
Applied Stochastic Differential Equations Autumn 2014

Exercise Round 5

The deadline of this exercise round is December 2, 2014. The solutions
will be gone through during the exercise session in room F255, F-building
starting at 14:15.

The problems should be solved before the exercise session, and during the
session those who have completed the exercises may be asked to present
their solutions on the board/screen.

Exercise 1 (A strong stochastic Runge–Kutta method)

Consider a simple strong order 1.0 method with the following extended
Butcher tableau (see the lecture notes for details):

0
0 0 0
0 0 0 0 0
0
0 0 1
0 0 0 −1 0

1 0 0 1 0 0 0 1
2 −1

2

(1)

(a) Write down the iteration equations required for evaluating the method
corresponding to the table in Equation (1).

(b) Consider the Duffing van der Pol oscillator model:(
dx1
dx2

)
=

(
x2

x1 (α− x21) − x2

)
dt+

(
0
x1

)
dβ, (2)

where β(t) is a one-dimensional Brownian motion (q = 0.52) and α = 1.
Use the method you just constructed for drawing trajectories starting
from x2(0) = 0 and x1(0) = −4,−3.9, . . . ,−2. Use a time span [0, 10].
Plot the results in the (x1, x2) plane.

(c) Experiment with different step sizes ∆t = 2−k, k = 0, 2, 4, 6 and visually
compare the trajectories produced by the method implemented in (b)
to the Euler–Maruyama scheme.
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Exercise 2 (A weak stochastic Runge–Kutta method)

Consider the following two-dimensional SDE:(
dx1
dx2

)
=

(
3
2x1
3
2x2

)
dt+

(
1
10x1 0

0 1
10x2

)
dβ (3)

where β(t) = (β1(t), β2(t)) such that βi(t) is a standard Brownian motion.
The initial value is x(0) = (1/10 , 1/10).

(a) Implement the Euler–Maruyama scheme for this problem.

(b) Implement the following weak order 2.0 Runge–Kutta method for this
problem (following Alg. 6.4 in the lecture notes):

0
2
3

2
3 1

2
3 −1

3 1 0 0
0
1 1 1
1 1 0 −1 0
0
0 0 1
0 0 0 −1 0

1
4

1
2

1
4

1
2

1
4

1
4 0 1

2 −1
2

−1
2

1
4

1
4 0 1

2 −1
2

(c) Simulate 1000 trajectories from the SDE with Euler–Maruyama and
the weak order 2.0 Runge–Kutta method. Use step sizes ∆t = 2−k, k =
0, 1, . . . , 6. Compare your results to the expected value given by

E[xi(t)] =
1

10
exp

(
3

2
t

)
for i = 1, 2, and plot the absolute errors as a function of step size.

Exercise 3 (Stochastic flow)

Consider the following SDE (d = 2,m = 4) describing stochastic flow on a
torus:

dx = L(x) dβ,

where β(t) = (β1(t), β2(t), β3(t), β4(t)) such that βi(t) is a standard Brow-
nian motion. The diffusion is given such that the columns in L(x) are (use
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α = 1):

L1(x) =

(
cosα
sinα

)
sin(x1), L2(x) =

(
cosα
sinα

)
cos(x1),

L3(x) =

(
− sinα
cosα

)
sin(x2), L4(x) =

(
− sinα
cosα

)
cos(x2).

(a) Consider a set of initial points x(0) on a uniform 15×15 grid on [0, 2π]×
[0, 2π]. Use the Euler–Maruyama method with the same realization of
Brownian motion (reset the random seed) for each trajectory, and a step
size of ∆t = 2−4. Plot what the solution looks like at t = 0.5, 1.0, 2.0, 4.0
(consider xi modulo 2π for staying on the torus).

(b) Implement the weak order 2.0 Runge–Kutta scheme presented in the
lecture notes (Alg. 6.5), and repeat the above experiment.
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