Exercise Round 2 (8.11.2012).

Exercise 1. (Usage of Itô formula)

A) Compute the Itô differential of

$$\phi(\beta) = t + \exp(\beta)$$

where $\beta(t)$ is a Brownian motion with diffusion constant q.

B) Compute the Itô differential of

$$\phi(x) = x^2,$$

where x solves the scalar SDE

$$\mathrm{d}x = f(x) \, \mathrm{d}t + \sigma \, \mathrm{d}\beta,$$

 σ is a constant, and $\beta(t)$ is a standard Brownian motion (q = 1).

C) Compute the Itô differential of

$$\phi(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{x}$$

where

$$\mathrm{d}\mathbf{x} = \mathbf{F}\mathbf{x} \,\mathrm{d}t + \mathrm{d}\boldsymbol{\beta}$$

where **F** is a constant matrix and the joint diffusion matrix of β is **Q**.

Exercise 2. (Stochastic Differential Equations)

A) Check that

 $x(t) = \exp(\beta(t))$

solves the SDE

$$\mathrm{d}x = \frac{1}{2}x \,\mathrm{d}t + x \,\mathrm{d}\beta,$$

where $\beta(t)$ is a standard Brownian motion (q = 1).

B) Solve the following SDE by changing the variable to $y = \ln x$:

$$\mathrm{d}x = -c\,x\,\,\mathrm{d}\,\beta$$

c > 0 is a constant, and $\beta(t)$ is a standard Brownian motion.

C) Convert the following Stratonovich SDE equation into the equivalent Itô SDE:

$$dx_1 = -x_2 \circ d\beta_1$$
$$dx_2 = x_1 \circ d\beta_2$$

where β_1 and β_2 are independent standard Brownian motions.

1

Applied Stochastic Differential Equations

Autumn 2012

Exercise 3. (Mean and variance differential equations)

Derive the mean and covariance equations for the scalar SDE

$$dx = f(x) dt + \sigma(x) d\beta, \tag{1}$$

where β has the diffusion coefficient q, as follows:

A) Conclude from the definition of Itô integral that

$$\mathbf{E}\left[\int_{u}^{v}\sigma(x(t))\,\,\mathrm{d}\beta(t)\right] = 0$$

for any u and v.

B) Take expectations from both sides of the SDE (1) and formally divide by dt to get the differential equation for the mean m(t).

C) Apply Itô formula to $\phi(x,t) = (x-m(t))^2$ and take expectation of the resulting equation to derive the differential equation for the variance.

D) Write down the mean and covariance differential equations for the scalar SDE

$$\mathrm{d}x = -\lambda x \, \mathrm{d}t + \mathrm{d}\beta,$$

where $\lambda > 0$ and solve them with $x(0) = x_0$.