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In this work we consider the commutation of rational languages. Especially we study the
centralizer, the maximal language commuting with a given language and Conway’s prob-
lem connected to it. J.H. Conway asked in 1971 (Regular algebra and Finite Machines,
Chapman Hall,1971), if the centralizer of a rational language is also rational. The ques-
tion remained unanswered for a long time, until just recently M. Kunc gave it the negative
answer.

We shall present the fixed point approach introduced by J. Karhumäki (Challenges of
Commutation - An advertisement, in: FCT 2001, R. Freivalds, (ed.), Lecture Notes in
Computer Science 2138, Springer-Verlag, New York 2001, pp. 15-23). This approach
is an iterative method for finding the centralizer of a given language as a maximal fixed
point of certain language operation. For most of rational languages this method gives the
result rather soon, but on some cases it leads to an infinit computation.

First we introduce some required tools and notations. Next we give a few results on the
centralizer in general and in some special cases. Finally we study, how the fixed point
approach behaves on some selected examples. We discuss few cases where approach is
successful and also some cases for which the approach fails. We show that the fixed point
approach can fail even when the given language is finite.

As a computing tool, we have used the computer program called Grail+. This program is
developed in the University of Western Ontario, Canada, and improved in the University
of Turku.

Keywords: rational languages, commutation, the centralizer, fixed point approach, Con-
way’s problem.
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1 Introduction

In this work we will consider a problem related to the commutation of two ratio-

nal languages. For two single words commutation is very well known. Two words

commute if and only if they are powers of a common word. Generally there is quite

much knowledge on equations on words [16, 1]. However, very little is known about

equations on languages. Many cases seem to lead to hard and undecidable prob-

lems. To see this contrast between word equations and language equations, we can

note, that the satisfiability problem for word equations is decidable, by the result of

S. Makanin [17]. This problem is equivalent with a corresponding problem for finite

sets of word equations and with the same problem for rational sets of word equations,

see Culik and Karhumäki [5]. W. Plandowski proved, that the satisfiability problem

for words is even in PSPACE [20]. On the other hand, in [9] Karhumäki and Lisovik

prove, that the satisfiability problem of rational systems of equations over finite sets

of words is undecidable. For more about language equations in general, see [15].

The commutation equation XY = Y X is one special case of language equations.

It has extremely simple formulation, but has appeared to be the source of very hard

problems. Our focus is on one of them, so called Conway’s problem [4]. This problem

concentrates on the centralizer C(X) of a given language X , i.e. the largest language

commuting with the language X . In other words, we are interested in the maximal

solution Y of the commutation equation, with fixed language X . Conway’s problem

asks, if the centralizer of the rational language is also rational. This problem was

recently solved by M. Kunc [14], who gave a negative answer for the question, and

even in a very strong form. In his breakthrough result he proved, that the centralizer
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of a rational language does not need to be even recursively enumerable. Not even for

finite languages.

There has been several different approaches to attack Conway’s problem. In his

PhD Thesis [19] I. Petre used results on formal power series. In [13] Karhumäki and

Petre discuss so called branching point approach on Conway’s problem. So called

fixed point approach is studied in [12] and [6]. This fixed point approach is used also

in this work. It can be used for finding the centralizer of rational language in most

cases.

The method, which Kunc uses is closely related to so called TAG systems of

Post. In TAG systems one starts with some initial word and proceeds by using some

given rules for rewriting. In the case of centralizer, the initial word w is chosen

from the centralizer of language X and the rewriting rules are w 7→ (xw)y−1 and

w 7→ y−1(wx) where words x and y are from X . Kunc represents his proof as a game

between an attacker and a defender. The attacker tries to prove that selected initial

word is not in the centralizer and the defender tries to show that it is. The attacker

chooses words x and the defender chooses words y. The attacker wins, if repetitive

rewriting leads to a word which is for sure not in the centralizer, i.e. when the defender

can not choose any y inX . The defender is the winner in the case that game continues

forever. Now the initial word w is in the centralizer if and only if the defender has a

winning strategy, i.e. if he can keep game going on, whatever the attacker does.

We will give a solution to Conway’s problem on so called singular languages

in the finite case. We will also use the same method to give a partial solution for

4-element sets. Next we will give the definition of the fixed point approach.

Finally we go through some examples to see, what kind of centralizers we can

have for rational languages and how fixed point approach works in different cases.

We study these cases mostly by implementing the method with Grail+-software [22],

but in most cases we also prove the correctness of the result manually. In some cases

we also illustrate the iterative steps by hand step by step.

The Grail+ software is developed in the University of West Ontario in Canada. It

is a set of command line tools implementing several operations on finite automata,

finite languages and regular expressions. It also supports UNIX-like piping of output
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of one operation to the input of another. Special thanks go to Arto Lepistö from

University of Turku, who has greatly improved the Grail+-software by optimizing

algorithms and adding several additional and needed operations.

In the last chapter we study the behavior of the fixed point method in the case

where the algorithm does not halt. In these cases the program will keep computing

step after step getting more and more complex results as iteration steps. We will

analyze some example cases, both finite and infinite, to see that they exist and to find

out why the method does not halt.
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2 Notations

We will start by defining some notation we will use in this work. For more detailed

definitions we refer to [16].

Through this work we will mainly use Σ to deduce the alphabet, a (finite) set of

letters. As usual Σ∗ and Σ+ are the free monoid and the free semigroup generated by

Σ. For a language L the language L∗ is the monoid ∪i≥0L
i and L+ is the semigroup

∪i≥1L
i.

Small letters a, b, c, d, . . . (with or without subscripts) are mainly considered as

letters of the alphabet Σ and letters s, t, u, v, w, x, y, z (with or without subscripts) are

used for words, i.e. strings of letters. The empty word is expressed with the symbol

1.

Capital letters are used as symbols for languages, the language X being usually

the one which we are studying. A language which does not contain the empty word

1, is called 1-free.

Notation |X| refers to the cardinality of the set X and notation |w| means the

length of the word w. The word u ∈ Σ∗ is called a prefix or left factor (resp. suffix or

right factor) of the word w ∈ Σ∗ if w = uv (resp. w = vu) for some word v ∈ Σ∗.

We also use notation u = wv−1 (resp. u = v−1w), which refers to erasing of the word

v from word w from right (resp. left). The corresponding notation is also extended

for languages.

L−1
2 L1 = {u−1

2 u1 | u1 ∈ L1, u2 ∈ L2}

L1L
−1
2 = {u1u

−1
2 | u1 ∈ L1, u2 ∈ L2}.
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We use notation Pref1(w) for the prefix of length 1 of a non-empty wordw, i.e. the

first letter of the word. Similarly notations Prefn(w) and Sufn(w) mean the prefix and

the suffix of length n, of word w with length at least n respectively. We extend these

notations in a natural way for languages

Pref1(X) = {Pref1(w) ∈ Σ | w ∈ X, |w| ≥ 1}

Prefn(X) = {Prefn(w) ∈ Σ∗ | w ∈ X, |w| ≥ n}

Sufn(X) = {Sufn(w) ∈ Σ∗ | w ∈ X, |w| ≥ n}.

Notations Pref(X) and Suf(X) refer to sets of all prefixes and suffixes of arbitrary

length.

We will say that a word u ∈ Σ∗ is a proper prefix of a word w ∈ Σ∗, if there exists

a word v ∈ Σ+ such that w = uv. We also call u a proper prefix of a language X ,

if u is a proper prefix of some word in X . In this case it is possible, that u is also in

X itself. With this notation, for example a word aba is a proper prefix of a language

{aba, ababb}.

The notation wR is used for the reverse of the word w. This means that if w =

a1a2 · · ·an for some ai ∈ Σ, then wR = an · · ·a2a1, i.e. wR is the same word as w,

but written from right to left. Also this notation is extended in a natural way to sets

of words

XR = {wR | w ∈ X}.

A language X is called periodic, if all of its words are powers of the same word,

i.e. if X ⊆ u∗ for some word u ∈ Σ∗.

In many places in this work we have used infix operator + to stand for the union

of two languages. This notation is used mainly in rational expressions and can be

justified by the fact, that powerset 2Σ∗

with catenation and union forms a semiring.

The more traditional set theoretic symbol ∪ is also used in some places.

The infix operator ∆ will be used as shorthand for the symmetric difference

A∆B = (A ∪ B) \ (A ∩ B) = (A \B) ∪ (B \ A) of two sets A and B.
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3 Centralizer

We will take a look on commutation of two languages. We will define the centralizer

of a language and prove some properties of it. Finally we will formulate a problem,

introduced by J.H. Conway, which was open for a long time, and was just recently

solved by M. Kunc [14].

3.1 Commutation of languages

Commutation of languages X and Y is defined with a simple equation XY = Y X .

However, it seems to be difficult to find general rules when languages do commute.

It is well known result in combinatorics on words [16], that for two words u, v ∈ Σ∗

equation uv = vu holds if and only if there exists some word t ∈ Σ∗ such that u = ti

and v = tj for some integers i and j. Any general rules for commutation of entire

languages are not likely to be found.

If languages X and Y commute, what does it mean for single words of these

languages? For all words x1 ∈ X and y1 ∈ Y there exists such words x2 ∈ X and

y2 ∈ Y that

x1y1 = y2x2

and such words x3 ∈ X and y3 ∈ Y that

y1x1 = x3y3.

Example 3.1. Languages X = {a, aaa, b, ba, ab, aba} and Y = X ∪ {aa} commute.
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First we see clearly, that XX ⊆ XY . Secondly, since

aa · a = a · aa aa · aaa = aaa · aa

aa · b = a · ab aa · ba = a · aba

aa · ab = aaa · b aa · aba = aaa · ba,

we get that {aa}X ⊆ XY . These together imply Y X = (X∪{aa})X ⊆ XY . Since

X and Y are “symmetric”, in the sense that X = XR and Y = Y R, we obtain

Y X ⊆ XY

(Y X)R ⊆ (XY )R

XRY R ⊆ Y RXR

XY ⊆ Y X.

Therefore XY = Y X .

3.2 Centralizer and its properties

Next we fix one of the languages X and Y and focus on the maximal language com-

muting with it.

Definition 3.2. There are two centralizers for language X over alphabet Σ. The

∗-centralizer, or monoid centralizer, C∗(X) is the maximal subset of monoid Σ∗

commuting with language X . Similarly the +-centralizer, or semigroup centralizer,

C+(X) is the maximal subset of semigroup Σ+ commuting with X .

First we have to make sure, that these centralizers really exist for all X , and that

they are unique. For any language X there always exists some language commuting

withX , since for any n ≥ 0 the equationXnX = XXn holds, and especiallyX∗X =

XX∗. Also the semigroup Σ+ includes always some subsets commuting with X . If

1 /∈ X , at least X+ commutes with X , and if 1 ∈ X , even Σ+X = Σ+ = XΣ+.

Now the union of all languages commuting with X

⋃

{A ⊆ Σ∗ |AX = XA}
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commutes also with X , since the distributive law holds. The fact, that this union

includes all languages commuting with X , means that it is the maximal language

commuting with X , i.e. the centralizer C∗(X). Now the centralizer C∗(X) is unique

and always exists.

The uniqueness and existence of the centralizer C+(X) is proven similarly by

replacing Σ∗ by semigroup Σ+.

We must note that the notion of centralizer is here slightly different from the usual

meaning of centralizer in algebra. In algebra the centralizer is defined using element-

wise commutation and the centralizer of given element x is the set of all elements

commuting with it. In the case of languages, i.e. in the semiring 2Σ∗

this would mean

the set COM(X) = {Y ⊆ Σ∗ | XY = Y X}, using the notation of [19]. However

we will call the greatest element of the set COM(X) the monoid centralizer of the

language X . In his book [4] Conway introduced the centralizer originally with the

name normalizer, which is not very accurate either.

We will now show some properties of the centralizer.

Theorem 3.3. For each language X , C∗(X) is a monoid and C+(X) is a semigroup.

Proof. The language A is a monoid (resp. semigroup) if and only if A = A∗ (resp.

A = A+). We will prove the claim for the ∗-centralizer. For the +-centralizer the

claim is proven similarly.

First we show by induction on n, that C∗(X)nX = XC∗(X)n for every n ≥ 0.

First of all

C∗(X)0X = {1}X = X = X{1} = XC∗(X)0.

On the other hand, if the claim holds when n ≤ k, we get

C∗(X)k+1X = C∗(X)kC∗(X)X = C∗(X)kXC∗(X) = XC∗(X)k+1.

So C∗(X)nX = XC∗(X)n for every n ≥ 0 and by the distributivity law C∗(X)∗X =

XC∗(X)∗. Since C∗(X) is maximal, we must have C∗(X)∗ ⊆ C∗(X). Inclusion

C∗(X) ⊆ C∗(X)∗ holds trivially. This means that

C∗(X)∗ = C∗(X)

and so the centralizer C∗(X) is a monoid.
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Theorem 3.4. If 1 ∈ X , then C∗(X) = Σ∗ and C+(X) = Σ+.

Proof. If 1 ∈ X , then Σ∗X = Σ∗ = XΣ∗. The other claim is proven similarly.

We will simply use notation C(X) for the centralizer of X , if there is no risk of

confusion. We will mainly consider the +-centralizer. Results for ∗-centralizers seem

to be in most cases either trivial or obtained similarly as for +-centralizers. However

the connection between these two centralizers is not totally clear yet. There are four

cases depending on which one of these centralizers we consider and if the empty word

1 is or is not in X .

The cases with 1 ∈ X are those of Theorem 3.4. The case 1 /∈ X with +-

centralizer is the case considered here. Most of the results for +-centralizers, consid-

ered in this work, can be applied almost analogously to the ∗-centralizers, with the

difference that the base set is Σ∗ instead of Σ+. This doesn’t necessarily mean, that

C∗(X) = C+(X) ∪ {1}. For example if X = {a, ab, ba, bb}, then C∗(X) = Σ∗ and

C+(X) = Σ+ \ {b}, as noted in [12]. Generally it is not known, if problems on these

two centralizers can be reduced to each others.

Theorem 3.5. The centralizer of X is also the centralizer of X+, i.e.

C(X) = C(X+).

Proof. Since C(X) commutes with X , it clearly, by induction, commutes also with

Xn for every n ≥ 1. That means, by distributivity law, that it commutes also with

X+ =
⋃

n≥1X
n. So we have C(X) ⊆ C(X+).

On the other hand we know, that X ⊆ X+ ⊆ C(X+) and that C(X+) is semi-

group. Hence

XC(X+) ⊆ X+C(X+) = C(X+)X+ = C(X+)X∗

︸ ︷︷ ︸

⊆C(X+)

·X ⊆ C(X+)X.

Similarly C(X+)X ⊆ XC(X+), so XC(X+) = C(X+)X . Since the maximality of

C(X), we must also have inclusion

C(X+) ⊆ C(X).
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The centralizer is easily defined, but it is not always an easy task to find it. We

can start by setting some upper and lower bounds for the centralizer.

Theorem 3.6. Let X ⊆ Σ+. Then for the centralizer C(X) holds the equation

X+ ⊆ C(X) ⊆ Pref(X+) ∩ Suf(X+). (1)

Since we are using +-centralizer, we interpret Pref(X+) and Suf(X+) as 1-free pre-

fix and suffix of X+.

Proof. The first inclusion is clear, since X+ always commutes with X . The other

inclusion can be seen as inclusions in both Pref(X+) and Suf(X+) separately. We

will take look on the prefix case, the suffix case being similar. For every integer n ≥ 1

and words z1 ∈ C(X), x1, . . . , xn ∈ X there exists words z2, . . . , zn+1 ∈ C(X) and

y1, . . . , yn ∈ X such, that

zixi = yizi+1,

where 1 ≤ i ≤ n. This means that equation

z1x1 · · ·xn = y1 · · ·ynzn+1

holds. Since 1 /∈ X , the length of every word yi is at least one and so for n big enough

we have |y1 · · · yn| ≥ |z1|. Hence z1 ∈ Pref(X+) for every word z1 in the centralizer

and so C(X) ⊆ Pref(X+).

We can also give some more accurate bounds for the centralizer. For example the

language

S = {w ∈ Σ+ |wX ⊆ XX+ and Xw ⊆ XX+} (2)

commutes with X and is hence included in the centralizer. This can be seen as fol-

lows. The definition of S gives us X+ ⊆ S. Also by the definition SX ⊆ XX+ ⊆

XS and XS ⊆ XX+ = X+X ⊆ SX , so XS = SX .

This means

X+ ⊆ S ⊆ C(X). (3)

In most cases the centralizer of the rational language X is either X+ or S. The

previous case is more precisely the case where X+ = S = C(X). However there also

exist languages having centralizer larger than S.
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Example 3.7. As an example of the case where inclusion S ⊆ C(X) is proper, we

could take a look on a language X = {a, ab, ba, bb}. The centralizer is C(X) =

Σ+ \ {b}, but C(X) 6= S since for example bab ∈ C(X), but bab · bb /∈ XX+, which

implies that bab /∈ S.

The definition of S was given as a set of words having a certain property. It can

also be given as a rather simple formula. This formula can be easily implemented

with software.

Theorem 3.8. The language S can be represented as

S = Σ+ \
(
(Σ+ \XX+)X−1 ∪X−1(Σ+ \XX+)

)
. (4)

Proof. We start from the definition of S in formula (2). Since

w ∈ S ⇐⇒ (∀a ∈ X)(wa ∈ XX+ ∧ aw ∈ XX+),

we have

w /∈ S ⇐⇒ (∃a ∈ X)(wa /∈ XX+ ∨ aw /∈ XX+)

⇐⇒ (∃a ∈ X)(wa ∈ Σ+ \XX+ ∨ aw ∈ Σ+ \XX+).

The complement of S can now be given as

Σ+ \ S = {w ∈ Σ+ | (∃a ∈ X)(wa ∈ Σ+ \XX+)}

∪{w ∈ Σ+ | (∃a ∈ X)(aw ∈ Σ+ \XX+)}

= (Σ+ \XX+)X−1 ∪X−1(Σ+ \XX+).

This gives us the language S as a complement

S = Σ+ \
(
(Σ+ \XX+)X−1 ∪X−1(Σ+ \XX+)

)
.

All operations used in this formula are such, that the rationality of the language is

preserved.

Using the binary alphabet Σ = {a, b} in our examples does not limit the gen-

erality, since every finite alphabet can be encoded to binary alphabet preserving the

centralizer.
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Theorem 3.9. Let Σ = {a1, a2, . . . , an} be a finite alphabet. With a properly cho-

sen encoding ψ we can encode arbitrary language X over alphabet Σ to the binary

alphabet {a, b} so, that

ψ(C(X)) = C(ψ(X)).

Proof. Let’s have Γ = {abia|i = 1, 2, . . . , n} as a set of code words. For encoding

we use the morphism

ψ : Σ∗ → Γ∗, ψ(ai) = abia.

The image of the language X ⊆ Σ+ is ψ(X) ⊆ Γ+. Now C(ψ(X)) ⊆ Γ+, since

C(ψ(X)) ⊆ (Pref(ψ(X)+) ∩ Suf(ψ(X)+)) \ {a} ⊆ Γ+. Since C(X)X = XC(X),

the equation

ψ(C(X))ψ(X) = ψ(C(X)X) = ψ(XC(X)) = ψ(X)ψ(C(X))

holds and so ψ(C(X)) ⊆ C(ψ(X)).

On the other hand ψ is injection and so

ψ−1(C(ψ(X)))X = ψ−1(C(ψ(X)))ψ−1(ψ(X)) = ψ−1(C(ψ(X))ψ(X))

= ψ−1(ψ(X)C(ψ(X))) = Xψ−1(C(ψ(X))),

i.e. ψ−1(C(ψ(X))) ⊆ C(X) and hence C(ψ(X)) ⊆ ψ(C(X)).

So over all C(ψ(X)) = ψ(C(X)).

This means, that if we are studying the centralizer of the language X over a finite

arbitrary alphabet, we can encode X into a binary alphabet and study the centralizer

of the encoded language.

However, as our next example shows, not all encodings are suitable.

Example 3.10. Let Σ = {a, b, c, d} be an alphabet, which we encode to binary al-

phabet {e, f} by using the mapping

ψ : Σ∗ → {e, f}∗, ψ(a) = ee, ψ(b) = ef, ψ(c) = fe, ψ(d) = ff.

If we study the language X = Σ = {a, b, c, d}, we have C(X) = X+ = Σ+ as its

centralizer and the encoded language is

ψ(X) = {ee, ef, fe, ff} = {e, f}2.
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However the centralizer of the image ψ(X) is not the same as the image of the cen-

tralizer C(X), since

C(ψ(X)) = {e, f}+ 6= ({e, f}2)+ = ψ(C(X)).

In this case the crucial reason, why this encoding does not work, is the fact, that

the set of code words is not a primitive set, but a power of a smaller set of words.

We may also consider, what happens to the centralizer, if we map the language

with a morphism ϕ.

Theorem 3.11. Let Σ and Γ be two alphabets and ϕ : Σ∗ → Γ∗ a morphism. If

X ⊆ Σ+, then ϕ(C(X)) ⊆ C(ϕ(X)).

Proof. The proof is straightforward. Since ϕ is a morphism,

ϕ(X)ϕ(C(X)) = ϕ(XC(X)) = ϕ(C(X)X) = ϕ(C(X))ϕ(X)

and this implies

ϕ(C(X)) ⊆ C(ϕ(X)).

If the centralizer of language X is not X+, we obtain following result.

Theorem 3.12. LetX ⊆ Σ+ andX+ ⊂ C(X). If the set {ϕ(a) | a ∈ Σ} is a code, i.e.

the morphism ϕ is injective, then we have also proper inclusion ϕ(X)+ ⊂ C(ϕ(X)).

Proof. Let us choose a word w ∈ C(X) \ X+. The image ϕ(w) is now clearly, by

Theorem 3.11, in the centralizer of ϕ(X). If the word ϕ(w) was in the language

ϕ(X)+ = ϕ(X+), this would yield the equation ϕ(w) = ϕ(w′) with some word w′ ∈

X+. This, however, gives us a nontrivial identity over alphabet {ϕ(a) | a ∈ Σ}, which

was chosen to be a code. As a conclusion we can say that ϕ(w) ∈ C(ϕ(X)) \ϕ(X)+

and this implies that the inclusion ϕ(X)+ ⊆ C(ϕ(X)) is proper.
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3.3 Conway’s problem

Concerning the centralizer, there exists several problems that have been open for a

long time. One of them is so called Conway’s problem introduced on 1971.

Conway’s problem. Is the centralizer of a rational language always rational?

This problem was introduced by John Horton Conway more than 30 years ago [4]

and remained open until it was solved just recently by M. Kunc [14]. For the ratio-

nal languages it was also an open question, whether or not the centralizer was even

recursive or recursively enumerable. Even if only finite languages were studied, this

problem remained open. Kunc finally gave an answer also for these questions, and

the answer was ”no”. The centralizer can be non-RE even for finite language. This

result concerns both semigroup and monoid centralizers. In his paper Kunc gives an

example of such a finite, but rather complicated language.

The positive answer has been proven on certain special cases, for example for

codes [8], when |X| ≤ 2 in [3], or when |X| = 3 in [8].

About the centralizer of a rational language we know from [12], that its comple-

ment is recursively enumerable. The fixed point approach, introduced later, will give

us the semialgorithm for recognizing the complement of the centralizer. For a word

in the centralizer this semialgorithm is however not guaranteed to halt.
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4 Singular languages

In this chapter we consider the centralizer of a finite singular language. The notion of

(left) singular languages was introduced by Ratoandromanana [21]. The language X

is called (left) singular if there exists a word v ∈ X such that vΣ∗∩ (X \{v})Σ∗ = ∅.

We also say, that this word v is singular inX . This means, that v is not a proper prefix

of any other word in X and none of words in X is a proper prefix of v. Third way to

express this is that v is incomparable in X with respect to the (proper) prefix relation.

In [8] Karhumäki, Latteux and Petre define a slightly different notion. For a lan-

guageX ⊆ Σ+ they call word x ∈ X weakly singular inX if xX∗∩(X\{x})X∗ = ∅.

The language X is called weakly singular if it has a weakly singular word x.

The notions of weakly singular and singular languages are related to each other

in the same way as notions of code and prefix code are to each others. In fact the

language L is a prefix code if and only if every word in L is singular in L and the

language L is a code if and only if every word in L is weakly singular in L.

Theorem 4.1. Let the word v be singular in X . If XY = Y X and w ∈ Y , then for

some integer n ≥ 0 there exists words t ∈ Xn and u ∈ Suf(X) such, that w = ut

and uXn ⊆ Y .

Proof. If w ∈ Y and v is singular in X , then equationXY = Y X implies vw ∈ Y X

and vwv−1
1 ∈ Y for some v1 ∈ X . Repeating this n times we get

vnw(vn · · · v2v1)
−1 ∈ Y, vi ∈ X,

where t = vn · · ·v2v1 and w = ut. Then vnu ∈ Y for some integer n ≥ 0 and word

u ∈ Suf(X) ∩ Pref(w). Since v is singular in X , we see that for every s ∈ Xn
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v v v

w

v1
v2vnu

v
n
u

vnus ∈ Y Xn = XnY =⇒ us ∈ Y.

In other words, uXn ⊆ Y .

Since C(X) is a semigroup, we have even uXnX∗ ⊆ C(X).

For every proper suffix ui ∈ Suf(X) (including the empty word 1) there either

exists a minimal integer ni, for which uiX
ni ⊆ C(X), or uiX

n 6⊆ C(X) for every

integer n ≥ 0. The Theorem 4.1 implies that every word w ∈ C(X) belongs to a set

uiX
niX∗, where ui is such that the integer ni is minimal.

We conclude the following result from [6].

Theorem 4.2. A finite singular language X has a rational centralizer. Moreover the

centralizer is even finitely generated.

Proof. If the languageX is finite, then the set of its proper suffixes is also finite. If we

use the notation I for the set of indices i of those suffixes ui which have the minimal

number ni mentioned above, then we can say

C(X) =
⋃

i∈I

uiX
niX∗

= (
⋃

i∈I

uiX
ni)

︸ ︷︷ ︸

=G

X∗

= GX∗

Here the language G is finite and X ⊆ G, since if u0 = 1, then n0 = 1 and hence

u0X
n0 = 1 ·X = X ⊆ G.

Since C(X) is semigroup and X is included in G, we get

C(X) = C(X)+ = (GX∗)+ = (X +G)+ = G+.
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Example 4.3. In the language X = {a, bb, aba, bab, bbb} the word bab is singular. In

this case the set of proper suffixes is {1, a, b, ab, ba, bb}. We will discuss all of these

words separately.

u0 = 1 : 1 ·X ⊆ C(X) =⇒ n0 = 1

u1 = a : a ∈ X ⊆ C(X) =⇒ n1 = 0

u2 = b : b · an · a /∈ XC(X) = C(X)X =⇒ b · an /∈ C(X), ∀n ∈ N.

This means that 2 /∈ I .

u3 = ab : a · ab · (bab)n /∈ Suf(X+) =⇒ aab(bab)n /∈ C(X)

=⇒ aab(bab)n /∈ XC(X) =⇒ ab(bab)n /∈ C(X), ∀n ∈ N.

Hence 3 /∈ I .

u4 = ba : ba · an · a /∈ XC(X) =⇒ ba · an /∈ C(X), ∀n ∈ N,

and hence 4 /∈ I .

u5 = bb : bb ∈ X ⊆ C(X) =⇒ n5 = 0.

Hereby I = {0, 1, 5} and G =
⋃

i∈I uiX
ni = 1 ·X + a + bb = X . This gives us the

finitely generated centralizer

C(X) = GX∗ = XX∗ = X+.

Example 4.4. As the second example we consider the language X = {a, ab, ba, bb},

for which we already mentioned that the centralizer is C(X) = Σ+ \ {b} 6= X+. The

set of proper suffixes is {1, a, b}. We conclude:

u0 = 1 : 1 ·X ⊆ C(X) =⇒ n0 = 1.

u1 = a : a ∈ X ⊆ C(X) =⇒ n1 = 0.

u2 = b : b /∈ C(X) =⇒ n2 6= 0

b · a ∈ X ⊆ C(X),

b · ab ∈ C(X),

b · ba ∈ X2 ⊆ C(X)

b · bb ∈ C(X)

bX ⊆ C(X) =⇒ n2 = 1
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Hence I = {0, 1, 2} and G = 1 · X + a + bX = {a, ab, ba, bb, bab, bbb}. So the

centralizer is indeed

C(X) = GX∗ = G+ = {a, ab, ba, bb, bab, bbb}+ = Σ+ \ {b}.
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5 Conway’s problem for 4-element sets

As we mentioned, Conway’s problem has previously been proven to have positive

answer for languages with at most three elements, [3] and [8]. In some sense these

cases always have a trivial centralizer, since it is always either ρ+ for some primitive

word ρ or X+, where X is the language considered.

Conway’s problem for four element sets is much more complicated, since in this

case the centralizer doesn’t have to be in one of the forms mentioned before. One

example, which was already mentioned before, is the language X = {a, ab, ba, bb}

which has the centralizer C(X) = Σ+\{b} = {a, ab, ba, bb, bab, bbb}+. There are also

other such examples, which can not be obtained as morphic images of each others.

Namely all languages of form

Xn = {a, bb, ab(bb)n, (bb)nba}, n ≥ 0,

have the centralizer C(Xn) = {a, bb, ab(bb)n, (bb)nba, (bb)nbab(bb)n, bbb(bb)n}+.

We analyze languages with four elements and find the solution on Conway’s prob-

lem for most of those. First we recall a result from [13].

We say that the language X is branching, if it has at least two words starting with

different letters.

Theorem 5.1. For any non-periodic language X , with 1 /∈ X , there exists a branch-

ing languageX ′ such that the centralizer C(X) is rational if and only if the centralizer

C(X ′) is rational.

Proof. If X is branching then we choose X ′ = X .
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If X is not branching, we can assume, that X = aX1 for some letter a ∈ Σ and

some language X1. Since C(X) ⊆ Pref(X+), we know that C(X) = aY for some

Y ⊆ Σ∗ and so

aX1aY = XC(X) = C(X)X = aY aX1.

This means that also X1aY a = Y aX1a, i.e. Y a ⊆ C(X1a) = Za for some language

Z ∈ Σ∗. Further this yields Y ⊆ Z.

If we do the same reasoning for the language X1a and the centralizer C(X1a) =

Za, we see that

aZ ⊆ C(aX1) = aY.

From this we obtain Z ⊆ Y and together with Y ⊆ Z we have Y = Z. This means

that also Y a = Za = C(X1a). Now we have the result

C(aX1) = aY = a((Y a)a−1) = a((Za)a−1) = a(C(X1a)a
−1).

This means that the centralizer of the language X = aX1 is rational if and only if

the centralizer of X1a is rational. If X1a is branching, then we choose X ′ = X1a. If

not, we can apply this method so many times, that the result will be branching. The

branching language will be finally reached at some point, since the language X is

non-periodic.

Prefix-relations between words in the language X can be represented as a graph.

In this graph an arrow from word u to the word v means, that u is a prefix of v. For

example the prefix-graph of the language X = {a, aa, ab, bb, aba, bba} is presented

in the Figure 1.

For the language X = {α, β, γ, δ} with four elements there exists nine different

possible prefix-graphs (up to renaming of elements). See Figure 2.

If the language is periodic, i.e. X ⊆ ρ+ for some primitive word ρ, then the

centralizer is ρ+, essentially due to [13]. However, if the language is not periodic,

then the first four cases, the cases where the graph is a tree with one root, can be

reduced to the last five cases by Theorem 5.1. The last four cases all have singular

elements and by Theorem 4.2 they have finitely generated centralizers. Now only one

of these nine cases, the fifth one, needs still to be considered.
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By Theorem 5.1 we can assume, that α and γ start with different letters,

i.e. Pref1(α) 6= Pref1(γ). Assume α = au and γ = bv for some a, b ∈ Σ and

u, v ∈ Σ∗. We can consider this case as three different subcases.

a

ab aa

aba

bb

bba

Figure 1: An example of a prefix-graph.

α

β

γ

δ

α

β γ

δ

α

β

γ δ

α

β γ δ

α

β

γ

δ

α

β

γ

δ

α δ

β γ

α

β

γ δ

α β γ δ

Figure 2: Prefix-graphs of all 4-element languages.
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First of all we assume that β = αbx = aubx and δ = γay = bvay for some

x, y ∈ Σ∗. Now we can use words α and γ in the same way as we used the singular

word in Theorem 4.2. Let w ∈ C(x). If Pref1(w) = a, then for some integer n, z ∈

Pref(X+) ∩ Suf(X) and v1, . . . , vn ∈ X we have w = zv1 · · · vn and αnz ∈ C(X).

This implies that zXn ⊆ C(X), since all words in αnzXn have unique left factor αn

in Xn. Similarly, if Pref1(w) = b, we can use the word γ = bv instead of the word

α. As in Theorem 4.2 this implies that C(X) is finitely generated.

α
n

w

z v1 vn

∈ C(X)
∈ X

n

∈ X
n

∈ C(X)

Figure 3: αnw = αnz · v1 · · · vn ∈ XnC(X) = C(X)Xn

In the second subcase we assume, that β = αax = auax and δ = γby = bvby. In

this case we have to use both words α and γ. If Pref1(w) = a, then for some integer

n we have w = zv1 · · ·vn and γ(αγ)b
n
2
cz ∈ C(X) or (αγ)

n
2 z ∈ C(X), depending

on the parity of n. Similarly, if Pref1(w) = b, for some n we have w = zv1 · · · vn

and α(γα)b
n
2
cz ∈ C(X) or (γα)

n
2 z ∈ C(X). Now these words have again unique left

factors in Xn yielding once more that zXn ⊆ C(X). Like before, the centralizer of

X is finitely generated.

The third subcase, where both β and δ continue with the same letter after their

prefixes α and γ, is harder. If, for example, α = au, γ = bv, β = aubx and δ = bvby

for some a 6= b and u, v, x, y ∈ Σ∗, then all words w ∈ C(X) ∩ aΣ∗ can easily be

handled using α as before, but then for words w ∈ C(X) ∩ bΣ∗ the case remains still

open.
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6 Fixed point approach

In this chapter we introduce a method for finding the centralizer of a given language.

For a rational language X this so called fixed point approach, see [7] and [6], can be

implemented with a computer using some software such as Grail+ [22].

The main idea is to have a mapping ϕ : ℘(Σ+) → ℘(Σ+), which has the central-

izer C(X) as its maximal fixed point. Our mapping is such, that when we start with

language X0 including the centralizer and iterate by using that mapping repeatedly,

we eventually get the centralizer.

Let X be a given 1-free language. Let us define a sequence of languages Xi by

setting recursively

X0 = Pref(X+) ∩ Suf(X+) (5)

and

Xi+1 = Xi \
(
X−1(XXi∆XiX) ∪ (XXi∆XiX)X−1

)
, i ≥ 0. (6)

We will use notation

Z0 =
⋂

i≥0

Xi (7)

for the infinite intersection of all languages Xi.

Theorem 6.1. Language Z0 is the centralizer C(X) of given language X .

Proof. Since, for every i ≥ 0, we get language Xi+1 by taking some elements away

from the previous language Xi, it is clear, that Xi+1 ⊆ Xi. Theorem 3.6 gives, that

C(X) ⊆ X0. Now if C(X) ⊆ Xi for some index i, then

C(X)X = XC(X) ⊆ XXi ∩XiX,
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and hence

C(X)X ∩ (XXi∆XiX) = ∅,

and further

C(X) ∩
(
X−1(XXi∆XiX) ∪ (XXi∆XiX)X−1

)
= ∅.

This means that also C(X) ⊆ Xi+1. By induction C(X) ⊆ Xi for every index i ≥ 0

and hence the centralizer is also included in the intersection of languages Xi, i.e.

C(X) ⊆ Z0.

On the other hand Z0X = XZ0 and Z0 ⊆ C(X) by the maximality of C(X). If

Z0X and XZ0 were not equal, then there would exist a word w ∈ Z0, such that either

wX 6⊆ XZ0 or Xw 6⊆ Z0X . By symmetry, assume the previous. By the definition of

Z0 this would mean, that beginning from some index k there would be wX 6⊆ XXi,

when i ≥ k. However w ∈ Z0 ⊆ Xi for every i ≥ 0, especially for k, and hence

XkX 6= XXk. This would mean that w ∈ (XXk∆XkX)X−1 and hence w /∈ Xk+1

and w /∈ Z0, which contradicts the assumption.

This proves, that Z0 = C(X).

The formula (6) gives us now the mapping

ϕ : ℘(Σ+) → ℘(Σ+), ϕ(Y ) = Y \
(
X−1(Y X∆XY ) ∪ (Y X∆XY )X−1

)
. (8)

The fixed points of this mapping are exactly those languages Y fulfilling the condition

Y X∆XY = ∅, i.e. the languages satisfying the equation XY = Y X . Hence the

centralizer C(X), as the maximal language commuting with X , is the maximal fixed

point of mapping ϕ.

The centralizer of X can be found by using this mapping iteratively, until

XXi∆XiX = ∅, i.e. until Xi+1 = Xi. For many rational languages X this gives

the centralizer after just few (2–5) iteration steps. However the centralizer can’t be

reached with a finite number of steps in all cases. Unfortunately there are cases that

reach the centralizer only as the limit given in formula (7).

If the centralizer of a rational language is reached in a finite number of steps, then

it is a finite intersection of languages achieved from rational language with rational
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operations, and hence it is rational itself. However, if the centralizer is achieved only

as the limit, then there is no guarantee that the rationality is preserved, since the

infinite intersection might lose the rationality. For example languages

Ai = {a2k

| 1 ≤ k ≤ i} ∪ a2i

a∗, i = 1, 2, 3, . . .

are all rational, but their intersection

A =

∞⋂

i=1

Ai = {a, a2, a4, a8, a16, . . .} = {a2i

| i = 1, 2, 3, . . .}

is not.

This all means, that the fixed point approach does not give final answer for the

question on the rationality of the centralizer of rational language. For the complement

of the centralizer of a rational language we, however, obtain the following result.

Theorem 6.2 ([10], [12]). The complement of the centralizer C(X) of the rational

language X is recursively enumerable.

Proof. The fixed point approach gives us a semialgorithm, which tells us, whether the

given word is in the language Σ+ \ C(X). This semialgorithm halts for every input

word from the language Σ+ \ C(X), since for each such word there exists an index

k ≥ 0 for which w /∈ Xi, whenever i ≥ k. However, if the input word is in the

centralizer, we can not be sure that the procedure halts.

If the algorithm halts, then the situation is simple. In the case that algorithm does

not halt, we can still make some conclusions as follows.

We know about the language S introduced in Chapter 3, that

X+ ⊆ S ⊆ C(X).

Since S can be computed by using the formula in Theorem 3.8, we can compare X+

and S. If these are different languages, then we know that X+ ⊂ C(X) and at least

X+ is not the centralizer.

Another way tho study the centralizer is to study so called branching points. First

we define two sets connected to the language X . Let Σ be an alphabet including
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at least two letters and X a 1-free language over this alphabet. Now we call word

w ∈ Pref(X+) a branching point, if wa,wb ∈ Pref(X+) for two distinct letters a

and b. The branching point w is said to be critical, if w /∈ X+. For given language X

we denote the set of all branching points with B and the set of critical points with C.

As in Chapter 5, we say that language X is branching, if it has words starting with

different letters. The next result tells us something about the question whether X+ is

the centralizer of X .

Theorem 6.3 ([13]). Let X ⊆ Σ+ be a finite branching language. If C = ∅, then

C(X) = X+.

Proof. The centralizer is a semigroup and hence, if z ∈ C(X) and x ∈ X ⊆ C(X),

then zx ∈ C(X). This implies also that zx ∈ Pref(X+). Especially z Pref1(X) ⊆

Pref(X+) implying z ∈ B. The word z is not critical, since we assumed that C = ∅.

This means z ∈ X+ and further C(X) = X+.

Theorem 6.3 says that if the set of critical points of a finite language X is empty,

then the centralizer of X is X+. This claim can not be turned around, since there

exists finite sets with nonempty set of critical points, but for which the centralizer is

X+. For example the language X = {a, bb, aba, bab, bbb} is such a language. Here

the word ab is critical, since aba, abb ∈ X+ ⊆ Pref(X+), but ab /∈ X+. However, in

example 4.3 we showed that the centralizer of this language is X+.

The recursive formula of fixed point approach can be slightly simplified. However

the algorithm itself, its result or languages Xi don’t chance at all.

Theorem 6.4. The formula of the fixed point approach can be written without sym-

metric difference ∆ in the form:

Xi+1 = Xi \
(
X−1 (XXi \XiX) ∪ (XiX \XXi)X

−1
)
.

Proof. Symmetric differences in the original formula can be written as unions of

ordinary differences

Xi+1 = Xi \
(
X−1(XXi∆XiX) ∪ (XXi∆XiX)X−1

)

= Xi \
(
X−1 ((XXi \XiX) ∪ (XiX \XXi))

∪ ((XXi \XiX) ∪ (XiX \XXi))X
−1

)
.
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Right and left quotient can be taken from both parts of the union separately. Then we

obtain

Xi+1 = Xi \
(
X−1(XXi \XiX) ∪X−1(XiX \XXi)

∪(XXi \XiX)X−1 ∪ (XiX \XXi)X
−1

)
.

Next we notice, that since XiX \ XXi does not include any words from XXi and

respectivelyXXi\XiX does not include words fromXiX , the left and right quotients

give us

X−1(XiX \XXi) ∩Xi = (XXi \XiX)X−1 ∩Xi = ∅.

Hence corresponding parts can be ignored in the formula and only the formula

Xi+1 = Xi \
(
X−1 (XXi \XiX) ∪ (XiX \XXi)X

−1
)

remains.

If we now compare the mapping, used in the fixed point approach, in its new form

ϕ(Y ) = Y \
(
X−1(XY \ Y X) ∪ (Y X \XY )X−1

)

with the formula of language S

S = Σ+ \
(
X−1(Σ+ \XX+) ∪ (Σ+ \XX+)X−1

)
,

we can see some similarities. Formulas are even more similar, if we write language

S as

S = Σ+ \
(
X−1(XΣ+ \X+X) ∪ (Σ+X \XX+)X−1

)
.

We can now think that mapping ϕ is a more accurate version of the formula of

language S. The upper bound of the centralizer is dropped from Σ+ to language Y ,

which usually is one of languages Xi. Also the language X+ is replaced with Y . This

means, that words are removed more warily. In the formula of S we might remove

also some words from the centralizer.

Language Xi+1 may also be given as a similar kind of set as S in formula (2).
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Theorem 6.5. The language Xi+1 can be written in form

Xi+1 = {w ∈ Xi |wX ⊆ XXi and Xw ⊆ XiX}

for each i in N.

Proof. This claim is proven the same way as in Theorem 3.8. Let i ∈ N and

T = {w ∈ Xi |wX ⊆ XXi and Xw ⊆ XiX}.

Then

w ∈ T ⇐⇒ w ∈ Xi and (∀a ∈ X)(wa ∈ XXi ∧ aw ∈ XiX)

w ∈ Xi \ T ⇐⇒ w ∈ Xi and (∃a ∈ X)(wa /∈ XXi ∨ aw /∈ XiX)

⇐⇒ w ∈ Xi and

(∃a ∈ X)(wa ∈ XiX \XXi ∨ aw ∈ XXi \XiX).

Hence

Xi \ T =
(
(XiX \XXi)X

−1 ∪X−1(XXi \XiX)
)
∩Xi

and

T = Xi \
(
(XiX \XXi)X

−1 ∪X−1(XXi \XiX)
)

= Xi+1.
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7 Examples

Next we will discuss some rational languages as examples and try to find the central-

izer for them. By these cases we prove, that there exists some languages in each

of the classes X+ = S = C(X), X+ ⊂ S = C(X), X+ = S ⊂ C(X) and

X+ ⊂ S ⊂ C(X). We also use these examples to illustrate, how the fixed point

approach works, and to show some ways to find the centralizer by hand. Some of

these languages are finite and some of them are infinite. We will also verify whether

the centralizer is X+, S or something else. These cases are discussed with differ-

ent precision. Some of them are handled in more details and some of them are just

determined with the computer.

First we introduce a property, which holds for every singular language X .

Theorem 7.1. Let X be a language over the alphabet Σ. If X is (left or right)

singular, then X+ = S.

Proof. Let w ∈ X and t ∈ S \ X+. Then wt ∈ XX+, i.e. word wt has a X-

factorization such that the first factor is not w. This means, that the leftmost factor in

this factorization is either proper prefix of w or some word wu, such that t = us for

some s ∈ X+. Now if X is singular, we can choose w to be a singular word in X and

we see that S \X+ must be empty.

The corresponding claim with suffixes can be proven similarly.
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7.1 The case X+ = S = C(X)

Now we will discuss the finite language X = {a, bb, aba, bab} as an example of a

language having X+ = S = C(X). Theorem 7.1 clearly implies, that X+ = S, since

the word bb is singular in X .

The centralizer is found with the fixed point approach and it is reached already

on the third step. The languages Xi corresponding to the steps of iteration can be

recognized by deterministic finite automata given in following graphs. The states of

automata are enumerated beginning with the initial state 0. Final states are circled.

The equality X3 = X+ was checked with a computer by comparing the minimized

deterministic finite automata recognizing these languages.

X = {a, bb, aba, bab}
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X3 = X+ = S = C(X):
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If we take a closer look at the automata, we can see, that during the iteration the

states and transitions form some directed subgraphs which remain unchanged to the

next steps. For example the graph formed by states 3,7,8,9,10,11 and 12 in automaton

recognizing X0 is preserved in next steps. Only the numbers of states change. The

corresponding states inX1 in respective order are 1,3,6,7,10,11 and 13, inX2 they are

states 1,3,6,5,9,8 and 11. While iteration goes on, the number of states usually grows,

since we get more specific ”rules” defining the words in the centralizer. On the other

hand, when the centralizer is finally reached, the number of states often drops quite

low, since in many cases the centralizers seem to be rather simple.

7.2 The case X+ ⊂ S = C(X)

Finding a finite example of language X having X+ ⊂ S seems to be difficult. We

could not find any and we don’t know if that is possible. That is the reason, why
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we choose the infinite rational language X = ΣaΣ∗a + bΣ∗bΣ over the alphabet

Σ = {a, b} as an example of language having this proper inclusion. The fixed point

approach gives the centralizer of X in three steps. As the Table 1 shows, the number

of the states does not drop on the last step as it did in the previous example.

final st. states transitions

X 5 13 25

X0 3 5 9

X1 7 18 35

X2 9 22 43

X3 11 26 51

X4 11 26 51

S 11 26 51

X+ 6 14 27

Table 1: Number of states, final states and transitions in automata recognizing the

language X = ΣaΣ∗a + bΣ∗bΣ, the steps Xi of the algorithm and languages S and

X+.

Let’s find the centralizer with the fixed point approach. This illustrates, step by

step, how the fixed point approach proceeds and at the same time it also gives us the

equality S = C(X). The first step is to find the starting point of the iteration, i.e. the

language X0 = Pref(X+) ∩ Suf(X+). We know, that always X+ ⊆ X0 so we start

by finding the language X0 \ X
+. The length of the shortest word in X+ is 3. All

words in X0 shorter than this are a, b, aa, ba and bb.

Longer words can be discussed separately depending on the first letter of the word.

Let w ∈ X0 \ X+ and assume that w ∈ aΣΣ+. Now, since the first letter is a,

w /∈ Pref(bΣ∗bΣX∗) and hence w ∈ Pref(ΣaΣ∗aX∗) which means that w ∈ aaΣ+.

On the other hand w /∈ X implies, that w ∈ aaΣ∗b. Symmetrically, since w /∈

Suf(X∗ΣaΣ∗a), there must hold w ∈ Suf(X∗bΣ∗bΣ), which implies w ∈ aaΣ∗bb.

Additionally, since aaΣ∗abΣ∗bb ⊆ X2, the word w must be in language aab∗a∗bb.

This language is entirely included in X0 \X
+.
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If we next assume, that w ∈ bΣΣ+, we can make the following conclusions

concerning the word w. Since bΣ∗bΣ ⊆ X+, we get w ∈ bΣ∗aΣ. Further

w /∈ Suf(X∗bΣ∗bΣ) implying w ∈ Suf(X∗ΣaΣ∗a) and hence w ∈ bΣ∗aa. Now

baa + baΣ∗aa ⊆ X+, which means that the second letter of w must be b, i.e.

w ∈ bbΣ∗aa. In the next step we see, that the word in language bbΣ∗aa is in the

language X+ if and only if it is of format bΣ∗bΣΣaΣ∗a, since clearly the beginning

of the word must be in bΣ∗bΣ and the last part in ΣaΣ∗a. So, the language we are

interested in is bbΣ∗aa\bΣ∗bΣΣaΣ∗a. We discuss the part Σ∗ between the beginning

bb and ending aa in sequences of three letters. After the beginning bb the next three

letters must be either aab, abb or bab, since bbΣΣaΣ∗aa+bbbbbΣ∗aa ⊆ bΣ∗bΣΣaΣ∗a.

Further, after aab there can be whichever of these three words, after abb there can be

only abb and after bab only bab. Hence

w ∈ bb(aab)∗(abb)∗(1 + Σ + Σ2)aa + bb(aab)∗(bab)∗(1 + Σ + Σ2)aa.

For this language we must still discuss several different cases to find out which of

them are included in X+. For languages included in X+ the part of format bΣΣa is

underlined.

bb(aab)∗(abb)∗aa ⊆ X0 \X
+

bb(aab)∗(abb)+Σaa ⊆ X+

bb(aab)∗Σaa ⊆ X0 \X
+

bb(aab)∗(abb)+ΣΣaa ⊆ X+

bb(aab)+ΣΣaa ⊆ X+

bbΣΣaa ⊆ X+

bb(aab)∗(bab)+aa ⊆ X+

bb(aab)∗(bab)+aaa ⊆ X+

bb(aab)∗(bab)+baa ⊆ X0 \X
+

bb(aab)∗(bab)+ΣΣaa ⊆ X+
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Now we can conclude

bΣΣ ∩ (X0 \X
+) = bb(aab)∗(abb)∗aa + bb(aab)∗Σaa + bb(aab)∗(bab)+baa

= bb(aab)∗(abb)∗aa + bb(aab)∗a(abb)∗aa

+bb(aab)∗b(abb)∗aa

and for the language X0, the starting point of the iteration, we get the regular expres-

sion

X0 = Pref(X+) ∩ Suf(X+)

= X+ + aab∗a∗bb

+bb(aab)∗(abb)∗aa

+bb(aab)∗a(abb)∗aa

+bbb(abb)∗aa

+a + b+ aa + ba + bb.

Next we start doing the iteration steps. In the step from X0 to X1 the following

words on the left hand side are erased by the corresponding reasons on the right hand

side.
a : a · bbb ∈ X0X , but abbb /∈ XX0.

b : aaa · b ∈ XX0, but aaab /∈ X0X .

aa : babba · aa ∈ XX0, but babbaaa /∈ X0X .

bb : bb · baaba ∈ X0X , but bbbaaba /∈ XX0.

aaanbb : aaa · aaanbb ∈ XX0, but aaaaaanbb /∈ X0X .

(n ≥ 0)

aabnbb : aabnbb · bbb ∈ X0X , but aabnbbbbb /∈ XX0.

(n ≥ 0)

bb(abb)naa : aabba · bb(abb)naa ∈ XX0, but aab(bab)i ·

∈X
︷ ︸︸ ︷

(bab)jbaa /∈ X0X .

(n ≥ 0, i+ j = n+ 1)

bb(aab)naa : bb(aab)naa · baabb ∈ X0X , but bba(aba)n+1abb /∈ XX0.

(n ≥ 0)
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No other words are erased and the resulting language X1 is

X1 = X+ + aab+a+bb

+bb(aab)+(abb)+aa

+bb(aab)∗a(abb)∗aa

+bbb(abb)∗aa

+ba.

In the same way, when stepping from X1 to X2, we erase the following words

ba : ba · aaa ∈ X1X , but baaaa /∈ XX1.

bbb(abb)naa : aaa · bbb(abb)naa ∈ XX1, but aaabbb(abb)naa /∈ X1X .

(n ≥ 0)

bb(aab)naaa : bb(aab)naaa · bbb ∈ X1X , but bb(aab)naaabbb /∈ XX1.

(n ≥ 0)

bbaabb(abb)naa : aaa · bbaabb(abb)naa ∈ XX1, but aaabbaabb(abb)n /∈ X1X .

(n ≥ 0)

bb(aab)naabbaa : bb(aab)naabbaa · bbb ∈ X1X , but bb(aab)naabbaabbb /∈ XX1.

(n ≥ 0)
The remaining language is

X2 = X+ + aab+a+bb

+bb(aab)+(abb)+aa

+bb(aab)+aabb(abb)+aa.

Finally the step from X2 to X3 erases the last words not contained in the centralizer.
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aabnabb : aabnabb·aaa ∈ X2X , but aabnbbaaa /∈ XX2, since the left factor,

contained in X , would be one of the words aabna, aabnabba or

aabnabbaa, but for the corresponding right factors bbaaa, aa, a /∈

X2.

(n ≥ 0)

aabnaabb : aabnaabb · aaa ∈ X2X , but aabnaabbaaa /∈ XX2 similarly as

previously, since abbaaa, bbaaa, aa, a /∈ X2.

(n ≥ 0)

aabanbb : bbb · aabanbb ∈ XX2, but bbbaabanbb /∈ X2X again similarly,

since the right factor in X should be a word beginning with let-

ter b, i.e. one of the words banbb, baabanbb or bbaabanbb, but the

corresponding left factors bbbaa, bb and b are not in X2.

(n ≥ 0)

aabbanbb : bbb · aabbanbb ∈ XX2, but bbbaabbanbb /∈ X2X exactly in the

same way as in the other cases.

(n ≥ 0)
This gives us the language

X3 = X+ + aabbb+aaa+bb

+bb(aab)+(abb)+aa

+bb(aab)+aabb(abb)+aa.

The fixed point method stops here, since XX3 = X3X . This can be seen for example
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as follows

XX3 = X
(
X+ + aabbb+aaa+bb + bb(aab)+(abb)+aa+ bb(aab)+aabb(abb)+aa

)

= XX+

+ΣaΣ∗a · aabbb+aaa+bb

+bΣ∗bΣ · aabbb+aaa+bb

+ΣaΣ∗a · bb(aab)+(abb)+aa

+bΣ∗bΣ · bb(aab)+(abb)+aa

+ΣaΣ∗a · bb(aab)+aabb(abb)+aa

+bΣ∗bΣ · bb(aab)+aabb(abb)+aa

= XX+

+ΣaΣ∗aaa · bbb+aaa+bb

+bΣ∗bΣaabb · b+aaa+bb

+ΣaΣ∗abbaa · b(aab)∗(abb)+aa

+bΣ∗bΣbb · (aab)+(abb)+aa

+ΣaΣ∗abbaa · b(aab)∗aabb(abb)+aa

+bΣ∗bΣbb · (aab)+aabb(abb)+aa

⊆ XX+.

The inclusion X3X ⊆ XX+ can be seen similarly. This implies X3 ⊆ S and since

always S ⊆ C(X) ⊆ Xi, the equality X3 = S = C(X) must hold. Additionally

clearly X+ 6= X3, since for example aabbbaaabb ∈ X3 \X
+, and hence X+ ⊂ S =

C(X).

In practice, this all is of course done algorithmically with the computer.

7.3 The case X+ = S ⊂ C(X)

For this case it is again easy to find finite examples. One very simple example of

a language, for which X+ = S, but the centralizer is something different, is the

language X = {aa} over the alphabet Σ = {a}. The whole semigroup Σ+ = a+

clearly commutes with X , implying C(X) = a+. The language X+ = (aa)+ is
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the language of all sequences of a of even length. Since the length of catenation of

two words of even length is also even, all words in S have also even length. Hence

X+ = S ⊂ C(X).

We call the language ρ(X) a root of the language X , if X = ρ(X)n for some

integer n. A root of X is called minimal, if it is not a proper power of any other set.

A minimal root is not necessarily unique. For example the set X = {ai | 0 ≤ i ≤

30, i 6= 1, 8, 11, 23} has two different minimal roots, see [2]. If the set X has the

unique minimal root, that is called primitive root of X . As in the example above, it

holds generally, that if X has a proper root, then always

X+ 6= C(X),

since

X+ ⊂ ρ(X)+ ⊆ C(X)

for some (minimal) root ρ(X), since naturally ρ(X)+ commutes with X = ρ(X)n.

As another example of type X+ = S ⊂ C(X), we choose the language X =

{a, ab, ba, bb}, which was mentioned already in example 3.7. The fact that S = X+

can be seen either by Theorem 7.1 or with a computer.

For X = {a, ab, ba, bb} we have

Pref(X) = Suf(X) = {a, b, ab, ba, bb}.

Let’s find the language X0. First we see, that

(
Σ2

)+
= {a a, ab, ba, bb}+ ⊆ X+ ⊆ Pref(X+) and
(
Σ2

)∗
Σ ⊆ X∗Σ ⊆ X∗ Pref(X) = Pref(X+).

Hence Σ+ = (Σ2)+ + (Σ2)∗Σ ⊆ Pref(X+) ⊆ Σ+ implying Pref(X+) = Σ+.

Corresponding result Suf(X+) = Σ+ can be obtained similarly. This gives us

X0 = Pref(X+) ∩ Suf(X+) = Σ+.

Next we find the centralizer as follows. We claim, that the centralizer is the lan-

guage Z = Σ+ \ {b}. This language can be divided into two parts depending on
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the first letter of the word. Similarly the division can be done by the last letter. This

means

Z = Σ+ \ {b} = aΣ∗ + bΣ+ = Σ∗a+ Σ+b.

The language Z commutes with X , since

ZX = aΣ∗X + bΣ+X = a · Σ∗X + bΣ · Σ∗X = (a+ bΣ)Σ∗X ⊆ XZ

and

XZ = XΣ∗a+XΣ+b = XΣ∗ · a+XΣ∗ · Σb = XΣ∗(a+ Σb) ⊆ ZX.

The centralizer is not the whole set X0 = Σ+, since b is not in it. This can be seen for

example by the fact, that ba ∈ X0X , but ba /∈ XX0. Especially X+ 6= C(X), since

for example bbb ∈ C(X), but bbb /∈ X+. Over all we have

X+ = S ⊂ C(X).

Additionally we note that C∗(X) 6= C+(X) ∪ {1}, since b ∈ C∗(X) = Σ∗.

X = {a, ab, ba, bb}

0
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a

b

b

a, b

X+ = S

0

1
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a

b
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a, b

a
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X0 = Σ+

0 1
a, b

a, b

C(X) = X1 = Σ+ \ {b}

0

1

2

a

b

a, b

a, b

Figure 4: Minimized automata for languages X and X+ and for iteration steps X0

and X1 = C(X).
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7.4 The case X+ ⊂ S ⊂ C(X)

We will still search for a language X , for which proper inclusions X+ ⊂ S ⊂ C(X)

hold. For this case we, again, could not find a finite language as an example. Let’s

choose

X = aΣ+b + bΣ+a.

Now

X0 = Pref(X+) ∩ Suf(X+) = (aΣ∗ + bΣ∗) ∩ (Σ∗a + Σ∗b) = Σ+ ∩ Σ+ = Σ+.

The language X1 is recognized by the automaton found by the computer and shown

in Figure 5. The language given by this automaton can easily be expressed as rational

X1

0

1
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5

6

7

8

9

10

a

b

a

b

a

b

a

b

a

b

b

a

b

a

a
b

a, b

a

b

a, b

Figure 5: The automaton, which recognizes the language X1 computed with a com-

puter program Grail+.

expression

X1 = aaa∗b + aaa∗bbΣ∗ + aaa∗baΣ+ + aba∗bΣ∗

+ bbb∗a+ bbb∗aaΣ∗ + bbb∗abΣ+ + bab∗aΣ∗. (9)

The same language can also be given by using its complement as

X1 = Σ+ \ (a+ + b+ + aba∗ + bab∗ + aa+ba + bb+ab). (10)
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Also this can be easily seen from the same automaton. We get X1 as an iteration step

of the algorithm since

a+ · aab ∩XX0 = ∅

b+ · bba ∩XX0 = ∅

aba∗ · aab ∩XX0 = ∅

bab∗ · bba ∩XX0 = ∅

baa · aa+ba ∩X0X = ∅

abb · bb+ab ∩X0X = ∅,

which means

a+ + b+ + aba∗ + bab∗ + aa+ba+ bb+ab ⊆ X−1(XX0∆X0X)∪ (X0X∆XX0)X
−1.

The next step erases the rest of the words not in the centralizer. The automaton of

the next iteration step is illustrated in the Figure 6. The regular expression of the

X2
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b
a, b

a, b

Figure 6: Automaton recognizing X2. Computed with Grail+.

language X2 is

X2 = aΣa∗b + aΣa∗baΣ+ + aΣa∗bbΣ∗

+ bΣb∗a + bΣb∗abΣ+ + bΣb∗aaΣ∗. (11)

Also this step can be given as a complement of a rather simple language. From this

representation we also see, which words are deleted from X1, when taking this step.

X2 = Σ+ \ (a+ + b+ + aba∗ + bab∗ + aa+ba + bb+ab + aba∗ba + bab∗ab)

= X1 \ (aba∗ba+ bab∗ab). (12)
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As a justification for erasing the language aba∗ba + bab∗ab it is enough to see, that

aba∗ba · baa ∩XX1 = ∅ and

bab∗ab · abb ∩XX1 = ∅.

These equalities hold, since if we separate from words in aba∗babaa and bab∗ababb

the left factor which is in X , either abanb or abanbab and either babna or babnaba,

the remaining parts abaa, aa, babb and bb are not in X1, as can be seen by the for-

mula (10).

Now X2 is the centralizer C(X), since XX2 = X2X . We can see that

X2X = aΣa∗b · aΣ+b+ aΣa∗b · bΣ+a+ aΣa∗baΣ+ · aΣ+b

+ aΣa∗baΣ+ · bΣ+a+ aΣa∗bbΣ∗ · aΣ+b+ aΣa∗bbΣ∗ · bΣ+a

+ bΣb∗a · aΣ+b+ bΣb∗a · bΣ+a + bΣb∗abΣ+ · aΣ+b

+ bΣb∗abΣ+ · bΣ+a+ bΣb∗aaΣ∗ · aΣ+b + bΣb∗aaΣ∗ · bΣ+a

and here every term is included in XX2. For example aΣa∗bbΣ∗ · aΣ+b ⊆ XX2,

since aΣa∗bb · aΣ+b ⊆ XX and by formula (12) aΣa∗b · bΣ+aΣ+b ⊆ XX2. This

way we get X2X ⊆ XX2 and since, X = XR and X2 = XR
2 , it’s easy to see, that

XX2 = (XR
2 X

R)R = (X2X)R ⊆ (XX2)
R = XR

2 X
R = X2X.

The inclusions X+ ⊂ S ⊂ C(X) will be seen by choosing suitable example

words. For example

abbbaX = abbba · aΣ+b+ abbba · bΣ+a = abbb · aaΣ+b + abb · babΣ+a ⊆ XX+

and

Xabbba = aΣ+b · abbba + bΣ+a · abbba = aΣ+bab · bba + bΣ+aa · bbba ⊆ XX+,

implying, that abbba ∈ S, but clearly abbba /∈ X+. On the other hand abbaa ∈

C(X), since the automaton in Figure 6 recognizes this word, but abbaa /∈ S, since for

example abbaa · baa /∈ XX+.
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8 Centralizer as the limit

We give an example about the case in which the fixed point method does not give the

centralizer in any finite number of iteration steps. We also analyze the case to find

the reason, why we get the centralizer only as the limit. The example is interesting,

because it shows that even finite language X with only five words can lead the fixed

point approach to an infinite computation. Moreover the centralizer of our example

X is still only X+. We also mention a couple of other cases leading to the infinite

iteration loop.

8.1 Defining the case

In this example we use the alphabet Σ = {a, b} and the finite language X =

{a, bb, aba, bab, bbb}, which has already been considered in some earlier examples.

If we ask, whether C(X) = X+, we can try to apply two methods given in the end

of Chapter 6. We can compare languages X+ and S. If they were different, would the

centralizer C(X) naturally also be different from X+. However, if we compute S, we

find that S = X+. We see this also by using Theorem 7.1, since word bab is singular

word in X .

Another way to test if C(X) = X+ is to check if the set of critical points C is

empty. If C = ∅, we see that C(X) = X+, since all elements in centralizer are

branching points. However in this case this approach does not tell us that centralizer

is X+, because for example word b is critical point. Word b is branching point, since

b ∈ Pref(X+) and ba, bb ∈ Pref(X+). It is also critical, since b /∈ X+.
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Figure 7: Finite automata recognizing languages X and X+.

If we try to find the centralizer of X by using fixed point approach, it will turn

out quite soon, that the method does not seem to give any result. The numbers of

states in the minimized deterministic finite automata of languages Xi keep growing

step after step. The corresponding automata grow with certain speed and pattern. So

our language seems to be quite difficult to be handled by these methods.

8.2 Fixed point method with Grail+

Let’s use Grail+ to produce automaton representing the language X =

{a, bb, aba, bab, bbb} and apply a few steps of the fixed point method to this automa-

ton. We will examine the minimized automata of languages that we get as iteration

steps of the method. We will try to find some common patterns from these automata.

The automaton recognizing the first step X0 of the iteration is given in Figure 8.

The numbers of states, final states and transitions for some iteration steps of lan-

guage X are given in Table 2. From this table we see that after few steps the growth

becomes constant. Every step adds six more states, three of them final, and eleven

transitions.
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finalst. states transitions

X0 6 8 15

X1 5 9 17

X2 6 13 24

X3 9 19 35

X4 12 25 46

X5 15 31 57

X6 18 37 68

X7 21 43 79

X8 24 49 90

X9 27 55 101

X10 30 61 112

X11 33 67 123

X12 36 73 134

X13 39 79 145

X14 42 85 156

X15 45 91 167

X16 48 97 178

X17 51 103 189

X18 54 109 200

X19 57 115 211

finalst. states transitions

X20 60 121 222

X21 63 127 233

X22 66 133 244

X23 69 139 255

X24 72 145 266

X25 75 151 277

X26 78 157 288

X27 81 163 299

X28 84 169 310

X29 87 175 321

X30 90 181 332

X31 93 187 343

X32 96 193 354

X33 99 199 365

X34 102 205 376

X35 105 211 387

X36 108 217 398

X37 111 223 409

X38 114 229 420

X39 117 235 431

Table 2: Number of states, final states and transitions of automata corresponding to

iteration steps for language X .
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Figure 8: Automaton recognizing the languageX0, the first step of fixed point method

When we draw the automata corresponding to subsequent iteration steps Xi and

Xi+1, as in figures 9 and 10, we can see clear pattern in the growth. From these

figures we see that the automata representing languages X5 and X6 are built from two

sequence of sets of three states. In the automaton of X5 the states 2,4,6,8–18 and 20

are in the first sequence and states 1,3,5,19 and 21–28 in the other. In the automaton

of X6 both sequence have got additional set of three states. So there are six new

states, including three new final states, and eleven new transitions. On every iteration

step automata seem to use same pattern to grow. When number of iteration steps goes

to infinity, lengths of both sequence also go to infinity. If the corresponding states

are merged together, the result recognizes the language X+. This of course does not

prove anything, but from this we can make a guess that C(X) = X+.

8.3 The centralizer

Next we shall prove that the centralizer really is C(X) = X+. This was already

shown in example 4.3, but following a different proof will also illustrate, how fixed

point approach handles this case. This proof will also help to understand reasons

why the computation becomes infinite. Here we will give the languages as regular

expressions. We will apply the fixed point method on language X , but instead of

making iteration steps one by one we will use the induction to make them all at once.

The first thing is to find the starting point of the iteration,X0 = Pref(X+)∩Suf(X+).
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Figure 9: Automaton recognizing X5.
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Figure 10: Automaton recognizing X6.
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Lemma 8.1. The language X0 can be expressed as

X0 = X+ + (bab)∗b(bab)∗ + (bab)∗ab(bab)∗ + (bab)∗ba(bab)∗.

Proof. Let’s mark

• Y1 = (bab)∗b(bab)∗,

• Y2 = (bab)∗ab(bab)∗ and

• Y3 = (bab)∗ba(bab)∗.

The inclusion

X+ + Y1 + Y2 + Y3 ⊆ X0

can be seen easily. Naturally X+ ⊆ X0, since X+ is subset of both its own prefix and

its own suffix. We get inclusion Y1 ⊆ X0 by noting, that

(bab)∗b(bab)∗ = b(a bb)∗(bab)∗ ⊆ Suf(X)X∗ = Suf(X+) and (13)

(bab)∗b(bab)∗ = (bab)∗(bb a)∗b ⊆ X∗ Pref(X) = Pref(X+). (14)

That means Y1 ⊆ Pref(X+) ∩ Suf(X+) = X0. We can also see, that

(bab)∗b(bab)∗ ∩X+ = ∅,

since formula (14) gives the only way to represent words of (bab)∗b(bab)∗ in the form

X∗ Pref(X) and the word b in the end of it is in Pref(X), but not in X . Similarly

from equations

(bab)∗ab(bab)∗ = ab(bab)∗ + ba(bb a)∗(bab)+ = (bab)∗(a bb)∗ab

and

(bab)∗ba(bab)∗ = ba(bb a)∗(bab)∗ = (bab)∗ba + (bab)+(a bb)∗ab

we get, that Y2, Y3 ⊆ X0, and Y2 ∩X
+ = Y3 ∩X

+ = ∅.

The next step is to prove the inclusion on the other direction. Since Pref(X) =

Suf(X) = {a, b, ab, ba, bb, aba, bab, bbb} = X + {b, ab, ba}, we get

X0 = X+ + ({b, ab, ba}X∗ ∩X∗{b, ab, ba}) .
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The language X+ is clearly subset of X+ + Y1 + Y2 + Y3, the right hand side of

the claim, so let’s have a look on words in {b, ab, ba}X ∗. First of all {b, ab, ba} ∈

Y1 + Y2 + Y3. Next we take words uvw, in which u ∈ {b, ab, ba}, v ∈ X and

w ∈ X∗, and try to find out what format they should be, if they are either in X+ or in

X+{b, ab, ba}. If u = ab, we get with different values of v that

• v = a =⇒ uvw = ab · a · w = aba · w ∈ X+,

• v = bb =⇒ uvw = ab · bb · w = a · bbb · w ∈ X+,

• v = aba =⇒ uvw = ab · aba · w = a · bab · a · w ∈ X+,

• v = bab =⇒ uvw = ab · bab · w = (abb)abw,

• v = bbb =⇒ uvw = ab · bbb · w = a · bb · bb · w ∈ X+.

Only the case v = bab needs a closer look. This case is however quite easy, since

abw, the end of the word (abb)abw, is still in the original form abX ∗. That means we

can similarly take left factors vi ∈ X out of word w until its empty. Recursively this

means that

abX∗ ∩X∗{b, ab, ba} ⊆ X+ + ab(bab)∗ ⊆ X+ + Y2.

Let’s have u = ba, then

• v = a =⇒ uvw = ba · a · w,

• v = bb =⇒ uvw = ba · bb · w = (bab)bw,

• v = aba =⇒ uvw = ba · aba · w,

• v = bab =⇒ uvw = ba · bab · w = (bab)abw,

• v = bbb =⇒ uvw = ba · bbb · w = bab · bb · w ∈ X+.

From these we see, since b, ba, baa /∈ X , that v can be neither a nor aba. If it were,

word uvw wouldn’t be in language X+{b, ab, ba}. The case v = bbb is trivial; uvw ∈

X+. This means, only cases v = bb and v = bab give something new. The case
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v = bab leads to situation similar to the previous one, where end of the word is

abw ∈ abX∗, and we get

(ba)babX∗ ∩X∗{b, ab, ba} ⊆ X+ + (bab)ab(bab)∗ ⊆ X+ + Y2.

If v = bb, we have uvw = ba · bbw = (bab)bw and the next part solves this case.

If u = b, then

• v = a =⇒ uvw = b · a · w = ba · w,

• v = bb =⇒ uvw = b · bb · w = bbb · w ∈ X+,

• v = aba =⇒ uvw = b · aba · w = bab · a · w ∈ X+,

• v = bab =⇒ uvw = b · bab · w = (bba) · b · w,

• v = bbb =⇒ uvw = b · bbb · w = bb · bb · w ∈ X+.

The cases v = a and v = bab are the nontrivial ones. In the other cases clearly

uvw ∈ X+ + Y1 + Y2 + Y3. If v = bab, then the end of word uvw is still of the

form bX∗. Hence this part covers, not only words of format bX∗, but all of them in

(bba)∗bX∗. Now

(bba)∗b = b(bab)∗ ⊆ (bab)∗b(bab)∗ = Y1

and

b(bab)∗ · a = (bba)∗ba = ba + (bba)∗bb · aba ⊆ Y2 +X+.

Also b(bab)+aw = (bb a)+baw = (bb a)∗bb abaw ⊆ X+, so words baw are the only

words needing further attention. As we saw before, these words can be in X+ or in

either ba babX∗ = (bab)abX∗ or in ba bbX∗ = (bab)bX∗. Previous leads to word

in X+ + (bab)ab(bab)∗ and latter gives recursively word in X+, (bab)+b(bab)∗ or

(bab)+(bab)ab(bab)∗.

Hence

bX∗ ∩X∗{b, ab, ba} ⊆ X+ + Y1 + Y2 + Y3,

and so

X0 = X+ + ({b, ab, ba}X∗ ∩X∗{b, ab, ba}) ⊆ X+ + Y1 + Y2 + Y3

holds.
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A more systematic way to find X0 is to manipulate automata representing the

corresponding language. We can construct iteration, prefix, suffix, union and inter-

section of automata and finally minimize and compare them. With a computer this

can be done rather easily.

Next we must show that languages Y1, Y2 and Y3 are not included in centralizer

C(X) and hence we obtain C(X) = X+ from equation

X+ ⊆ C(X) ⊆ X+ + Y1 + Y2 + Y3.

Lemma 8.2. The words b, ab and ba are not in C(X).

Proof. It’s easily seen, that b /∈ C(X). Clearly

b ∈ (bab)∗b(bab)∗ = Y1 ⊆ X0

and a ∈ X , so ab ∈ XX0. However ab /∈ X0X and hence b /∈ C(X).

Similarly ab ∈ (bab)∗ab(bab)∗ = Y2 ⊆ X0, a ∈ X and aab ∈ XX0, but aab /∈ X0X .

Finally ba ∈ (bab)∗ba(bab)∗ = Y3 ⊆ X0, a ∈ X and baa ∈ X0X , but baa /∈ XX0.

Therefore b, ab, ba /∈ C(X).

Lemma 8.3. The languages ab(bab)∗, ba(bab)∗ and b(bab)∗ are in the complement of

the centralizer.

ab(bab)∗ ∩ C(X) = ba(bab)∗ ∩ C(X) = b(bab)∗ ∩ C(X) = ∅.

Proof. Let us choose an arbitrary word w = ab(bab)k (k ≥ 1) in the language

ab(bab)∗. If we concatenate w with the word a ∈ X , we get the word a · ab(bab)k ∈

XX0. In the end of this word there is only one factor in X , the word bab. However

the rest of the word, aab(bab)k−1, is not in X0 since

a(a bb)k−1ab /∈ X0 = X+ + Y1 + Y2 + Y3.

Therefore ab(bab)k /∈ C(X) (k ≥ 0). That means ab(bab)∗ ∩ C(X) = ∅.

Next we choose an arbitrary word ba(bab)k ∈ ba(bab)∗ (k ≥ 1). Now ba(bab)k ·

bab ∈ X0X , but ba(bab)k(bab) = bab · ab(bab)k /∈ XC(X) since, as we just proved,

ab(bab)k /∈ C(X). Therefore ba(bab)k /∈ C(X) (k ≥ 0) and ba(bab)∗ ∩ C(X) = ∅.
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Similarly, if we have word b(bab)k (k ≥ 1) in language b(bab)∗, we see that

a · b(bab)k ∈ XX0, but ab(bab)k−1 · bab /∈ C(X)X . Hence also

b(bab)∗ ∩ C(X) = ∅.

In the next step we will use induction.

Lemma 8.4. The languages (bab)∗b(bab)∗, (bab)∗ab(bab)∗ and (bab)∗ba(bab)∗ are all

in the complement of the centralizer. That is

(bab)∗b(bab)∗ ∩ C(X) = ∅

(bab)∗ab(bab)∗ ∩ C(X) = ∅

(bab)∗ba(bab)∗ ∩ C(X) = ∅.

Proof. The proof is similar for all of these three languages. We mark v ∈ {b, ab, ba}

and prove the claim for (bab)∗v(bab)∗. We prove, that for any integer n, i ≥ 0 we

have (bab)nv(bab)i /∈ C(X). If n = 0, then v(bab)i /∈ C(X) for all i ≥ 0.

Assume that (bab)nv(bab)i /∈ C(X) for all i ≥ 0, if n ≤ k for some integer k. If

n = k + 1 we get

(bab)k+1v(bab)i · (bab) ∈ X0X,

but

(bab) · (bab)kv(bab)i+1 /∈ XC(X),

since induction assumption says (bab)kv(bab)i+1 /∈ C(X).

Therefore (bab)k+1v(bab)i /∈ C(X), and hence

Y1 ∩ C(X) = Y2 ∩ C(X) = Y3 ∩ C(X) = ∅.

Theorem 8.5. The centralizer of X = {a, bb, aba, bab, bbb} is

C(X) = X+.
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Proof. The claim follows directly from the previous lemma, since

C(X) = X0 ∩ C(X) = (X+ + Y1 + Y2 + Y3) ∩ C(X) = X+.

Corollary 8.6. The centralizer of the language Y = {a, bb, aba, abb, bab, bba, bbb}

coincides with that of

C(Y ) = C(X) = X+.

Proof. The languages X and Y generate the same semigroup X+ = Y +, since X ⊆

Y ⊆ X+. Additionally, by Theorem 3.5, C(Y ) = C(Y +) = C(X+) = C(X) =

X+.

8.4 Analysis

Let’s find out what really happens, when the fixed point method is applied to the

language X = {a, bb, aba, bab, bbb}, and why the iteration does not stop.

Even if X is finite and its centralizer is just X+, fixed point method does not give

centralizer after finite number of steps. We could say that fixed point method doesn’t

succeed, because it is not capable to use induction. For example, if we write all words

of (bab)∗ab(bab)∗ in the shape of infinite triangle, as in Figure 11, we could illustrate

the fixed point method as follows.

ab

ab(bab) (bab)ab

ab(bab)2 (bab)ab(bab) (bab)2ab

ab(bab)3 (bab)ab(bab)2 (bab)2ab(bab) (bab)3ab

ab(bab)4 (bab)ab(bab)3 (bab)2ab(bab)2 (bab)3ab(bab) (bab)4ab

...
...

...
...

...
Figure 11: Language (bab)∗ab(bab)∗ as an infinite triangle

When fixed point method takes the first step from X0 to X1, the language

ab(bab)∗ is deleted from X0, as shown in Lemma 8.3. This means that the left-
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most row of the triangle is deleted, as Figure 12 shows. Next steps delete the top-

most rows one after another, since, as Lemma 8.4 implies, the existence of any

word of form (bab)iab(bab)j in the language Xk requires the existence of both words

(bab)i−1ab(bab)j and (bab)iab(bab)j−1 in the previous language Xk−1. Since the bot-

tom of triangle is infinite, the iteration does not stop on finite number of steps. Same

happens for languages (bab)∗ba(bab)∗ and (bab)∗b(bab)∗. Some parts of these trian-

gles are common. For example, (bab)ab(bab)∗ = ba(bab)+.

We could try to make iteration faster and more effective by choosing X0, the

starting point of the iteration, smaller than Pref(X+) ∩ Suf(X+). X0 should still of

course include the centralizer. We could for example mark

Bp = {w ∈ Pref(X+)|wPref1(X) ⊆ Pref(X+)}

Bs = {w ∈ Suf(X+)| Suf1(X)w ⊆ Suf(X+)},

where Bp clearly includes the centralizer and Bs is the similar set obtained by using

suffix instead of prefix. Now we could choose

X0 = Bp ∩Bs.

However in this case this does not change the iteration much, since

(
Pref(X+) ∩ Suf(X+)

)
\ (Bp ∩Bs) = ab(bab)∗ + (bab)∗ba,

and this language was deleted already on step X0 → X1 in the original iteration.

8.5 Other examples

There exists also rational languages, for which fixed point method doesn’t stop and

the centralizer is not X+. One example is the language X = aΣ+b + bΣ∗ba. If we

compute X+ and S with computer, we see that they are different and hence X+ 6=

C(X). Table 3 lists numbers of states for automata corresponding to the first steps of

iteration, computed by Grail+. Table shows, that beginning from language X7 every

step increases number of states by eight. Closer look on corresponding automata

tells that they stay mainly same, but certain parts of them grow with same sequence
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Figure 12: Deleting parts of (bab)∗ab(bab)∗ during iteration.
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Figure 13: Deleting parts of (bab)∗ba(bab)∗ during iteration.

	

	�	

	�	�	

	�	�	�	

	�	�	�	�	

	�	�	�	�	�	

	�	�	�	�	�	�	

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

X0 → X1





�



�
�



�
�
�



�
�
�
�



�
�
�
�
�



�
�
�
�
�
�


.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

X1 → X2

�

���

�����

�������

���������

�����������

�������������

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Figure 14: Deleting parts of (bab)∗b(bab)∗ during iteration.
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endstates states transitions

X 2 7 14

X0 2 4 8

X1 4 15 30

X2 6 16 32

X3 9 24 48

X4 13 33 66

X5 18 44 88

X6 23 53 106

X7 29 67 134

X8 33 75 150

X9 37 83 166

X10 41 91 182

X11 45 99 198

endstates states transitions

X12 49 107 214

X13 53 115 230

X14 57 123 246

X15 61 131 262

X16 65 139 278

X17 69 147 294

X18 73 155 310

X19 77 163 326

X20 81 171 342

X21 85 179 358

X+ 4 12 24

S 8 24 48

Z 10 28 56

Table 3: Numbers of states and transitions of automata corresponding to iteration

steps of X = aΣ+b + bΣ∗ba
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on every step. Figure 15 shows the essential part of the automaton of X11. This

automaton has two separate “chains” with period of four states. On every step both

of these chains get four additional states. Only the last sates of these chains don’t

follow the pattern. When the iteration goes forward, the ends of the chains go farther

and farther. This means that words in Xi \ Xi+1 get longer, when i gets bigger. If i

grows infinitely, the chains get infinite and can be replaced by a loop of four states.

For example in automaton representing the language X11, we could replace transition

98
b

−→ 13 with transition 98
b

−→ 95 and transition 93
b

−→ 13 with transition 93
b

−→

87 and minimize the result. Let us use notation Z for the language recognized by this

new automaton. Number of states in this automaton is also given in Table 3. We will

prove that Z = C(X). Grail+ verifies that

X+ ⊂ S ⊂ Z

and that Z commutes with X . Hence for sure

X+ ⊂ S ⊂ Z ⊆ C(X).

0

1

2

13

21

33

34

36

37

38

39

40

41

42

43

92

85

94

87

95

89

96

91

97

93

98

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Figure 15: Essential parts of automaton representing X11.

The equality Z = C(X) can be proven as follows.
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X+
:

0

1

2

3

4

5

6

7

8

9 10

11

a

b

a, b

a

b

a

b

b

a

a
b

a

b

a b

a

b

a
b

b

a a

b

Figure 16: Automaton for X+. (X = aΣ+b + bΣ∗ba)

S :
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3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18
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20

21

22 23

a

b

a

b

a

b

a

b

a

b

a

b

b

a

a

b

a

b

a

b

a

b

a

b

a

b

b

a

a b

a

b

a

b

a

b

a

b

a

b

a

b

a
b

a

b

a

b

Figure 17: Automaton for S. (X = aΣ+b + bΣ∗ba)
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Z :

0
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16
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b
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b

a

b

a

b

b

a

a b

a b

a

b

a

b

a

b

a

b

a

b

a

b

a

b b

a

a
b

a

b

a

b

a

b

Figure 18: Automaton for Z = C(X). (X = aΣ+b+ bΣ∗ba)

Lemma 8.7. Let A = aa+(ba+)∗. Then

A ∩ C(X) = ∅.

Proof. First of all aanba ∈ A (n > 1) and aab ∈ X . However

aab · aanbaX−1 = {aa},

and since aa /∈ X0 = Pref(X+) ∩ Suf(X+) we have aab · aanba /∈ C(X)X and

aa+ba ∩ C(X) = ∅.

As the second step we see that aa+ba+ba ∩ C(X) = ∅, since

aab · aa+ba+baX−1 = aa+ aabaa+.

Now (aa+aabaa+)∩Suf(X+) = ∅, which means that also (aa+aabaa+)∩X0 = ∅.

Finally we use the induction to show, that if for some k ≥ 1 we have

aa+(ba+)nba ∩ C(X) = ∅, whenever n ≤ k, then

aab · aa+(ba+)k+1baX−1 = aa+ aabaa+(ba+)≤k ⊆ Σ+ \ C(X).

59



Hence aa+(ba+)∗ba∩C(X) = ∅. Additionally, we can note that Σ∗aa∩Suf(X+) = ∅,

which gives us now

aa+(ba+)∗ ∩ C(X) = ∅.

Now if we choose the language

Y0 = X0 \ A = (Pref(X+) ∩ Suf(X+)) \ A

as the starting point of the fixed point approach, then the iteration stops already after

few steps. Namely

Y6 = Y7 = Z

giving us

C(X) = Z.

Now we can note, that we found this centralizer by choosing different initial value for

fixed point method.

Notion 8.8. The result of the fixed point approach is not stable. Even if the fixed point

method, with original starting point X0, leads to infinite computation, it may still be

possible to find the centralizer with a finite computation by choosing smaller starting

point for iteration. This helps only, if we succeed to ”eliminate” the ”hard part” of the

original starting point.

All languages leading to infinite iteration do not give so clearly periodic automata.

For example, for the language X = ΣaΣ∗aΣ + ΣbΣ∗bΣ, the number of states in

iteration steps grows in two phases. Every other step the addition is twelve and every

other step eighteen states.

With the finite language X = {a, bb, aab, aba, abb, baa, bab, bba, bbb} the rate of

the growth does not become constant, at least during first fifty steps. Additionally, in

every second step the number of states increases and every other it decreases. The

decrease is usually half of the increase. If we take look on the steps as automata, we

see still some kind of pattern as in Figure 19.
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Since the language X is finite and for example the word baa is singular in X , we

know that the centralizer is finitely generated. In fact, the centralizer is the language

X+, which can be proved as follows, with the same technique as we used in examples

of Chapter 4.

The set of proper suffixes of X = {a, bb, aab, aba, abb, baa, bab, bba, bbb} is

{1, a, b, aa, ab, ba, bb} = 1 ∪ Σ ∪ Σ2. Next we find variables ni for corresponding

suffixes ui.

u0 = 1 : 1 ·X ⊆ C(X) =⇒ n0 = 1.

u1 = a : a ∈ X ⊆ C(X) =⇒ n1 = 0.

u2 = b : b · a /∈ XC(X) =⇒ b /∈ C(X),

ba · a /∈ XC(X) =⇒ ba /∈ C(X),

baab · a /∈ XC(X) =⇒ baab /∈ C(X),

and then by induction

b(aab)n · a = baa · (baa)n−1ba /∈ XC(X) =⇒ b(aab)n /∈ C(X) ∀n > 0

∴ (∀n ≥ 0) b(aab)n /∈ C(X)

i.e. n2 does not exist.

u3 = aa : aa ∈ X+ ⊆ C(X) =⇒ n3 = 0.

u4 = ba : ba(aba)n · aba = baa · (baa)nba /∈ XC(X)

=⇒ ba(aba)n /∈ C(X) ∀n ≥ 0 (as in case u2 = b).

=⇒ n4 does not exist.

u5 = ab : Since XR = X , we have also C(X)R = C(X) and hence aba · (aba)nab =

ab(aab)n · aab /∈ C(X)X =⇒ ab(aab)n /∈ C(X) ∀n ≥ 0.

=⇒ n5 does not exist.

Now I = {0, 1, 3}, n0 = 1, n1 = 0, n3 = 0 and we obtain the result

G =
⋃

i∈I

uiX
ni = 1 ·X + a+ aa = X

C(X) = GX∗ = X+.
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We can compare the sequence of steps on fixed point method to the sequence of

decimal numbers of finite length. Let X = aΣ+b + bΣ∗ba. We can think that the

sequence of automata corresponding languages Xi is like the sequence

0, 12345; 0, 123412345; 0, 1234123412345; 0, 12341234123412345; . . .

of decimal numbers. Both sequences grow periodically towards an infinite represen-

tation, but this limit can also be given with a finite representation. Same way as the

limit 0, 12341234 . . . of the sequence of decimal numbers above has a finite repre-

sentation 1234
9999

. Similarly the sequence obtained by the search for the centralizer of

X = {a, bb, aab, aba, abb, baa, bab, bba, bbb} may be compared to the sequence

0, 12798; 0, 1218798098; 0, 12127098; 0, 12121978068798; 0, 121212707698; . . . ,

of decimal numbers, which has 0, 121212 . . . = 12
99

as the limit. In this sequence we

get one period in two steps, the number of digits both increases and decreases and the

end of decimal numbers get more and more non-periodic digits, which do not have

any effect on the limit.
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