Exercise Round 2 (8.11.2012).

Exercise 1. (Usage of Itô formula)

A) Compute the Itô differential of

$$
\phi(\beta)=t+\exp (\beta)
$$

where $\beta(t)$ is a Brownian motion with diffusion constant q.
B) Compute the Itô differential of

$$
\phi(x)=x^{2},
$$

where x solves the scalar SDE

$$
\mathrm{d} x=f(x) \mathrm{d} t+\sigma \mathrm{d} \beta
$$

σ is a constant, and $\beta(t)$ is a standard Brownian motion $(q=1)$.
C) Compute the Itô differential of

$$
\phi(\mathrm{x})=\mathrm{x}^{\top} \mathrm{x}
$$

where

$$
\mathrm{d} \mathbf{x}=\mathbf{F} \mathbf{x} \mathrm{d} t+\mathrm{d} \boldsymbol{\beta}
$$

where \mathbf{F} is a constant matrix and the joint diffusion matrix of $\boldsymbol{\beta}$ is \mathbf{Q}.

Exercise 2. (Stochastic Differential Equations)

A) Check that

$$
x(t)=\exp (\beta(t))
$$

solves the SDE

$$
\mathrm{d} x=\frac{1}{2} x \mathrm{~d} t+x \mathrm{~d} \beta,
$$

where $\beta(t)$ is a standard Brownian motion ($q=1$).
B) Solve the following SDE by changing the variable to $y=\ln x$:

$$
\mathrm{d} x=-c x \mathrm{~d} \beta
$$

$c>0$ is a constant, and $\beta(t)$ is a standard Brownian motion.
C) Convert the following Stratonovich SDE equation into the equivalent Itô SDE:

$$
\begin{aligned}
\mathrm{d} x_{1} & =-x_{2} \circ \mathrm{~d} \beta_{1} \\
\mathrm{~d} x_{2} & =x_{1} \circ \mathrm{~d} \beta_{2}
\end{aligned}
$$

where β_{1} and β_{2} are independent standard Brownian motions.

Exercise 3. (Mean and variance differential equations)

Derive the mean and covariance equations for the scalar SDE

$$
\begin{equation*}
\mathrm{d} x=f(x) \mathrm{d} t+\sigma(x) \mathrm{d} \beta, \tag{1}
\end{equation*}
$$

where β has the diffusion coefficient q, as follows:
A) Conclude from the definition of Itô integral that

$$
\mathrm{E}\left[\int_{u}^{v} \sigma(x(t)) \mathrm{d} \beta(t)\right]=0
$$

for any u and v.
B) Take expectations from both sides of the SDE (1) and formally divide by $\mathrm{d} t$ to get the differential equation for the mean $m(t)$.
C) Apply Itô formula to $\phi(x, t)=(x-m(t))^{2}$ and take expectation of the resulting equation to derive the differential equation for the variance.
D) Write down the mean and covariance differential equations for the scalar SDE

$$
\mathrm{d} x=-\lambda x \mathrm{~d} t+\mathrm{d} \beta,
$$

where $\lambda>0$ and solve them with $x(0)=x_{0}$.

