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Statistics of SDEs

Consider the stochastic differential equation (SDE)

dx = f(x, t) dt + L(x, t) dβ.

Each x(t) is random variable, and we denote its probability density

with p(x, t).

The probability density is solution to a partial differential equation

called Fokker–Planck–Kolmogorov equation.

The mean m(t) and covariance P(t) are solutions of certain

ordinary differential equations.

For LTI SDEs we can also compute the covariance function of the

solution C(τ) = E[x(t)x(t + τ)].
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Fokker-Planck-Kolmogorov PDE

Fokker–Planck–Kolmogorov equation

The probability density p(x, t) of the solution of the SDE

dx = f(x, t) dt + L(x, t) dβ,

solves the Fokker–Planck–Kolmogorov partial differential equation

∂p(x, t)

∂t
= −

∑

i

∂

∂xi
[fi(x , t)p(x, t)]

+
1

2

∑

ij

∂2

∂xi ∂xj

{

[L(x, t)Q L
T(x, t)]ij p(x, t)

}

.

In physics literature it is called the Fokker–Planck equation.

In stochastics it is the forward Kolmogorov equation.

Simo Särkkä (Aalto/TUT/LUT) Lecture 3: Statistics of SDEs November 8, 2012 6 / 36



Fokker-Planck-Kolmogorov PDE: Example 1

FPK Example: Diffusion equation

Brownian motion can be defined as solution to the SDE

dx = dβ.

If we set the diffusion constant of the Brownian motion to be q = 2 D,

then the FPK reduces to the diffusion equation

∂p

∂t
= D

∂2p

∂x2
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Fokker-Planck-Kolmogorov PDE: Derivation [1/5]

Let φ(x) be an arbitrary twice differentiable function.

The Itô differential of φ(x(t)) is, by the Itô formula, given as follows:

dφ =
∑

i

∂φ

∂xi
fi(x, t) dt +

∑

i

∂φ

∂xi
[L(x, t) dβ]i

+
1

2

∑

ij

(

∂2φ

∂xi∂xj

)

[L(x, t)Q L
T(x, t)]ij dt .

Taking expectations and formally dividing by dt gives the following

equation, which we will transform into FPK:

d E[φ]

dt
=

∑

i

E

[

∂φ

∂xi
fi(x, t)

]

+
1

2

∑

ij

E

[(

∂2φ

∂xi∂xj

)

[L(x, t)Q L
T(x, t)]ij

]

.
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Fokker-Planck-Kolmogorov PDE: Derivation [2/5]

The left hand side can now be written as follows:

dE [φ]

dt
=

d

dt

∫

φ(x)p(x, t) dx

=

∫

φ(x)
∂p(x , t)

∂t
dx.

Recall the multidimensional integration by parts formula

∫

C

∂u(x)

∂xi
v(x) dx =

∫

∂C

u(x) v(x)ni dS −
∫

C

u(x)
∂v(x)

∂xi
dx.

In this case, the boundary terms vanish and thus we have

∫

∂u(x)

∂xi
v(x) dx = −

∫

u(x)
∂v(x)

∂xi
dx.
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Fokker-Planck-Kolmogorov PDE: Derivation [3/5]

Currently, our equation looks like this:

∫

φ(x)
∂p(x , t)

∂t
dx =

∑

i

E

[

∂φ

∂xi
fi(x, t)

]

+
1

2

∑

ij

E

[(

∂2φ

∂xi∂xj

)

[L(x, t)Q L
T(x, t)]ij

]

.

For the first term on the right, we get via integration by parts:

E

[

∂φ

∂xi
fi(x, t)

]

=

∫

∂φ

∂xi
fi(x, t)p(x, t) dx

= −
∫

φ(x)
∂

∂xi
[fi(x, t)p(x, t)] dx

We now have only one term left.
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Fokker-Planck-Kolmogorov PDE: Derivation [4/5]

For the remaining term we use integration by parts twice, which

gives

E

[(

∂2φ

∂xi∂xj

)

[L(x, t)Q L
T(x, t)]ij

]

=

∫
(

∂2φ

∂xi∂xj

)

[L(x, t)Q L
T(x, t)]ij p(x, t) dx

= −
∫

(

∂φ

∂xj

)

∂

∂xi

{

[L(x, t)Q L
T(x, t)]ij p(x, t)

}

dx

=

∫

φ(x)
∂2

∂xi ∂xj

{

[L(x, t)Q L
T(x, t)]ij p(x, t)

}

dx
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Fokker-Planck-Kolmogorov PDE: Derivation [5/5]

Our equation now looks like this:
∫

φ(x)
∂p(x, t)

∂t
dx = −

∑

i

∫

φ(x)
∂

∂xi
[fi(x, t)p(x, t)] dx

+
1

2

∑

ij

∫

φ(x)
∂2

∂xi ∂xj
{[L(x, t)Q L

T(x, t)]ij p(x, t)} dx

This can also be written as
∫

φ(x)
[∂p(x, t)

∂t
+

∑

i

∂

∂xi
[fi(x, t)p(x, t)]

− 1

2

∑

ij

∂2

∂xi ∂xj
{[L(x, t)Q L

T(x, t)]ij p(x, t)}
]

dx = 0.

But the function is φ(x) arbitrary and thus the term in the brackets

must vanish ⇒ Fokker–Planck–Kolmogorov equation.
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Fokker-Planck-Kolmogorov PDE: Example 2

FPK Example: Benes SDE

The FPK for the SDE

dx = tanh(x) dt + dβ

can be written as

∂p(x , t)

∂t
= − ∂

∂x
(tanh(x)p(x , t)) +

1

2

∂2p(x , t)

∂x2

= (tanh2(x)− 1)p(x , t)− tanh(x)
∂p(x , t)

∂x
+

1

2

∂2p(x , t)

∂x2
.
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Mean and Covariance of SDE [1/2]

Using Itô formula for φ(x, t), taking expectations and dividing by dt

gives

d E[φ]

dt
= E

[

∂φ

∂t

]

+
∑

i

E

[

∂φ

∂xi
fi(x , t)

]

+
1

2

∑

ij

E

[(

∂2φ

∂xi∂xj

)

[L(x, t)Q L
T(x , t)]ij

]

If we select the function as φ(x, t) = xu, then we get

d E[xu ]

dt
= E [fu(x, t)]

In vector form this gives the differential equation for the mean:

dm

dt
= E [f(x, t)]
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Mean and Covariance of SDE [2/2]

If we select φ(x, t) = xu xv − mu(t)mv (t), then we get differential

equation for the components of covariance:

d E[xu xv − mu(t)mv (t)]

dt

= E [(xv − mv (t)) fu(x , t)] + E [(xu − mu(v)) fv (x , t)]

+ [L(x, t)Q L
T(x, t)]uv .

The final mean and covariance differential equations are

dm

dt
= E [f(x, t)]

dP

dt
= E

[

f(x, t) (x − m)T
]

+ E
[

(x − m) f
T(x, t)

]

+ E
[

L(x, t)Q L
T(x, t)

]

Note that the expectations are w.r.t. p(x, t)!
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Mean and Covariance of SDE: Notes

To solve the equations, we need to know p(x, t), the solution to

the FPK.

In linear-Gaussian case the first two moments indeed characterize

the solution.

Useful starting point for Gaussian approximations of SDEs.
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Mean and Covariance of SDE: Example

dx(t) = tanh(x(t)) dt + dβ(t), x(0) = 0,
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Higher Order Moments

It is also possible to derive differential equations for the higher

order moments of SDEs.

But with state dimension n, we have n3 third order moments, n4

fourth order moments and so on.

Recall that a given scalar function φ(x) satisfies

d E[φ(x)]

dt
= E

[

∂φ(x)

∂x
f (x)

]

+
q

2
E

[

∂2φ(x)

∂x2
L2(x)

]

.

If we apply this to φ(x) = xn:

d E[xn]

dt
= n E[xn−1 f (x , t)] +

q

2
n (n − 1) E[xn−2 L2(x)]

This, in principle, is an equation for higher order moments.

To actually use this, we need to use moment closure methods.
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Mean and covariance of linear SDEs

Consider a linear stochastic differential equation

dx = F(t)x(t) dt + u(t) dt + L(t) dβ(t), x(t0) ∼ N(m0,P0).

The mean and covariance equations are now given as

dm(t)

dt
= F(t)m(t) + u(t)

dP(t)

dt
= F(t)P(t) + P(t)F

T(t) + L(t)Q L
T(t),

The general solutions are given as

m(t) = Ψ(t , t0)m(t0) +

∫ t

t0

Ψ(t , τ)u(τ) dτ

P(t) = Ψ(t , t0)P(t0)Ψ
T(t , t0)

+

∫ t

t0

Ψ(t , τ)L(τ)Q(τ)L
T(τ)ΨT(t , τ) dτ
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Mean and covariance of LTI SDEs

In LTI SDE case

dx = F x(t) dt + L dβ(t),

we have similarly

dm(t)

dt
= F m(t)

dP(t)

dt
= F P(t) + P(t)F

T + L Q L
T

The explicit solutions are

m(t) = exp(F (t − t0))m(t0)

P(t) = exp(F (t − t0))P(t0) exp(F (t − t0))
T

+

∫ t

t0

exp(F (t − τ))L Q L
T exp(F (t − τ))T

dτ.
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LTI SDEs: Matrix fractions

Let the matrices C(t) and D(t) solve the LTI differential equation

(

dC(t)/ dt

dD(t)/ dt

)

=

(

F L Q LT

0 −FT

)(

C(t)
D(t)

)

Then P(t) = C(t)D−1(t) solves the differential equation

dP(t)

dt
= F P(t) + P(t)F

T + L Q L
T

Thus we can solve the covariance with matrix exponential as well:

(

C(t)
D(t)

)

= exp

{(

F L Q LT

0 −FT

)

t

}(

C(t0)
D(t0)

)

.
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Steady State Solutions of Linear SDEs [1/4]

Let’s now consider steady state solution of LTI SDEs

dx = F x dt + L dβ

At the steady state, the time derivatives of mean and covariance

should be zero:

dm(t)

dt
= F m(t) = 0

dP(t)

dt
= F P(t) + P(t)F

T + L Q L
T = 0.

The first equation implies that the stationary mean should be

identically zero m∞ = 0.

The second equation gives the Lyapunov equation, a special case

of algebraic Riccati equations (AREs):

F P∞ + P∞ F
T + L Q L

T = 0.
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Steady State Solutions of Linear SDEs [2/4]

The general solution of LTI SDE is

x(t) = exp (F (t − t0)) x(t0) +

∫ t

t0

exp (F (t − τ)) L dβ(τ).

If we let t0 → −∞ then this becomes:

x(t) =

∫ t

−∞

exp (F (t − τ)) L dβ(τ)

The covariance function is now given as

E[x(t)x
T(t ′)]

= E







[
∫ t

−∞

exp (F(t − τ))L dβ(τ)

]

[

∫ t ′

−∞

exp
(

F(t ′ − τ ′)
)

L dβ(τ ′)

]T






=

∫ min(t ′,t)

−∞

exp (F (t − τ)) L Q L
T exp

(

F (t ′ − τ)
)T

dτ.
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Steady State Solutions of Linear SDEs [3/4]

But we already know the following:

P∞ =

∫ t

−∞

exp (F (t − τ)) L Q L
T exp (F (t − τ))T

dτ,

which, by definition, should be independent of t .

If t ≤ t ′, we have

E[x(t)x
T(t ′)]

=

∫ t

−∞

exp (F (t − τ)) L Q L
T exp

(

F (t ′ − τ)
)T

dτ

=

∫ t

−∞

exp (F (t − τ)) L Q L
T exp

(

F (t ′ − t + t − τ)
)T

dτ

=

∫ t

−∞

exp (F (t − τ)) L Q L
T exp (F (t − τ))T

dτ exp
(

F (t ′ − t)
)T

= P∞ exp
(

F (t ′ − t)
)T

.
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Steady State Solutions of Linear SDEs [4/4]

If t > t ′, we get similarly

E[x(t)x
T(t ′)]

=

∫ t ′

−∞

exp (F (t − τ)) L Q L
T exp

(

F (t ′ − τ)
)T

dτ

= exp
(

F (t − t ′)
)

∫ t ′

−∞

exp (F (t − τ)) L Q L
T exp

(

F (t ′ − τ)
)T

dτ

= exp
(

F (t − t ′)
)

P∞.

Thus the covariance function of LTI SDE is simply

C(τ) =

{

P∞ exp (F τ)T if τ ≥ 0

exp (−F τ) P∞ if τ < 0.
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Fourier Analysis of LTI SDE Revisited

Let’s reconsider Fourier domain solutions of LTI SDEs

dx = F x(t) dt + L dβ(t)

We already analyzed them in white noise formalism, which

required computation of

W (i ω) =

∫

∞

−∞

w(t) exp(−i ω t) dt ,

Every stationary Gaussian process x(t) has a representation of

the form

x(t) =

∫

∞

0

exp(i ω t) dζ(i ω),

ω 7→ ζ(i ω) is some complex valued Gaussian process with

independent increments.
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Fourier Analysis of LTI SDE Revisited (cont.)

The mean squared difference E[|ζ(ωk+1)− ζ(ωk)|2] corresponds

to the mean power on the interval [ωk , ωk+1].

The spectral density then corresponds to a function S(ω) such that

E[|ζ(ωk+1)− ζ(ωk)|2] =
1

π

∫ ωk+1

ωk

S(ω) dω,

By using this kind of integrated Fourier transform the Fourier

analysis can be made rigorous.

For more information, see, for example, Van Trees (1968).
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Fourier Analysis of LTI SDE Revisited II

Another is to consider ODE with smooth Gaussian process u:

dx

dt
= F x(t) + L u(t),

We can take

Cu(τ ;∆) = Q
1√

2π∆2
exp

(

− 1

2∆2
τ2

)

which in the limit ∆ → 0 gives the white noise.

Spectral density of the ODE solution is then

Sx(ω;∆) = (F − (i ω) I)−1
L Q exp

(

−∆2

2
ω2

)

L
T (F + (i ω) I)−T .
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Fourier Analysis of LTI SDE Revisited II (cont.)

In the limit ∆ → 0 to get the spectral density corresponding to the

white noise input:

Sx(ω) = lim
∆→0

Sx(ω;∆) = (F − (i ω) I)−1
L Q L

T (F + (i ω) I)−T ,

The limiting covariance function is then

Cx(τ) = F
−1[(F − (i ω) I)−1

L Q L
T (F + (i ω) I)−T].

Because Cx(0) = P∞, we also get the following interesting

identity:

P∞ =
1

2π

∫

∞

−∞

(F − (i ω) I)−1
L Q L

T (F + (i ω) I)−T] dω

Simo Särkkä (Aalto/TUT/LUT) Lecture 3: Statistics of SDEs November 8, 2012 34 / 36



Summary

The probability density of SDE solution x(t) solves the

Fokker–Planck–Kolmogorov (FKP) partial differential equation.

The mean m(t) and covariance P(t) of the solution solve a pair of

ordinary differential equations.

In non-linear case, the expectations in the mean and covariance

equations cannot be solved without knowing the whole probability

density.

For higher moment moments we can derive (theoretical)

differential equations as well—can be approximated with moment

closure.

In linear case, we can solve the probability density and all the

moments.

The covariance functions for LTI SDEs can be solved by

considering stationary solutions to the equations.
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