1), (39)

D =
1

T

T∑
k=1

yk y
T
k . (40)

In addition to the closed-form ML solution presented here,
similar expressions may be obtained for MAP estimation with
a suitable conjugate prior. For example, in the one-dimensional
case, scaled inverse chi-squared is used for the variances Q,R
and conditional normal prior for the coefficients A,H.

VII. EXPERIMENTS

In this section, we consider two simulated examples to
demonstrate the use of expectation–maximization in combi-
nation with sigma-point and particle smoothing. First, we
consider a highly non-linear one-dimensional problem, for
which we present results both from the direct likelihood-
based approaches and the smoother-based EM schemes. The
second example demonstrates the use of the smoother-based
EM methods in a more practical high-dimensional tracking
task.

A. Univariate Non-Stationary Growth

We consider a univariate non-stationary growth model
(UNGM, [24], [25]), which is frequently used for demon-
strating various filtering schemes. This linear-in-parameters
dynamic model can be written as:

xk+1 = a xk + b
xk

1 + x2
k

+ c cos(1.2k) + qk, (41)

where qk ∼ N (0, Q). The version with unknown parameters
has been used in EM experiments by [16] and [18]. Usually, a
quadratic measurement model is used. However, sigma-point



filtering schemes are known to perform badly on this model
[4]. Therefore we considered a linear observation model to be
able to concentrate on comparisons between different param-
eter estimation schemes for estimating the model parameters.
The observation model is thus given as:

yk = d xk + rk, (42)

where rk ∼ N (0, R). We assume the measurement scale pa-
rameter d = 0.22 and the initial distribution x0 ∼ N (0, 0.12)
known, and estimate other parameters θ = {a, b, c,Q,R}. We
draw ground-truth parameters from scaled inverse chi-squared
priors (with the parametrisation of [19]) for the variance
parameters Q and R, and conditional normal priors for a, b,
and c:

Q ∼ Inv-χ2(15, 10), a | Q ∼ N (0.5, 0.001Q),

R ∼ Inv-χ2(15, 1), b | Q ∼ N (25, 0.1Q),

c | Q ∼ N (8, 0.025Q).

Our data consist of 100 trajectories with T = 100 timesteps
and the model parameters drawn from the above priors in-
dependently. The sigma-point filtering and smoothing scheme
was implemented by using unscented transform [1], [2] with
parameters κ = 0, α = 1, and β = 0 (see [26]). For the particle
scheme, we used 100 particles with resampling threshold 75,
and the optimal importance distribution. Both EM algorithms
were run for 1,000 iteration steps for each trajectory, starting
from the prior scales (Q,R) and means (a, b, c). With particle
EM, we also performed maximum a posteriori estimation, as
with this conjugate prior the M-step is analytically tractable for
MAP estimation. Figure 1 illustrates the connection between
the direct likelihood-based approach and the indirect EM
approach. The likelihood as a function of parameter a is shown
for the first trajectory in the data, while holding the other
parameters fixed. From the figure, we see that the sigma-
point EM bounds are indeed lower bounds for the sigma-
point likelihood approximation. For comparison, a likelihood
curve estimated by the particle filter is also shown. Compared
to the particle filter likelihood, the sigma-point filter clearly
overestimates the likelihood away from the mode. Compared
over all the trajectories, both EM approaches tend to converge
to similar ML estimates. Figure 2 shows scatterplots of the final
parameter estimates after 1,000 iterations against the ground-
truth values. For comparison, also MAP estimates produced
by the particle EM are shown (the MAP results for the sigma-
point method are omitted to avoid crowding the plot). With
both EM methods, there is a clear correlation between the
estimates and the true values. The measurement noise scale R
is however an exception, as there is high variation in the ML
estimates, and the MAP estimates are all close to the prior
scale.

TABLE I. CORRELATIONS OF THE FINAL EM ESTIMATES VERSUS THE
DIRECT ML ESTIMATES FOR ALL THE TRAJECTORIES IN THE UNGM

EXAMPLE.

Parameter a b c logQ logR
Particle EM vs. ML 0.998 0.945 0.994 0.977 0.792

Sigma-point EM vs. ML 0.997 0.909 0.989 0.972 0.731

To compare the EM approaches to direct likelihood-based
parameter estimation, we computed parameter estimates with
direct maximum likelihood (Sec. IV). The likelihood was
evaluated by a UKF sigma-point filter. Correlations between
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Fig. 2. The estimates of the parameters of the univariate non-stationary
growth model after 1,000 EM iterations compared to ground-truth parameter
values over 100 datasets with different ground-truth parameters.

the direct ML estimates and the final EM estimates are shown
in Table I. With one trajectory, the direct ML optimization
did not converge, and thus the correlations are computed over
99 trajectories. The EM algorithms indeed converge to the
maximum likelihood estimates, as the correlations are over
0.9 for all parameters except the measurement noise variance
R. For all parameters, the correlations of the particle EM
estimates are higher than the correlations of the sigma-point
EM estimates, which shows that the particle EM approximates
the true ML solution better than the sigma-point EM.

For the first trajectory, we also compared the point es-
timates to the posterior distributions. We used the particle
marginal Metropolis–Hastings variant of particle MCMC [20]
to sample from the posterior. Figure 3 shows the histograms
of samples from the marginal posterior distributions for all
parameters, as well as the corresponding point estimates. The
point estimates mostly fall within intervals with high posterior
density, and the particle EM MAP estimates are close to the
histogram peaks.

B. Tracking of a Manouvering Target

As a more practical second example we consider a tracking
problem, where the dynamics are described by a coordinated
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Fig. 3. Comparison of direct ML and EM-based point estimates to samples
from marginal posterior distributions of the parameters. Sigma-point EM
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turn model and the the observations by bearings only sensor
measurements (see, [7], [26]–[28]).

The state x = (x1, ẋ1,x2, ẋ2,ω) is five-dimensional and
we consider bearings-only observations with two distinct sen-
sor locations for the observations. We used the formulation
of the model that is described in [7], [28]. The interest
lies in estimating the dynamic noise (qk ∼ N (0,Q)) and
measurement noise (rk ∼ N (0,R)) covariances. In our case,
the ground-truth dynamic model noise covariance was

Q =


qc∆t3/3 0 qc∆t2/2 0 0

0 qc∆t3/3 0 qc∆t2/2 0
qc∆t2/2 0 qc∆t 0 0

0 qc∆t2/2 0 qc∆t 0
0 0 0 0 qω

 ,

where ∆t = 0.01, qc = 0.1 and qω = 0.01. The ground-truth
measurement noise covariance was R = diag(0.052, 0.12).
The sensor locations were (−1, 0.5) and (1, 1). The param-
eters of the initial distribution were m0 = 0 and P0 =
diag(0.12, 0.12, 0.12, 0.12, 0.012). We simulated 100 differ-
ent trajectories with T = 100 timesteps from the model and
estimated the dynamical and measurement noise covariance
matrices Q and R, with all the other model parameters
assumed known. The Q and R were initialized randomly
to diagonal matrices where the square-roots of the diagonal
elements were sampled independently from U(0, 1). We used
a bootstrap filter with 100 particles in the particle EM and the
unscented transform [1], [2] with κ = 0, α = 1, and β = 0
(see [26]) in the sigma-point EM. Both algorithms were ran
for 100 iterations for each data trajectory.

For visualizing the convergence of the noise covariance
matrices, we use the Kullback–Leibler (KL) divergence (see,
e.g., [19]), which is a non-symmetric measure of the differ-
ence between two probability distributions. We plot the KL
divergence between the true and estimated process distributions
both for the dynamic and measurement noise. The divergence
DKL [Nq‖Nq̃] is thus a measure of the information lost when
Nq̃ is used to approximate Nq. The evolution of the log-KL
divergences using both EM methods are shown in Figure 4.

To demonstrate the initial convergence, we initialized the
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Fig. 4. Results for estimating the noise covariance matrices Q and R in
the multi-dimensional coordinated turn example. The convergence is shown
by comparing the estimates to the known Gaussian noise distributions in
terms of the Kullback–Leibler divergence. The particle EM estimates appear
to converge faster.

covariances to bear little resemblance to their true values.
This demonstrates the initial convergence of the methods. The
convergence of the particle EM as a function of iterations
is faster. The noise covariance estimate converges close to
the correct value, but the dynamic model noise covariance
converges slowly. Furthermore, when continuing the algorithm
for more iterations, we noticed that the KL divergences of
the particle EM estimates of Q start to increase around 500
iterations. Investigating this phenomenon is beyond the scope
of this paper, but this most likely stems from a positive
feedback in EM combined with the stochasticity in the particle
filtering scheme. Even though the sigma-point expectation–
maximization is outperformed by the particle counterpart,
the sigma-point scheme delivers similar results with small
computational burden.

VIII. CONCLUSION AND DISCUSSION

In this paper, we considered the expectation–maximization
algorithm for approximating maximum likelihood estimates
of parameters in state space models. We focused on EM
algorithms where the expectation step is approximated by
sigma-point smoothers or particle smoothers, and compared
them to direct likelihood maximization.

We presented a unifying view of the approximative EM
methods employing either sigma-point or particle smoothers,
as well as described the connection to direct ML estimation.
We showed how the approximations to the pairwise smoothing
distributions required in EM are obtained from the smoother
algorithms during a single smoother run. Furthermore, for
models that are linear-in-parameters, we have explicitly de-
scribed how the EM bounds can be analytically maximized by
generalizing the convenient matrix notations used for linear
models in [11].



Using simulated data from a commonly encountered
UNGM model, we compared the point estimates produced
by the various maximum likelihood methods to the ground-
truth values, as well as to posterior distributions sampled
using particle MCMC. In this experiment, both sigma-point
and particle EM methods produced good approximations to
the direct ML estimates. However, in this one-dimensional
case, direct likelihood maximization is feasible and thus the
EM approximations are not required. On the other hand, in
multiple dimensions, direct optimization of the likelihood may
be difficult, especially when estimating matrix-valued param-
eters, such as noise covariance matrices. We implemented the
EM algorithms for covariance matrix estimation in a five-
dimensional coordinated turn model. In this example, the
particle smoother EM converged faster in terms of iterations,
while the sigma-point method produced similar results.

With the particle smoother used in this paper, the compu-
tational cost of the particle EM is quadratic in the number of
particles. In addition, the number of particles required is much
higher than the number of sigma-points, and therefore the par-
ticle method requires a considerably higher number of function
evaluations. Furthermore, the particle filter scales poorly to
higher-dimensional problems, whereas the computational cost
of sigma-point filtering is linear in the state dimension.

A drawback of the sigma-point EM approach is that the
sigma-point smoother does not perform well in highly non-
linear problems, for example, the one-dimensional model used
in this paper when the measurement model is quadratic.
Augmenting the noise to the state has been shown to improve
the performance of sigma-point smoothers [4]. However, our
experiments with the augmented-noise version of the sigma-
point smoother showed that the performance of the sigma-
point EM in highly non-linear problems is still weak even if
the smoother state estimates improve.

Our findings suggest that sigma-point EM is a computa-
tionally feasible alternative to particle smoothing based EM,
as well as direct likelihood maximization in high-dimensional
problems with moderate non-linearities.
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