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Abstract

Network denial of service attacks have become a widespread problem on the In-
ternet. However, denial of service is often considered to be an implementation issue
by protocol designers. In this paper I present a survey of the literature on design-
ing denial of service resistant communication protocols. I consider several different
types of resources vulnerable to resource consumption attacks, and outline counter-
measures against such attacks. I also describe how these countermeasures are used in
the ISAKMP/IKE and Photuris protocols, and give overview of design recommenda-
tions for future protocols.

1 Introduction

Denial of service (DoS) means “the prevention of authorized access to resources or delay-
ing of time-critical operations” [22]. During the last couple of years, network denial of
service attacks—which deny or degrade access to some network service—have become a
problem on the Internet. The most publicized attacks have been against well-known web
sites such as Yahoo and Amazon [12, 37].

CERT’s note on denial of service [9] identifies three different types of network DoS attacks.
First, consumption of scarce, limited or non-renewable resources. Second, destruction or
modification of configuration information, and third, physical destruction or modification
of network components.

In this survey, I focus on resource consumption attacks, and how they could be prevented—
or at least made more difficult—by taking availability into account in the design of com-
munication protocols. In protecting the availability of actual systems, it is, of course,
important to consider other attacks as well.

I also limit the study to what I consider to be a typical case on the Internet: protecting the
availability of a server from attackers trying to deny service to legitimate clients. Thus,
protecting clients from DoS, and protocols involving more than two parties, are beyond
the scope of this paper.

The rest of the paper is organized as follows. The next section presents a couple of different
resources vulnerable to DoS attacks, with examples in each category. Section 3 identifies
a number of different countermeasures. Sections 4–6 describe how these countermeasures
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are used in two actual protocols, ISAKMP/IKE and Photuris. Section 7 presents some
ideas how denial of service problem should be addressed in protocol design, and finally,
Section 8 presents my conclusions and suggestions for further research.

2 Resource consumption attacks

Resource consumption attacks work by consuming some scarce, limited or non-renewable
resources. Most of the widespread network DoS attacks have been of this type: for exam-
ple, the TCP SYN flooding attacks and the distributed DoS attack on Yahoo, Amazon, and
other popular web sites. The details of both of these attacks are discussed below.

Resource consumption attacks have become common because they are quite easy to mount,
difficult to defend against, and hard to trace to their source. Furthermore, there are many
types of resources which could be consumed. The next sections describe the most common
resources used for denial of service attacks.

2.1 Memory

One of the earliest widespread DoS attacks was the TCP SYN flooding attack. It works by
filling the table reserved for half-open TCP connections in the operating system’s TCP/IP
stack. When the table becomes full, new connection can’t be opened until some entries are
removed from the table (due to handshake timeout). The details are described in [7, 19, 44].

This attack can be done using fake IP addresses, so tracing it to its source is difficult. Of
course, the table of connections can be filled without spoofing the source IP address. Often
the space available for fixed tables, such as the half-open TCP connection table, is much
less than the total RAM of the system. This makes the attacks even easier.

2.2 Network bandwidth

The distributed DoS attack carried out against Yahoo, Amazon, and other popular web sites
worked by filling their network connection with junk traffic [12, 37]. The traffic was gen-
erated from hundreds of different sources—computers who had earlier been compromised
by crackers, and had attack software installed on them.

In general, protecting systems from this type of attack is difficult, since it requires mech-
anisms distributed across the Internet. Some countermeasures to make tracing such attack
easier are described in Section 3.2.

However, there are other types of network bandwidth attacks. In some protocols, the client
sends only a small amount of data, but gets a large response from the server. This could
be described as “traffic amplification” [8, 10]. This effect can be used to attack either the
“amplifier” directly, or the amplifier can be used to attack some third party (by faking the
source address, so that the amplified traffic is sent to the final target). This kind of attack
could be made more difficult by server-side actions; e.g. designing services so that large
responses aren’t generated to untraceable requests.
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2.3 Computational resources

Some authors (e.g. Juels and Brainard in [25]) have suggested that strong authentication,
based on a public-key infrastructure, could prevent or mitigate denial of service attacks
such as SYN flooding.

However, using public key cryptography opens the possibility for another kind of attack.
Public key cryptography usually involves expensive computations, such as modular ex-
ponentiation. If the attacker can convince the target to perform a large number of such
computations, exhausting its CPU resources, legitimate connections won’t get any CPU
time.

There haven’t been any widespread attacks of this type so far, but several protocols have
been identified as being vulnerable [20, 21, 29, 30, 32].

2.4 Other resources

Although typically several orders of magnitude larger than RAM, disk space can also be
subjected to denial of service. For example, the attacker can cause a large number of error
messages to be written to a log, and fill the disk containing the log files. Or, user’s mailbox
can be filled with junk mail, thus preventing reception of important messages—this attack
is usually even easier than filling disk with logs, since users often have mailbox “quotas”
much smaller than typical disk capacities.

Disk (or other I/O than network) bandwidth can also be a bottleneck in a system. For
example, in a server hosting a large database, queries for attributes which are not indexed
probably result in lots of I/O activity. This could happen in a publicly available LDAP
server, for instance.

In theory, any finite or non-renewable resource can be the target of a DoS attack, and
providing a complete list is thus impossible. Other examples of resources that could be
vulnerable are incoming telephone lines on a terminal server, paper at printers or fax ma-
chines, money spent buying another resource from a third party, and so forth.

3 Countermeasures

Reacting to a resource consumption attack usually involves at least detecting that an attack
is going on, tracing it to (or nearer) its source, and taking administrative or legal action to
end the attack.

In this paper I’m focusing only on countermeasures relevant in designing and implement-
ing communications protocols. Thus administrative countermeasures are beyond the scope
of this paper.

Countermeasures against DoS attacks can be either preventive or reactive. Preventive coun-
termeasures can help in this by making attacks easier to detect, or trace, and also by making
the system more resistant to attacks.
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3.1 Detecting attacks

Even detecting that a service is under a denial of service attack can sometimes be difficult.
Clients which are denied of service naturally detect it, but the condition isn’t always easily
noticeable at the server (e.g. TCP SYN attack).

Even when it has been determined that the service is indeed under attack, detecting which
part of the incoming traffic belongs to the attack, and which is legitimate traffic, can be
difficult. This problem is made more difficult by spoofed IP addresses.

Intrusion detection and reaction systems aim to cut off denial of service attacks by identi-
fying the part of traffic which belongs to the attack, and denying service only to that part
while continuing to serve legitimate clients. Most such mechanisms are very ad hoc in
nature; a determined attacker can fool them, and they can also produce false positives. For
instance, a web proxy for a very large organization naturally produces a large number of
traffic, which all looks like it’s coming from a single or few IP addresses. To an intrusion
detection system this might look like a flooding attack.

3.2 Tracing attacks

Cutting off an attack often requires tracing it to its source. The possibility of tracing proba-
bly also discourages attacks, since attackers know they are more likely to get caught. Thus,
it can be thought as both preventive and reactive countermeasure.

Forging, or spoofing as it is usually called, of source IP address on the Internet is quite
easy. Some techniques (such as cookies, described in the next section) can be used to
get some degree of assurance about the source IP address. In analysis of mechanisms for
protecting confidentiality and integrity of messages, it is usually assumed that the attacker
can modify, replay, and block any packets sent. This naturally allows trivial denial of
service, so somewhat weaker assumptions are used when analyzing availability.

There have been several proposals for mitigating the problem of IP spoofing. Ingress
filtering [15] means filtering incoming IP addresses which should not occur on the correct
link. For example, a central router at an university should filter out outgoing packets whose
source address is not within the university’s network. This makes the network less likely to
be used as a launching pad for attacks, and if deployed widely, should reduce the problem
of IP spoofing.

Another proposal, ICMP traceback messages [5], attempts to trace back flooding attacks,
even if they have forged source addresses. Other authors have proposed mechanisms for
recording the route traveled in the packets themselves [11, 43]. Unfortunately, all of these
require modifications to router software, so it remains to be seen if any of them will ever
be widely deployed.

3.3 Cookies

Cookie is a piece of data which is generated by the server and given to the client in the
beginning of a protocol run. The client has to include this piece of data in the subsequent
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messages. The goal of cookies is to prevent attacks which employ IP spoofing. If the client
doesn’t receive the message containing the cookie, the server will reject further messages
because they don’t include a valid cookie.

More precisely, if the server receives a valid cookie from the client, it knows that:

• The attacker is using his real IP address. This address may, of course, belong to a
third party computer the cracker has broken into.

• Or, the attacker has access to physical link on the route from the server to the spoofed
IP. In reality, the attacker is probably quite “close” to either the server or the spoofed
IP, making tracing easier.

• Or, the attacker is able to manipulate the IP routing infrastructure. This is beyond the
capabilities of “script kids”, and more sophisticated and motivated attackers proba-
bly focus on attacks on integrity and confidentiality.

In other words, the idea is to start the protocol with weak authentication (of IP addresses),
and possibly later perform stronger authentication. This allows tracing of attacks (with
some limitations, as described in the previous section), and probably discourages attacks
on computational resources.

An early example of cookies are actually the TCP initial sequence numbers, though their
original purpose was to prevent packets from old connections interfering with new con-
nections. After the TCP SYN attacks, some TCP/IP stacks were modified to use the initial
sequence numbers as “SYN cookies” to protect against the attack [19, 44].

The cookie approach was much refined during the design of the Photuris protocol. The
Photuris specification [27] gives the following requirements for cookies (or “anti-clogging
tokens”):

• The cookie must depend on the addresses of the communicating parties.

• Nobody else must be able to forge a cookie that will be accepted by the server.

• The cookie generation and verification must be fast enough so that they don’t become
subjects to DoS attacks.

• The server must not keep per-client state until the IP address has been verified (i.e.
it has received a cookie it generated).

The last requirement is especially important in protecting against memory consumption
attacks.

The recommended method for generating the cookies in Photuris is to use a keyed one way
hash of both IP addresses, both UDP ports, some locally generated secret value (which
must be same for all clients, and must be periodically changed), and some other context-
dependent information (see [27] Section 3.3).

The properties of Photuris cookie exchange are described and analyzed by Oppliger in [38].
The idea of of gradually strengthening authentication are analyzed formally by Meadows
in [35].
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3.4 Storing state in client

The cookie approach can be extended to include some state in the cookie. Any state that
would be normally stored in the server is passed to the client. The client passes the state
back to the server when sending the next message. The client doesn’t have to interpret the
state in any way, and can treat it simply as an arbitrary bit string. Encryption and message
authentication codes can be used to prevent the client from tampering with the state.

This naturally doesn’t work for protocols where the server might be required to take some
action before the reception of next message, but is otherwise a quite general approach.

Stateless protocols have others advantages in addition to preventing memory consumption
attacks. For example, in NFS recovering from server reboots is easy because no state is
kept on the server (except for file locking, which complicates things). Stateless protocols
also allows easier load balancing between servers.

The advantages of being stateless, at least in the beginning of a protocol run, were recog-
nized in the security protocol context by Janson et al. [24]. The topic is further explored
by Aura and Nikander in [2].

3.5 Re-ordering computations

In typical authenticated versions of the Diffie-Hellmann key agreement protocol, the server
has to verify the client’s signature in the first message. Since this requires expensive com-
putation, the server can be potentially flooded with requests. In some cases, however, it is
possible to modify the protocol so that client has to do some expensive computation first,
and the server verifies the signature only after it has verified that the client has done so.

Thus, mounting an attack requires the client to invest the same amount of CPU resources
as the server, and this hopefully will make DoS attacks at least somewhat harder. One such
modification to the ISAKMP/IKE aggressive mode exchange is described in [32].

3.6 Pricing

Although cookies, stateless connections and re-ordering computations can give some pro-
tection against DoS attacks, in some cases more aggressive measures are required to allow
service to legitimate users and deny it to attackers.

One such technique is “pricing”. This means imposing some deliberate cost to the client,
which is small for legitimate users making a small number of requests, but large for an
attacker trying to flood the server.

Earliest use of this approach was a proposal by Dwork and Naor to combat junk e-mail
[13, 14]. Before accepting an e-mail message, the recipient asks the sender to perform a
small computation. The verification of the computation has to be quick, so this doesn’t
open possibilities for new DoS attacks. Another early use of this technique was against
SYN flooding [25].

Usually this cost is in terms of processing time, since it is easy to implement, but other

6



HUT TML 2000 Tik-110.501 Seminar on Network Security

forms (such as paying with actual micropayment systems) are also possible. The compu-
tation can be just “junk computation” to prevent denial of service, or it can be “useful”
computation for some other purpose [23]. This mechanism is generalized and analyzed by
Aura, Leiwo, and Nikander in [3, 29] and formally described by Jakobsson in [23].

Interestingly, the idea of moderately hard computational problems has received other uses
as well: e.g. uncheatable benchmarks [6], timed release of secrets [41, 17], partial key
escrow [4], and auditable metering of web site use [16].

4 IPSEC architecture

IPSEC protocols provide security services at the IP layer in both IPv4 and IPv6 environ-
ments. At the lowest level of the IPSEC architecture are cryptographic algorithms for
authentication and encryption, which are used by the Authentication Header (AH) and
Encapsulating Security Payload (ESP) protocols.

The parameters required by AH and ESP, such as which algorithms are used and keys, are
stored in Security Associations (SAs). Although the SAs can be specified manually, they
are often negotiated using some key management protocol. The two most widely used
protocols are ISAKMP/IKE and Photuris. Their main purpose is to create security associ-
ations with short-term keys from longer-term keys, refresh these keys when necessary, and
negotiate other parameters required for the SAs.

The IPSEC architecture is described by Kent and Atkinson in [28].

5 ISAKMP/IKE

ISAKMP/IKE is actually a combination of two protocols, ISAKMP and IKE [33, 18].
ISAKMP provides a framework for authentication and key exchange. IKE, based on the
Oakley protocol [39], specifies a key agreement protocol based on this framework.

The IKE negotiation has two phases. In the first phase, the parties negotiate an ISAKMP se-
curity association, which provides a secure communication channel between the ISAKMP
daemons. In phase 2, this ISAKMP security association is used to negotiate an IPSEC
security association for AH or ESP.

ISAKMP and IKE provide a large number of different modes and options, which can be
considered to be different subprotocols. Meadows has identified a total of thirteen (!)
different subprotocols [34]. This makes understanding, implementation, and analysis of
ISAKMP/IKE very challenging.

5.1 Cookies in ISAKMP/IKE

ISAKMP uses cookies as a countermeasure against IP spoofing. The header of each packet
contains two fields of 64 bits, the initiator and responder cookies. The initiator cookie is
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sent in the first message by the client, and the responder cookie is returned in the reply. All
further messages contain both cookies.

The cookies are also used to identify a particular ISAKMP SA during phase 1 of the pro-
tocol. Since the cookie is also used to distinguish between different ISAKMP SAs, the
protocol requires that the responder cookie is different for each initiator, and each protocol
run. The method recommended by the ISAKMP specification is to use a one-way hash of
IP addresses, UDP port numbers, locally generated secret value, and date and time.

Unfortunately, this requires a small amount of per-client state be stored on the server after
the first message (at least the date and time). Simpson criticizes this harshly in [45].

5.2 Aggressive mode problem

ISAKMP contains two different modes which may be used in the phase 1 negotiation.
These are called the “main mode” and “aggressive mode”. The aggressive mode requires
fewer messages than the main mode, but it doesn’t usually provide protection of identities,
and also has some other limitations.

The aggressive mode also has a known DoS vulnerability when using public key signatures
for authentication [45, 31, 32]. The responder has to sign its response to the first message
from the client. This expensive operation is donebeforethe cookie has been verified, so it
allows the possibility for DoS attack using spoofed IP addresses.

6 Photuris

The Photuris protocol is much simpler than ISAKMP/IKE, since it is not a combination
of many layers of different subprotocols. The protocol has three phases: cookie exchange,
value exchange, and identification exchange. After these phases, additional messages may
be used to refresh the keys or modify other security parameters. [27, 26]

Like the ISAKMP header, the Photuris header also contains fields for initiator and respon-
der cookies, each of 128 bits. In additional to the cookies, a “counter” field is included
to distinguish between multiple parallel protocol runs. This removes the need to store any
state on the responder after the first pair of messages.

Also, in Photuris the server never performs any expensive computations before receiving
the second message (which must contain a valid cookie).

7 Protocol design principles

Based on the discussion in the previous sections, it should be clear that denial of service
issues should considered in the design of new protocols. Without going to specific im-
plementation issues, I feel that at least the following recommendations should be used as
guidelines in the design.
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Recommendation 1:Protocol specifications should explicitly state what kind of DoS vul-
nerabilities exist, and not ignore denial of service as a mere implementation issue.

Recommendation 2:Protocols should verify the client’s IP address before creating state
or performing expensive computations. This is especially important for protocols which
run over UDP, since they don’t even have the weak protection offered by TCP sequence
numbers.

Recommendation 3:Protocols should avoid creating state on the server at all if the state
could be easily stored on the client instead [2].

Aura, Leiwo, and Nikander have written a couple of good papers about the design of DoS
resistant protocols [29, 3]. Their earlier paper on stateless connections is also very relevant
[2].

Simpson’s harsh criticism of ISAKMP/IKE [45] presents some mistakes done in the design
on ISAKMP/IKE which should prove helpful to the designers of future protocols. The
design principles behind Photuris are described in the Photuris RFC [27] and [46].

The use of formal methods in protocol analysis has usually ignored denial of service. Some
results are presented by Meadows in [35], and open issues in the field are discussed in [36].

This paper has addressed only the denial of service aspects in the design of protocols.
Aura’s dissertation [1] contains a good overview of other security-related aspects in pro-
tocol design. Other desirable properties of good Internet protocols, such as efficiency,
extensibility, and simplicity are discussed in e.g. [40] and [42].

8 Conclusions

Often denial of service is considered to be an implementation issue by protocol designers.
However, the resistance to DoS attacks can be improved by choices taken in the protocol
design. In this paper I have presented an overview of resource consumption vulnerabilities,
and countermeasures which could be used to defend systems.

Protocol design principles have been analyzed by several researchers, and Section 7 presents
a short summary of their recommendations, with references to full publications. Although
much of the work has focused on public key cryptographic protocols, many of the princi-
ples presented can be applied to other protocols as well.

There are many possibilities for further work. Modification of well known protocols to
include better DoS protection, and experiments in the real world, could produce valuable
information on the effectiveness of DoS protection mechanisms. Combining the techniques
for pricing, tracing, and intrusion detection could also provide practical solutions for DoS
protection.
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