
Applying decentralized trust management to DNS dynamic updates

Pasi Eronen1, 2

pasi.eronen@hut.fi
Jonna Särs2

jonna.sars@nixu.fi
1 Helsinki University of Technology

2 Nixu Ltd.

Abstract

DNS dynamic updates can be used to modify the data of a
DNS zone. This can be used to update DNS records of hosts
with dynamic IP addresses, for example. DNS dynamic up-
dates can be authenticated using the DNSSEC transaction
signatures or the TSIG mechanism.

While there are existing mechanisms for authenticating
the source of update requests, mechanisms for authoriza-
tion, i.e. specifying who is allowed to change what, are in-
adequate in many cases.

In this paper, we propose a solution for authorizing DNS
dynamic updates, based on the decentralized trust manage-
ment approach, and more specifically, the KeyNote 2 sys-
tem. We have also modified the BIND 9 name server to
use this approach. Our solution supports the separation of
DNS server administration and update authorization, and
also allows the specification of more flexible access restric-
tions than the use of access control lists.

1 Introduction

DNS has long been a good example of the lack of secu-
rity in the basic Internet infrastructure. It is a critical ser-
vice, but was originally not designed to resist active at-
tacks. Well known attacks against DNS include spoofing
and cache poisoning [2, 22]. Some of the vulnerabilities
are caused by implementation bugs, but a key issue in oth-
ers is the lack of authentication of DNS data and to some
extent also the lack of authentication of the communicating
parties.

The effort to provide authentication for DNS data and
the protocol parties is called DNSSEC. Simultaneously,
some new functionality and features have also been added
to DNS.

The new features in the DNS protocol, especially DNS
dynamic updates [24], have also created new security prob-
lems. Dynamic updates allow modification of DNS data,
so in addition to authentication of data, the question of au-
thorization (i.e., who is allowed to change what) also im-
portant.

In this paper, we identify a number of problems with ex-

isting mechanisms for securing DNS dynamic updates, and
propose an alternative mechanism, based on the decentral-
ized trust management approach.

The rest of this paper is organized as follows. The next
section presents the DNS dynamic updates and the cur-
rent mechanisms for securing them. Section 3 describes
the current authorization mechanisms, and some problems
and limitations in these. The basic idea behind trust man-
agement and the details of our proposed solution are de-
scribed in Section 4. Section 5 gives an outline of our im-
plementation, which combines BIND 9 and the KeyNote 2
trust management library. The next section evaluates the
proposed solution and describes possible enhancements.
Finally, Section 7 contains our conclusions from this re-
search.

2 DNS concepts

The Domain Name System (DNS) is a hierarchical, dis-
tributed database that provides mappings between domain
names and IP addresses, and other information. We assume
the reader is familiar with the basic concepts and uses of
DNS.

The DNS security extensions [8] are defined to counter
the security problems inherent in the earlier DNS specifica-
tions. They provide data integrity and authentication using
digital signatures, and optional authentication of transac-
tions (requests and replies). In addition, DNSSEC defines
how the necessary public keys are authenticated and stored
in DNS.

In this paper we concentrate on the DNS dynamic update
mechanism and the extensions needed to secure it. While
the authentication of DNS zone data is important for the
overall security of the Internet, it is outside the scope of
this paper.

2.1 DNS dynamic updates

An interesting new feature of DNS is the possibility to dy-
namically update DNS data [24]. This can be used, for ex-
ample, to allow the DHCP server to update DNS records of
hosts with dynamic IP addresses. Especially mobile hosts

1

that roam from one network segment to another would ben-
efit from keeping the same domain name even if their IP
addresses change as they move.

Another interesting application of dynamic updates is
updating certificates stored in the domain name system
[11]. A CA could dynamically add new certificates when
they are created. If the certificates could be updated easily
and automatically, their lifetimes could be shorter, and the
risks related to revocation could be reduced.

We also see the dynamic update mechanism as a poten-
tial replacement for the traditional (and error-prone) ap-
proach of manually editing the zone files. With dynamic
updates, the changes could be done remotely and the client
could perform sanity checks on the data. This, however, is
a usability issue with very little relevance to security.

The operations that can be performed with dynamic
updates are adding and deleting resource records (RRs).
There are a few restrictions to how the RRs can be ma-
nipulated by dynamic updates. For example, the SOA se-
rial number can only be incremented, and the last NS RR
cannot be removed. In addition to specifying the desired
update, the request can include preconditions to the update.
Such a precondition can be the existence or non-existence
of some name or resource record. The server checks the
preconditions before the update is performed, and if they
are not met, it stops processing the request and returns an
error message.

If the prerequisites are satisfied, the server checks if the
authenticated requester is authorized to perform the partic-
ular update, conducts some additional sanity checks, and
finally updates the data. The update is performed as an
atomic operation. That is, either all the update commands
in a message are performed or none of them are.

We expect the use of dynamic updates to grow in the
future. New operating systems are already starting to de-
pend on dynamic updates. For example, Windows 2000
uses them a lot.

As the dynamic updates become more widely used, the
need to secure them increases. It is important to notice that
there are really two separate DNS use cases with differ-
ent security requirements. Querying for data requires data
authentication but not necessarily authentication of mes-
sages. Dynamic updates require transaction authentication
and also authorization, i.e., a way to specify who is allowed
to change what. The next section describes existing mech-
anisms for authenticating dynamic updates, and Section 3
discusses authorization.

2.2 DNS transaction authentication

There are several ways that can be used to authenticate the
parties involved in a DNS transaction. The most simple
means is using the IP addresses of the communicating par-
ties. This method is weak, as it cannot protect message
integrity and spoofing the addresses is relatively easy. It

could be sufficient in a closed network with relatively low
security requirements. In networks with higher security re-
quirements, cryptographic authentication methods should
be used.

There are currently three cryptographic mechanisms for
authenticating dynamic updates: DNSSEC public key sig-
natures or SIG(0)s, TSIG shared secret signatures with the
related TKEY key exchange method, and the GSS-API
TSIG/TKEY mechanism. None of these methods encrypt
the messages, since DNS data is usually considered public.

DNSSEC request and transaction signatures, or SIG(0)s
for short, specify a strong authentication method using pub-
lic key cryptography [8, 9]. They can be used to protect and
authenticate DNS requests and responses. The solution is
scalable: the public key of a server or resolver is stored in
DNS as a KEY RR and can be found easily by anyone who
wants to authenticate it. Unfortunately, public key cryp-
tographic operations can be computationally expensive, so
using them for all transactions would have a serious impact
on performance.

A more lightweight solution for message authentication
and integrity protection are Secret Key Transaction Signa-
tures (TSIG) [23]. The TSIG mechanism uses shared-secret
message authentication codes (MACs) instead of public
key cryptography. They are computationally inexpensive,
but require that the communicating parties share a secret
key. The secret keys can be configured manually, or they
can be established using the TKEY mechanism.

The TKEY mechanism can support many different ways
of establishing secret keys. One of the possible modes is
Diffie-Hellman [10]. Diffie-Hellman key exchange is a way
for two parties to create a shared secret without requiring
any confidentiality of the messages they send each other,
so encryption is not needed. However, the messages must
be authenticated to prevent spoofing. The authentication
can use a TSIG signature if a previous secret key has been
established between the parties. Otherwise, it must be done
with the SIG(0) public key signatures.

Microsoft’s GSS-API TSIG/TKEY mechanism provides
a way of using existing Kerberos authentication infrastruc-
ture for authenticating update requests [17]. It operates in
two phases. First, a TKEY exchange is used to negotiate a
security context between the client and the server. That se-
curity context is then used to create and verify transaction
signatures.

3 DNS update authorization

Simply authenticating the client making an update request
is not enough; we also need to know whether the client is
allowed to perform that kind of modification. In this sec-
tion, we describe the currently used approaches for speci-
fying the security policy in this context, and discuss some
problems with them.

2

3.1 Existing solutions

An early proposal for securing dynamic updates suggested
that the KEY RR would include a few bits (the “signatory”
field) that indicate if the key may be used for dynamic up-
dates [7]. The KEY record’s name, class, and the few bits
would be used to encode the update policy. However, since
there are only four bits available for the purpose, this ap-
proach to authorization is hardly flexible enough for most
situations. Attempts to use more bits to gain more flexi-
bility have not been very successful either [21]. Indeed,
the use of KEY signatory bits for encoding policy has been
considered obsolete for a long time.

The current proposal for securing dynamic updates aban-
dons the concept of storing the policy inside DNS, and sim-
ply states that the policy is fully implemented in the pri-
mary server’s configuration [26]. The proposal suggests a
couple of things which should be supported by policy im-
plementations, but leaves other aspects to the implementer.

In practice, the policy is currently implemented using lo-
cal configuration files, which are essentially a form of ac-
cess control lists.

3.2 Access control lists in BIND

The first version of BIND that supports dynamic updates
was BIND 8. In BIND 8 the dynamic updates are protected
by very simple ACL facilities. The ACLs can grant a client
a permission to update any record in a zone based on an IP
address or a TSIG key. Restrictions on the record name or
type are not supported.

BIND 9 introduced a more flexible “update-policy”
mechanism. The access control decision can be based on
the name being updated, the name of the KEY record (or
TSIG key), and the record type.

3.3 Problems in existing approaches

We see several problems in the current approaches. The ac-
cess control lists are usually stored on the primary master
name server. Since their contents are very security critical,
there has to be a mechanism for authenticating and autho-
rizing modifications to these configuration files. Presently
this is usually achieved by standard Unix access control fa-
cilities (which cannot express access rights to only a part
of a configuration file). An additional complexity is the
fact that the name server is not necessarily operated by the
same party which actually “owns” the zone (and should be
responsible for deciding who can change it). Since a name
server can host thousands of zones, giving shell accounts
for everyone is not an attractive solution.

Another problem is related to the ACL’s granularity of
expression. While in theory the ACL can express every
possible characteristic of a DNS update request, in practice
the configuration file parser allowing such flexibility would

be fairly complex. Thus, as seen in the case of BIND, im-
plementers are likely to support only the simple cases. This
could hamper the adoption of dynamic updates for new, in-
novative use cases.

4 Proposed solution

The limitations of ACLs have been recognized before. In
[4] Blaze et al. argue that “the use of identity-based public-
key systems in conjunction with ACLs are inadequate so-
lutions to distributed (and programmable) system-security
problems.” Trust management, introduced by Blaze et al.
[5] proposes an alternative solution.

4.1 Decentralized trust management

Trust management systems use a set of unified mechanisms
for specifying both security policies and security creden-
tials. The credentials are signed statements (certificates)
about what principals (users) are allowed to do. Thus,
even though they are commonly called certificates, they are
fundamentally different from traditional name certificates.
Usually the access rights are granted directly to the pub-
lic keys of users, and thus trust management systems are
sometimes called key-oriented PKIs.

Examples of trust management systems include Policy-
Maker, which originally introduced the term trust manage-
ment [5], its successors KeyNote and KeyNote 2 [3], and
in some respects, SPKI [12]. In this paper, we use the
KeyNote 2 system. Our main motivation was the availabil-
ity of a reasonably good implementation written by An-
gelos Keromytis. This library is already used in several
other applications, including OpenBSD’s ISAKMP dae-
mon [6, 14].

Other examples where trust management has been suc-
cessfully used include maintaining distributed firewall rules
[15], controlling access rights in Jini and CORBA [13, 18],
and managing authorization for Java applets [20].

4.2 Trust management for dynamic updates

KeyNote is a simple and flexible trust management system
designed to be suitable for a wide range of applications that
need to make access control decisions in a distributed envi-
ronment.

The KeyNote trust management system has four basic
components. One is a language for describing “actions”,
i.e., the operations that need access control. It also has
a mechanism for identifying “principals”, the entities that
can be authorized to perform actions. Further, it has a lan-
guage for specifying “assertions” which define what ac-
tions the different principals should be allowed to do. Fi-
nally, it has a “compliance checker” which determines if an
action requested by a principal should be allowed or denied,
given a policy and a set of credentials. [3]

3

Field Description Example
What is being modified
zone zone name example.com
name fully-qualified name saturn.example.com
type RR set type as text, or ANY A
ttl time-to-live in seconds 3600
rdata record data, in zone file format (may be empty)192.168.1.2
operation add or delete
Who is modifying
client_ip client IP address 192.168.3.4
client_protocol TCP or UDP
client_port client TCP/UDP port number
tsig_key_name from named.conf key-section dhcp1.example.org–ns1.example.org
Context
app_domain KeyNote domain dyndns
time current date and time 2000-10-18_17:15:33

Table 1: Attributes for dynamic update assertions

When using KeyNote for DNS dynamic updates, the
principals are authenticated with standard DNSSEC trans-
action authentication mechanisms.

The basic structure of a KeyNote assertion consists of a
maximum of seven fields: a Version number, an Authorizer,
the Licensees of the credential, Local-Constants, Condi-
tions, a Comment and a Signature. The Authorizer field
is mandatory, and all other fields are optional. The Autho-
rizer field specifies who is authorizing the principals speci-
fied in the Licensees field to perform an action if the action
attributes meet the specified Conditions.

The Authorizer can be “POLICY”or a public key of a
user. “POLICY” represents the root of the trust hierarchy,
and is allowed to do anything. Because only public keys
can be used to sign credentials, assertions whose Autho-
rizer is “POLICY” must be stored locally to protect their
integrity and authenticity. Together, these assertions are
called the policy. The KeyNote specification allows the use
of other non-cryptographic identifiers in addition to “POL-
ICY”, but we will not consider them here. If a public key
is used, it can also be specified in the Local-Constants field
and referenced by name in the Authorizer field. Assertions
authorized and signed by a public key are called creden-
tials.

The Licensees can be public keys, private keys, or IP
addresses. The public keys can also be specified in the
Local-Constants field and referenced by name in the Li-
censee field, just like in the Authorizer field. There can be
more than one Licensee to an assertion.

The Conditions specify what requirements the action at-
tributes must meet for the Licensee to be allowed to exe-
cute it. If there are no Conditions, all actions allowed to the
Authorizer are also allowed to the Licensee. Examples of
condition expressions are given in the next section.

The action attributes consist of a name and a value.

KeyNote does not specify the semantics of the names and
the values: they are particular to the application domain. A
reserved attribute called “app_domain” should contain the
name of the application domain of the particular assertion.
Table 1 presents our proposal for the possible attributes of
a KeyNote assertion for DNS dynamic updates.

When a dynamic DNS update request is made, the client
should provide its credentials in the additional section of
the request. The compliance checker gets the local policy
assertions from a configuration file, and the requested ac-
tion attributes and the client’s credentials from the request.
The credentials could also come from a zone, if the server is
configured to fetch them from it. The compliance checker
processes the request and the assertions, and returns either
“reject” or “approve” based on them.

4.3 Examples

Here are a few sample scenarios which demonstrate the use
of KeyNote assertions for DNS dynamic updates.

Example 1: A very simple example is a situation where
a DHCP server residing in the same, protected and trusted
network as the DNS server is allowed to dynamically up-
date everything in the domain. IP addresses are used
to authenticate the party requesting the update. The as-
sertion is stored locally in the server, so no cryptogra-
phy is needed. The following assertion allows a DHCP
server at 192.168.10.1 to modify everything in the zone
helsinki.example.com:

Authorizer: "POLICY"
Licensees: "IP:192.168.10.1"
Conditions: ((app_domain=="dyndns") &&

(zone=="helsinki.example.com"));

As we stated earlier, IP addresses are not a strong au-
thentication method. In environments where the network’s

4

friendliness cannot be guaranteed, the transactions need to
be authenticated with one of the other DNSSEC transaction
authentication methods, such as TSIG or SIG(0).

Example 2: Let us consider an example where the local
networks are not fully trusted. We also do not fully trust the
parties who need to make updates to the zone, so we want
to restrict the types of updates they are allowed to perform.

A company wants to allow a few mobile users to up-
date their address records as they roam from one company
subnet to another. They want to use the TSIG authentica-
tion method to spare the mobile terminals from performing
heavy computations, so the users’ secret keys need to be
defined in the DNS configuration file named.conf. Here is
the definition for a key called johng-key.

key johng-key {
algorithm "hmac-md5";
secret "VGhpc0lzQVZlcnlCYWRLZXk=";

};

The following assertion allows anyone knowing the
secret key johng-key to update the address record of
“johng.helsinki.example.com”, as long as the address is in
the subnet 192.168.150/24. The assertion is also stored lo-
cally, so it does not need to be signed.

Authorizer: "POLICY"
Licensees: "TSIG:johng-key"
Conditions: ((app_domain=="dyndns") &&

(zone=="helsinki.example.com") &&
(name=="johng.helsinki.example.com") &&
(type=="A") &&
((operation =="delete") ||

((operation=="add") &&
(rdata~="^192\\.168\\.150\\.[0-9]+$")));

Example 3: Now Alice is the owner of the DNS server
at a big ISP hosting hundreds of zones. Some of Alice’s
clients want to be able to easily update data in their own
zones. Alice is obviously not going to take the risk of let-
ting its clients modify the configuration files of her name
servers. In fact, she would rather herself edit the configura-
tion files as little as possible. To allow for remote configu-
ration of the update policy, Alice delegates all update rights
to her public key.

Authorizer: "POLICY"
Local-Constants: Alice="dsa-hex:712d8c12fbae..."
Licensees: Alice
Conditions: (app_domain=="dyndns");

Example, Inc. is one of Alice’s clients who wants to be
able to administer data in its own zone. Alice authorizes
Bob, the DNS admin of Example, Inc. to update their zone.

Local-Constants: Alice="dsa-hex:712d8c12fbae..."
Bob="rsa-hex:ef4289028181..."

Authorizer: Alice
Licensees: Bob
Conditions: ((app_domain=="dyndns") &&

(zone=="example.com") &&
(time<="2001-05-31"));

Signature: "sig-dsa-sha1-hex:23c49ac9a0be..."

This credential is signed with Alice’s key, and is valid
until end of May 2001. Because the credential is protected
with Alice’s signature, it does not have to be stored lo-
cally in the DNS server. Alice can send it to Bob, and Bob
presents it every time he requests an update.

Now Bob can write another credential to Charlie, the
administrator at Example Inc’s Helsinki office. This cre-
dential gives Charlie the right to update everything under
helsinki.example.com, as long as the request comes from
the subnet 192.168.150/24. Note that Bob does not need to
bother Alice with this.

Local-Constants: Bob="rsa-hex:ef4289028181..."
Charlie="rsa-hex:ddd16090b43c..."

Authorizer: Bob
Licensees: Charlie
Conditions: ((app_domain=="dyndns") &&

(zone=="helsinki.example.com") &&
(client_ip~="^192\\.168\\.150\\.[0-9]+$") &&
(time<="2001-03-31"));

Signature: "sig-rsa-md5-hex:05c76f03451f..."

When Charlie requests an update, he attaches the cre-
dentials delegating the access right from Alice to Bob and
from Bob to himself in the message’s additional section,
and signs the message using his private key. The name
server verifies the credential chain delegating the author-
ity to perform the update from POLICY to Alice to Bob to
Charlie, and makes the access control decisions based on
that chain.

The details of how the KeyNote library actually verifies
the certificates and performs the access control decision are
described in [3].

5 Implementation

We have modified the BIND 9 name server to use the ap-
proach described in the previous section. For trust man-
agement, we used the KeyNote C library written by Ange-
los Keromytis. The library is also used in e.g. OpenBSD’s
ISAKMP implementation [6, 14].

The modifications consist of three major parts. First, we
added support for “anonymous” SIG(0) signatures. Sec-
ond, we added a way of specifying and loading the local
security policy, and third, added calls to the KeyNote li-
brary to check authorization before performing an update.
The details of these modifications are described in the next
sections. Together, a little over 1000 lines of C were added.

5.1 “Anonymous” authentication

The SIG(0) record contains a DNS name pointing to the
KEY record where the corresponding public key can be
found. Currently BIND requires that this KEY record is
stored in a local zone, i.e. a zone which the server is au-
thorative for. This makes sense, because only the name of
the KEY record can be used in an access control list, so the

5

binding between the key and the name obviously needs to
be secure.

However, when using decentralized trust management
for making an access control decision, the server really
does not need to know who owns a particular key. We mod-
ified BIND so that the client can include the relevant KEY
record in the message’s additional section. This could be
called “anonymous authentication” since we gain no infor-
mation about who the key belongs to.

5.2 Policy specification

Due to the syntax of the BIND configuration file and
KeyNote assertions, specifying KeyNote assertions in-
side the main named.conf file seemed difficult. Thus,
we added a configuration statement “keynote-policy-file”,
which specifies the path of the local policy file. The file is a
plain text file, containing KeyNote assertions separated by
blank lines. The file is read whenever the server configura-
tion is loaded (at startup, or after “rndc reload”). The asser-
tions in the local configuration do not have to be signed.

5.3 Authorization checking

When a dynamic update is performed, the attributes de-
scribed in Table 1 are given to the KeyNote engine, in ad-
dition to any authentication information. Also, the contents
of any CERT records [11] in the additional section are used
as assertions. The assertions must naturally be signed to be
valid.

5.4 Test client

To test our modification to BIND, we also wrote a client
program which sends dynamic update requests. The client
was written in Java, and uses Brian Wellington’s dnsjava
library [25]. Writing the client was quite simple since the
library already contained most of the required functionality.
The only thing missing was support for SIG(0) signatures.
The amount of Java code written or modified was less than
200 lines.

The signed assertions themselves can be generated us-
ing the “keynote” tool included with the KeyNote library.
In real world, of course, better user interfaces would be
needed.

6 Evaluation and future work

We think the main benefit of our proposal is the possibil-
ity to separate the server administration from update autho-
rization. Trust management policies are easy to distribute
across networks without the need to change local config-
uration files in the servers. Each server can have its own
policy, but the management can still be done in a central-
ized manner. If public keys are used for authentication, the

policy management tasks can even be easily and securely
delegated to those parts of the organization where they nat-
urally belong. This approach to policy management scales
well even for large environments.

There are also clear benefits in using generic security
components instead of application-specific ones. There is
no need for every developer to (badly) re-invent the wheel.
Consequently, when there are a lot of applications shar-
ing the development cost, the security components can be
created, evaluated and tested more carefully. The need to
accommodate more than one application automatically re-
sults in a syntax which is more flexible than application-
specific ACLs. However, this may also create risks: if the
developer is not careful in using the component, the system
may become too flexible, allowing users to create configu-
rations that make no sense. In our implementation, we have
tried to avoid this risk.

6.1 Trust infrastructure

If our solution is to be used in a truly decentralized manner,
a mechanism for distributing the certificates to the clients is
required. This can, of course, be done partially manually;
i.e. when a user requests access rights from an administra-
tor, the administrator can send a complete set of credentials
required in response.

This requires the client to store all the required creden-
tials. An alternative solution would be store the credentials
on the server. Although they could be stored in a configu-
ration file, a better idea is to store them in CERT records in
some particular zone. This zone does not need to be pro-
tected as well as an access control list, because all the cre-
dentials are signed. Our implementation does not support
this yet.

Depending on the situation, an infrastructure for revok-
ing old credentials may be needed. KeyNote currently does
not have any support for revocation. Revocation and valida-
tion schemes for another trust management system, SPKI,
are discussed in e.g. [16].

6.2 Implementation

We found that the KeyNote library is actually quite usable.
The only serious deficiency we found is that the library is
not thread safe. Therefore, we had to make sure that only
one “worker” thread is used. Usually BIND 9 uses one
worker thread per CPU, so this is a problem only on multi-
processor machines.

Our implementation added the security functionality di-
rectly to the BIND source code. This leads to the coupling
of application and security code, which can be undesirable,
because the application becomes part of the trusted envi-
ronment. Also, it has been argued that BIND is too large as
it is, and should be split into separate components. One of
these components could be a “update gatekeeper”, which

6

would check the signatures and credentials, and forward
the messages to the real server if the operation is allowed.
This gatekeeper could be independent of the DNS server
software used, and could be used even when the server’s
source code is not available. There are advantages and dis-
advantages in both approaches, and further work is needed
to find out which one is actually better.

Our implementation is still by nature a research proto-
type. Optimizations and extensive testing would be needed
before it could be used in a production environment. Some
tests with real users and DNS administrators should also be
made to determine the usability of the solution. After all,
the concepts of trust management might prove to be hard to
understand for people who are used to thinking in terms of
ACLs.

6.3 Denial of service attacks

When sending a request to the server, the server has to
check the signature of the message and any certificates
included. This check usually takes about the same time
whether the signature is valid or not. By sending a very
large number of messages (possibly with a large number of
certificates as well), it is possible to consume lots of CPU
time, possibly leading to a denial of service condition.

We have not yet performed any measurements on how
many messages per second would be needed for this at-
tack. This concern applies to standard BIND 9 as well,
since it also checks the signatures on messages, but much
more messages would be required.

This is really a problem in the protocol design; future
protocols should implement some protection against denial
of service [1, 19].

6.4 Access decisions based on the zone data

Our implementation currently has a limitation in its ability
to express one category of real world constraints to access
rights. Currently, existing zone data is not used when per-
forming access control decisions. For example, if a user is
allowed to delete only address (A) records, and attempts to
delete all records for a given name, the request is denied
even if only address records exist for that name. To give
another example, there is currently no way to specify that a
user is allowed to add a record only if no record with that
name already exists. The user may specify these conditions
in the request as preconditions to the update, but there is no
way of enforcing them as a policy by the server.

Implementing this in KeyNote could be difficult, because
while the condition expressions are quite flexible, they are
not a Turing-complete programming language—unlike in
PolicyMaker, for instance [5]. We intend to further investi-
gate this problem.

7 Conclusions

DNS dynamic updates are a useful way to modify DNS
zone data, especially in environments where a part of the
data changes often. The DNS security extensions define
a reasonable variety of mechanisms for authenticating the
source of update requests. However, we find that the avail-
able methods for authorizing dynamic updates and verify-
ing access rights introduce a number of problems.

We propose a new solution for authorizing DNS dynamic
updates. By combining the existing facilities for authen-
ticating update requests with state-of-the-art authorization
mechanisms, we have created a solution which is more flex-
ible and scalable than the existing approaches. We hope this
allows more widespread use of DNS dynamic updates.

We have implemented the proposed solution using the
BIND 9 name server and the KeyNote C library. While the
implementation is only a prototype and needs further work,
it has shown us that the idea works.

Acknowledgements

We would like to thank Angelos Keromytis, Alexander
Krotov, Ilkka Tuohela, and Camillo Särs for their com-
ments on earlier versions of this paper.

References

[1] Tuomas Aura, Pekka Nikander, and Jussipekka
Leiwo. DOS-resistant authentication with client puz-
zles. In Bruce Christianson, Bruno Crispo, and Mike
Roe, editors,Proceedings of the 8th International
Workshop on Security Protocols, to appear in the Lec-
ture Notes in Computer Science series, Cambridge,
UK, April 2000. Springer.

[2] Steven M. Bellovin. Using the domain name sys-
tem for system break-ins. InProceedings of the 5th
USENIX UNIX Security Symposium, Salt Lake City,
Utah, June 1995.

[3] Matt Blaze, Joan Feigenbaum, John Ioannidis,
and Angelos D. Keromytis. The KeyNote trust-
management system version 2. RFC 2704, IETF,
September 1999.

[4] Matt Blaze, Joan Feigenbaum, John Ioannidis, and
Angelos D. Keromytis. The role of trust manage-
ment in distributed systems security. In Jan Bosch,
Jan Vitek, and Christian D. Jensen, editors,Secure In-
ternet Programming: Security Issues for Mobile and
Distributed Objects, Lecture Notes in Computer Sci-
ence volume 1603, pages 185–210. Springer, 1999.

[5] Matt Blaze, Joan Feigenbaum, and Jack Lacy. De-
centralized trust management. InProceedings of

7

the 1996 IEEE Symposium on Security and Privacy,
pages 164–173, Oakland, California, May 1996.

[6] Matt Blaze, John Ioannidis, and Angelos D.
Keromytis. Trust management for IPsec. To appear
in Proceedings of the Network and Distributed System
Security Symposium (NDSS 2001), San Diego, Cali-
fornia, February 2001.

[7] Donald E. Eastlake. Secure domain name system dy-
namic update. RFC 2137, IETF, April 1997.

[8] Donald E. Eastlake. Domain name system security
extensions. RFC 2535, IETF, March 1999.

[9] Donald E. Eastlake. DNS request and transaction sig-
natures (SIG(0)s). RFC 2931, IETF, September 2000.

[10] Donald E. Eastlake. Secret key establishment for
DNS (TKEY RR). RFC 2930, IETF, September 2000.

[11] Donald E. Eastlake and Olafur Gudmundsson. Stor-
ing certificates in the domain name system (DNS).
RFC 2538, IETF, March 1999.

[12] Carl Ellison, Bill Frantz, Butler Lampson, Ron
Rivest, Brian Thomas, and Tatu Ylönen. SPKI cer-
tificate theory. RFC 2693, IETF, September 1999.

[13] Pasi Eronen and Pekka Nikander. Decentralized Jini
security. To appear inProceedings of the Network
and Distributed System Security Symposium (NDSS
2001), San Diego, California, February 2001.

[14] Niklas Hallqvist and Angelos D. Keromytis. Imple-
menting internet key exchange (IKE). InUSENIX An-
nual 2000 Technical Conference — Freenix Refereed
Track, pages 201–214, San Diego, California, June
2000.

[15] Sotiris Ioannidis, Angelos D. Keromytis, Steve M.
Bellovin, and Jonathan M. Smith. Implementing a
distributed firewall. InProceedings of the 7th ACM
Conference on Computer and Communications Se-
curity (CCS 2000), pages 190–199, Athens, Greece,
November 2000.

[16] Yki Kortesniemi, Tero Hasu, and Jonna Särs. A re-
vocation, validation and authentication protocol for
SPKI based delegation systems. InProceedings of the
2000 Network and Distributed System Security Sym-
posium (NDSS 2000), pages 85–101, San Diego, Cal-
ifornia, February 2000.

[17] Stuart Kwan, Praerit Garg, James Gilroy, and Levon
Esibov. GSS algorithm for TSIG (GSS-TSIG).
Work in progress, Internet draft ietf-dnsext-gss-tsig-
01, November 2000.

[18] Tuomo Lampinen. Using SPKI certificates for autho-
rization in CORBA based distributed object-oriented
systems. InProceedings of the 4th Nordic Workshop
on Secure IT systems (NordSec ’99), pages 61–81,
Kista, Sweden, November 1999.

[19] Jussipekka Leiwo, Pekka Nikander, and Tuomas
Aura. Towards network denial of service resistant
protocols. InProceedings of the 15th International In-
formation Security Conference (IFIP/SEC 2000), Bei-
jing, China, August 2000. Kluwer.

[20] Pekka Nikander and Jonna Partanen. Distributed pol-
icy management for JDK 1.2. InProceedings of the
1999 Network and Distributed System Security Sym-
posium (NDSS ’99), pages 91–101, San Diego, Cali-
fornia, February 1999.

[21] Young-Chul Shim, Hee-Won Shim, Man-Hee Lee,
and Ok-Hwan Byeon. Extension and design of se-
cure dynamic updates in domain name system. In
Proceedings of 5th Asia-Pacific Conference on Com-
munications and 4th Optoelectronics and Communi-
cations Conference (APCC/OECC ’99), pages 1147–
1150, Beijing, China, October 1999.

[22] Paul Vixie. DNS and BIND security issues. In
Proceedings of the 5th USENIX UNIX Security Sym-
posium, pages 209–216, Salt Lake City, Utah, June
1995.

[23] Paul Vixie, Olafur Gudmundsson, Donald E. East-
lake, and Brian Wellington. Secret key transaction au-
thentication for DNS (TSIG). RFC 2845, IETF, May
2000.

[24] Paul Vixie, Susan Thompson, Yakov Rekhter, and Jim
Bound. Dynamic updates in the domain name system
(DNS UPDATE). RFC 2136, IETF, April 1997.

[25] Brian Wellington. Dnsjava home page.
http://www.xbill.org/dnsjava/, August 2000.

[26] Brian Wellington. Secure domain name system
(DNS) dynamic update. RFC 3007, IETF, November
2000.

8

