
AB HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering

PASI ERONEN

SECURITY IN THE JINI NETWORKING TECHNOLOGY:
A DECENTRALIZED TRUST MANAGEMENT APPROACH

Master’s Thesis
March 6, 2001

Supervisor: Professor Arto Karila
Advisor: Pekka Nikander, Ph.D.

HELSINKI UNIVERSITY OF ABSTRACT OF
TECHNOLOGY MASTER’S THESIS

Author: Pasi Eronen
Title: Security in the Jini Networking Technology:

A Decentralized Trust Management Approach

Date: March 6, 2001
Pages: 8 + 60

Department: Department of Computer Science and Engineering
Chair: Tik–110 Telecommunication Software and Applications (data networks)

Supervisor: Professor Arto Karila
Advisor: Pekka Nikander, Ph.D.

The Jini networking technology, developed by Sun Microsystems and based on the Java
programming language, provides an elegant architecture for building distributed appli-
cations. However, the security problems that are bound to be present in any large scale
deployment of Jini are not adequately addressed by either the current revisions of Jini
technology or the underlying Java security solutions.

This thesis analyzes the security requirements of Jini in different environments. Security
threats and high level security goals are identified, and the implementation of these high
level goals using lower level security mechanisms is described.

Based on the identified requirements, an architecture for Jini security is proposed. The
architecture is based on the decentralized trust management approach, and uses Simple
Public Key Infrastructure (SPKI) certificates for authorization. A prototype implemen-
tation of the architecture is also presented.

Keywords: Java, Jini, RMI, SPKI
Language: English

ii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Pasi Eronen
Työn nimi: Turvallisuus Jini-verkkoteknologiassa ja hajautettu luottamuksenhallinta

Päivämäärä: 6. maaliskuuta 2001
Sivuja: 8 + 60

Osasto: Tietotekniikan osasto
Professuuri: Tik–110 Tietokoneverkot

Työn valvoja: Professori Arto Karila
Työn ohjaaja: TkT Pekka Nikander

Sun Microsystemsin kehittämä Jini-verkkoteknologia tarjoaa elegantin
Java-ohjelmointikieleen perustuvan alustan hajautettujen sovellusten rakentamiseen.
Se ei kuitenkaan ota riittävästi huomioon tietoturvaseikkoja, ja tämä haittaa sen
soveltamista hajautetuissa järjestelmissä.

Tämä diplomityö tutkii sitä minkälaisia turvallisuusominaisuuksia Jinissä tarvitaan
erilaisissa ympäristöissä, ja miten halutut korkean tason tietoturvatavoitteet voidaan
toteuttaa alemman tason mekanismeilla.

Vaatimusten analysoinnin lisäksi diplomityössä rakennetaan tietoturva-arkkitehtuurin
joka pohjautuu ns. hajautetun luottamuksenhallinnan käsitteisiin, ja käyttää Simple
Public Key Infrastructuren (SPKI) mukaisia varmenteita tietoturva-asetusten
määrittelyyn. Myös arkkitehtuurin prototyyppitoteutus esitellään lyhyesti.

Avainsanat: Java, Jini, RMI, SPKI
Kieli: Englanti

iii

Preface

This work began in the SIESTA project organized under the HUT software project course in
term 1999–2000. I would like to thank the the rest of the SIESTA team—Johannes Lehtinen,
Antti Mannisto, Petra Pietiläinen, Satu Virtanen, and Jukka Zitting—for a great project and
a memorable learning experience.

Pekka Nikander, the customer in the SIESTA project and later my advisor on this thesis,
always found time to meet me and read my drafts. I am grateful for his encouragement and
valuable comments which helped to shape this thesis.

Dieter Gollmann, Yki Kortesniemi, Helger Lipmaa, and Jonna Särs provided helpful com-
ments, and Kristiina Volmari-Mäkinen helped with parentheses and other aspects of my En-
glish.

This thesis was written in the TeSSA 3 project at the Telecommunications software and
multimedia laboratory of Helsinki University of Technology. The TeSSA 3 project was
funded by Tekes and several industry partners.

Helsinki, March 6, 2001

Pasi Eronen
email: pe@iki.fi

iv

Contents

Abstract ii

Tiivistelmä (in Finnish) iii

Preface iv

Terms and abbreviations vii

1 Introduction 1
1.1 Background . 1
1.2 Research problem .2
1.3 Evaluation criteria . 3
1.4 Limitations . 3
1.5 Organization of this thesis . 3

2 Background 4
2.1 Wireless ad hoc networks .4
2.2 Computer security . 5
2.3 Java 2 security architecture .8
2.4 Java Remote Method Invocation .11
2.5 Jini . 12

3 Requirements for Jini security 15
3.1 Security frameworks .16
3.2 Examples and threats .17
3.3 Identified requirements .17
3.4 Open questions and limitations .22
3.5 Other design aspects .23

4 Design 26
4.1 Design assumptions .26
4.2 Overall architecture .28

v

4.3 Trust relationships .28
4.4 Client side .29
4.5 Server side .30
4.6 An example .31
4.7 Design consequences .33

5 Implementation 35
5.1 Overview . 35
5.2 Introduction to Java 2 protection domains36
5.3 SPKI certificate library and trust management engine37
5.4 Certificate repository .38
5.5 Proxy authentication .38
5.6 Authentication user interface .39
5.7 Proxy authorization .40
5.8 Protecting the security mechanisms .40
5.9 Implementing authentication protocols .41
5.10 Optional transport protocol (RMI over TLS)42
5.11 Summary of implementation .43

6 Evaluation 44
6.1 Evaluation criteria .44
6.2 Architecture .45
6.3 Implementation .48
6.4 Performance .49
6.5 Related work and comparison .49

7 Conclusions 51

Bibliography 53

vi

Terms and abbreviations

ACL Access Control List.

CA Certificate Authority.

CORBA Common Object Request Broker Architecture, a distributed object architecture
advanced by the Object Management Group.

CRL Certificate Revocation List.

DNS Domain Name System, a hierarchical distributed database for mapping domain
names to IP addresses and other information.

DSA Digital Signature Algorithm, a public-key signature algorithm.

IDL Interface Description Language, a language used for describe remote object in-
terfaces in, e.g., CORBA.

IEEE Institute for Electrical and Electronics Engineers, a professional association and
technical publisher.

IETF Internet Engineering Task Force.

IIOP Internet Inter-ORB Protocol, the most widely used wire protocol in CORBA.

IP Internet Protocol, the basic network layer protocol of the Internet.

IPSEC Internet Protocol security architecture, an architecture for providing security ser-
vices at the network layer. See RFC 2401.

JAAS Java Authentication and Authorization Service, an extension from Sun Microsys-
tems which adds user-based authentication and access control to the Java 2 secu-
rity architecture.

JAR Java Archive, a file format for Java applications. A JAR file can contain Java
classes, digital signatures, and other files.

JCE Java Cryptography Extension, a part of Java libraries providing cryptographic
primitives.

JDK Java Development Kit, a programming environment for the Java language devel-
oped and distributed by Sun Microsystems.

vii

viii

JSSE Java Secure Socket Extension, an optional Java package from Sun Microsystems
which provides SSL/TLS sockets.

JVM Java Virtual Machine, an execution environment which interpretes Java byte-
code.

LAN Local Area Network.

LDAP Lightweight Directory Access Protocol, a protocol for accessing directory ser-
vices.

MAC Message Authentication Code, a cryptographic hash function involving a secret
key.

PDA Personal Digital Assistant, a small handheld computer such as the Palm Pilot.

PKI Public Key Infrastructure.

PGP Pretty Good Privacy, a public key encryption application.

RFC Request for comments, a document series published by the IETF.

RMI (Java) Remote Method Invocation, a middleware component for distributed Java
objects. See Section 2.4.

RSA Rivest-Shamir-Adleman, a public key cryptosystem which can be used for both
encryption and digital signatures.

SPKI Simple Public Key Infrastructure, see Section 2.2.2.

SSL Secure Sockets Layer, a widely used protocol for providing secure connections
over TCP.

TCP Transmission Control Protocol, a transport layer protocol providing reliable data
streams over IP.

TeSSA Telecommunications Software Security Architecture project at Helsinki Univer-
sity of Technology.

TLS Transport Layer Security, the successor of the SSL protocol.

TTL Time-to-live, a mechanism used to limit the lifetime of IP packets.

UDP User Datagram Protocol, a transport layer protocol for providing unrealiable
datagrams over IP.

UI User interface.

URL Uniform Resource Locator, e.g., “http://www.hut.fi/”.

WLAN Wireless Local Area Network, a LAN implemented using wireless technologies,
such as radio or infrared.

X.509 ITU-T recommendation X.509. Specifies a widely used certificate format.

Chapter 1

Introduction

1.1 Background

Distributed computing is fundamentally different from centralized computing. The usually
mentioned four major differences include latency, memory access, partial failures, and con-
currency (e.g., [76]). Security should definitely be added to this list, since a distributed
system requires cryptography to be used while a centralized system may survive without it.

Many approaches to distributed programming, such as CORBA or Java RMI, try to hide the
differences between centralized and distributed programming from the programmer. Usually
this means that local method calls, for example, look the same as remote calls. This has the
benefit of making network programming easier, but has also some drawbacks. For example,
dealing with network failures is harder.

The Jini networking technology, developed by Sun Microsystems, takes a different approach
[1, 76]. Jini enables devices to form ad hoc communities without manual installation or
intervention. Each device (or node) can provide services for other nodes to use. Since such
ad hoc networks can be rapidly changing, the fact that networks are unreliable is not hidden
from the programmer, and in fact, it is assumed that network failures do actually happen.
Different applications require different ways of dealing with these problems, and making the
failures visible to the programmers allows more fault-tolerant applications to be built [58].

Jini is based on the Java facilities for secure, downloadable code. It provides a programming
model for building distributed applications which are resilient to network failures. In general,
Jini looks like a promising technology for service discovery and communication in wireless
ad hoc networks and group aware applications.

However, the Jini architecture does not currently include any security features in addition to
the standard Java 2 facilities for protecting a Java Virtual Machine (JVM) from malicious
code.

1

CHAPTER 1. INTRODUCTION 2

1.2 Research problem

In reality, computer networks are insecure, and some security features are desired. For ex-
ample, the service may wish to authenticate clients, and based on who the client is, allow
some operations and deny others. In distributed systems, this functionality is achieved using
cryptographic protocols. For example, the Transport Layer Security (TLS) protocol supports
authentication of both the client and the server using public keys and X.509 certificates [23].

In Jini, however, all communication (except for bootstrapping the system) goes throughprox-
ies, which are objects downloaded from the network. Proxies are described in detail in Sec-
tion 2.5. Since the communication protocol is implemented by untrusted code—untrusted
from the client’s viewpoint, at least—security methods used in environments with fixed pro-
tocols cannot be used without some adaptation. For example, to authenticate the client to
the server the TLS protocol needs access to the user’s private key. The client certainly does
not want to give the key to a piece of untrusted code since the code might use it to access a
completely different service, or reveal the private key to a third party.

There is a small number of existing solutions for Jini security [18, 39, 68], but none of them
adequately solves the problem. The proposed solutions are based on a centralized security
architecture, which limits their usability in environments where centralized authorities do
not exist naturally, e.g. ad hoc networks. The new RMI security API [71] promises more
flexibility, but it is not yet available. The existing solutions are presented and compared with
this work in Section 6.5.

This thesis has two major goals. First, my aim is to analyze what security features are needed
in Jini. Second, I propose a solution architecture which implements a subset of the possible
requirements identified. The solution architecture is evaluated using criteria presented in
Section 1.3, and is verified to be feasible with an implementation.

The work was started in the SIESTA project, at the HUT Software project course in term
1999–2000. The SIESTA project designed and built a security library for Jini, a framework
for managing calendar information in PDA devices, and a demonstration application. I was
responsible for the design of the security architecture, and most of its implementation. Jukka
Zitting wrote the RMI over TLS part (described in Section 5.10), and both he and Johannes
Lehtinen provided some help with other security aspects as well.

The results of the SIESTA project were presented in a conference paper written together with
Pekka Nikander [28]. The ideas were developed further in two conference papers, written
together with Pekka Nikander and Christian Gehrmann [27, 29]. This thesis presents further
work in the area, and collects the results into one easily approachable package.

CHAPTER 1. INTRODUCTION 3

1.3 Evaluation criteria

To evaluate the proposed architecture, and to compare it with the other proposals, I use the
following criteria:

• Security functionality—What security features does the solution provide? Does it have
convenient points of control for implementing additional features later?

• Minimized trust relationships—What kind of trust relationships does the solution as-
sume? Are the assumptions flexible enough so that the solution can be applied in
various environments?

• Protocol independence—How well does the solution preserve Jini’s protocol indepen-
dence, and the flexibility it brings?

• Elegance—How elegant is the solution? That is, is it easy to understand, technologi-
cally justified, state of the art, etc.?

• Simplicity—How transparent the solution is to applications, and how easy is it to use?

These criteria are described in more detail in Chapter 6 where they are used to evaluate the
proposed architecture and to compare it with related work.

1.4 Limitations

In this thesis, I concentrate on providing security for a client accessing a service. The re-
quirements of any specific Jini service, such as the lookup service or JavaSpaces, are not
considered. The security aspects of Jini’s distributed events, leases, and transactions are
also left for future work. Modifications to the Java 2 virtual machine (JVM) or the standard
libraries are also beyond the scope of this thesis.

1.5 Organization of this thesis

Chapter 2 presents a short introduction to decentralized trust management and SPKI, and to
Java 2 security and Jini.

Chapter 3 analyzes the security requirements of Jini in different environments, and some
related design aspects. Chapter 4 presents the proposed solution architecture, and Chapter 5
describes a prototype implementation of it. The architecture and implementation are eval-
uated in Chapter 6. Finally, Section 7 contains a summary and the conclusions from this
research.

Chapter 2

Background

In this chapter, the fundamental technologies that form the basis for this thesis are described.
First, Section 2.1 presentswireless ad hoc networks. Section 2.2 gives an overview of rele-
vant concepts and technologies from the field of computer security. The rest of the chapter
describes existing Java technologies, including the Java 2 security architecture, Java Remote
Method Invocation (RMI), and Jini.

2.1 Wireless ad hoc networks

Wireless ad hoc networks are small networks of nodes connected using a short range wireless
technology, such as radio or infrared. They aread hoc, which means that they are established
for a short duration, and do not require any fixed infrastructure or administration.

Jini was designed to handle changes in the network environment without manual interven-
tions. Inwireless ad hoc networkssuch changes occur often, and thus Jini seems a promising
technology for application level communication in such networks.

The most widespread wireless ad hoc networking technology today is the IEEE 802.11 wire-
less LAN [43]. When a group of people with WLAN equipped laptops gather in a room, an
ad hoc network is automatically formed. It must be noted, though, that not all wireless LANs
are capable of ad hoc operation; some require special nodes called access points which are
typically fixed equipment.

Another new technology which promises ad hoc networking capabilities on an even smaller
scale is Bluetooth, originally intended as a replacement for cables for mobile phones, digital
cameras, MP3 players, PDAs, etc. [38, 56]

4

CHAPTER 2. BACKGROUND 5

2.2 Computer security

According to Dieter Gollmann [35], “computer security deals with the prevention and detec-
tion of unauthorized actions by users of a computer system.” Usually, this includes at least
the protection ofconfidentiality, integrity, andavailability, as defined in e.g. [35]. Sometimes
accountability, and evendependability, are also added to this list.

In actual systems, the protection of these properties are achieved through various security
services and mechanisms. From the point of view of this thesis, the most important services
areauthentication, authorization, andaccess control. In this work, authentication means
verifying a claimed identity. Authorization means granting access to a restricted resource to
someone, and access control mechanisms enforce these restrictions. In distributed systems,
these functions are usually supported by various cryptographic primitives and protocols.

2.2.1 Decentralized trust management

Traditionally, access control has been based on identity authentication and locally stored ac-
cess control lists (ACLs). The most popular method for identity authentication is probably
user names and passwords. Another widely used method is to rely on public keys with iden-
tity certificates. Basically, identity certificates, such as X.509 [44], bind a human-readable
name to a public key. It is important to notice that these certificates are fundamentally dif-
ferent from authorization certificates, described below.

Access control lists describe what access rights a user has for a resource. For instance, an
entry in a list can grant Alice a read permission to some file. However, when applied to a
distributed system, the ACL approach has a number of drawbacks. For instance, operations
which modify the access control list need to be protected somehow. To illustrate this issue,
the following example is given by Ellison et al. [26].

Imagine a firewall proxy permitting telnet and ftp access from the Internet into
a network of US DoD machines. Because of the sensitivity of that destination
network, strong access control would be desired. One could use public key au-
thentication and public key certificates to establish who the individual keyholder
was. Both the private key and the keyholder’s certificates could be kept on a
Fortezza card. That card holds X.509v1 certificates, so all that can be estab-
lished is the name of the keyholder. It is then the job of the firewall to keep an
ACL, listing named keyholders and the forms of access they are each permitted.

Consider the ACL itself. Not only would it be potentially huge, demanding
far more storage than the firewall would otherwise require, but it would also
need its own ACL. One could not, for example, have someone in the Army
have the power to decide whether someone in the Navy got access. In fact,

CHAPTER 2. BACKGROUND 6

the ACL would probably need not one level of its own ACL, but a nested set
of ACLs, eventually reflecting the organization structure of the entire Defense
Department.

Indeed, in [15] Blaze et al. argue that “the use of identity-based public-key systems in
conjunction with ACLs are inadequate solutions to distributed (and programmable) system-
security problems.”

Trust management, introduced by Blaze et al. [16], proposes an alternative solution. Basi-
cally, trust management uses a set of unified mechanisms for specifying both security policies
and security credentials. The credentials are signed statements (certificates) about what prin-
cipals (users) are allowed to do. Thus, even though they are commonly called certificates,
they are fundamentally different from traditional name certificates. Usually the access rights
are granted directly to the public keys of users, and therefore trust management systems are
sometimes called key-oriented PKIs [6].

The unified mechanisms are also designed to separate the mechanism from the policy. Thus,
the same mechanisms for verifying credentials and policies (a trust management engine) can
be used by many different applications. This is unlike access control lists whose structure
usually reflects the needs of one particular application.

Examples of trust management systems include the PolicyMaker, which originally intro-
duced the term trust management [16], its successors KeyNote and KeyNote 2 [14], and in
some respects, SPKI [26] and its applications, including TeSSA [54]. Blaze et al. compare
PolicyMaker, KeyNote, and SPKI in [15]. SPKI is described in next in Section 2.2.2, and
the TeSSA approach in Section 2.2.3.

2.2.2 SPKI

One particular example of a trust management system is SPKI, or Simple Public Key Infras-
tructure [25, 26]. In SPKI, principals are identified by their public keys. Access rights are
granted to users usingauthorization certificates. If permitted, the access rights can be further
delegated, forming acertificate chain, as described below.

An SPKI authorization certificate has five security-related attributes:issuer, subject, delega-
tion, tag,andvalidity. Issueris the public key of the principal who issued the certificate, and
the whole certificate is signed with the corresponding private key.Subjectis the public key
of the recipient of the permissions.Delegationis a boolean flag telling whether the subject
may authorize other users for the same actions.Tag is a service-specific field describing the
permissions included in the certificate.Validity describes the conditions under which the cer-
tificate is valid—for example, the time of expiration, or reference to a certificate revocation
list (CRL).

CHAPTER 2. BACKGROUND 7

Issuer: root key
Subject: admin key
Delegation: yes
Tag: full access
Validity: until 12/2001

Issuer: admin key
Subject: user key
Delegation: no
Tag: read−only access
Validity: until 6/2001

Subject

Issuer

Service’s
root key

User’s key
Authentication

protocol

Administrator’s key

Figure 2.1: Simple SPKI certificate loop.

When using SPKI certificates, the service configuration usually specifies one “root key”
which is implicitly allowed to perform any actions. Using this key, permissions are dele-
gated to the administrators of the service, and the administrators then further delegate access
rights to the users. When accessing the service, the user provides a certificate chain from
the service’s root key to the user’s key. The chain is then completed into a loop, usually
by signing the request with the user’s key, and verifying the signature. The service then
checks whether the chain is valid and actually implies the requested action. An example of a
certificate loop is shown in Figure 2.1.

In addition to authorization certificates, SPKI also has name certificates and attribute certifi-
cates. Name certificates bind a public key to a name (or a group). The SPKI name certificates
are adopted from SDSI [64] which introduced the concept of using local names globally.
That is, instead of trying to create a globally unique name space, such as the X.500 Distin-
guished Names, SDSI names are always local to the issuer of a name certificate. The issuer is
identified by a public key. Public keys are globally unique due to the way they are generated,
and thus the combination is globally unique as well.

SPKI attribute certificates bind an authorization to a name or a group. Attribute certificates
are usually used together with name certificates. The reason for separating them is usually
that they come from different issuers.

CHAPTER 2. BACKGROUND 8

2.2.3 TeSSA approach

The goal of the Telecommunications Software Security Architecture (TeSSA) project [54]
at Helsinki University of Technology was to create a general purpose security architecture
based on SPKI.

The results have given a much better picture of how SPKI could be deployed in the real world,
and form much of the technical, conceptual, and intellectual background for this work. A
large number of papers has been published. The results can be traced from an early paper on
trust by Lehti and Nikander [52], to applications in Java 2 security [59, 62], and Nikander’s
dissertation [57], to give a few examples.

2.3 Java 2 security architecture

The Jini architecture relies heavily on the security features in the base Java technology. Secu-
rity was one of the main goals in the design of the Java language and execution environment.
The security features were originally designed for “applets”—that is, small applications em-
bedded inside web pages—but have since then received numerous other uses. When running
inside a web browser, an applet should not be allowed to access sensitive resources, such as
the user’s files, or open arbitrary network connections, for instance.

The security architecture of Java 2 is described in [36], and can be considered to consist of
the following components.

• Java language and platform: type safety and isolation.

• Resource access control: policy and enforcement.

• Cryptography architecture.

The Java language and platform security are described in the next section, and resource
access control in Section 2.3.2.

The third important component is the cryptography architecture. It provides access to cryp-
tographic algorithms, such as message digests, digital signatures, symmetric and asymmetric
ciphers and key agreement algorithms. It is used as a building block in the construction of
the other security mechanisms. However, as cryptography itself is not an essential element
of this thesis, but only a tool, a full description of the Java 2 cryptography architecture is
beyond the scope of this thesis.

CHAPTER 2. BACKGROUND 9

2.3.1 Java language and platform security

The Java language is designed to betype safe. This means, for instance, that no Java program
can ever refer to an object using an incorrect type, refer to an unassigned memory location,
or “forge” pointers from integer types. Also, access restrictions (private, public, package
local) on classes, methods, and fields cannot be violated.

Some of these type checks are performed by the compiler, but Java is usually compiled into
an intermediate platform-neutral form calledbyte code. This intermediate form is interpreted
by aJava Virtual Machine(JVM). The actual checks must be performed on the byte code,
since it is possible to bypass the compiler and write byte code by hand.

In the JVM, type safety is implemented using runtime checks (for example, type casts) and
thebyte code verifier. The byte code verifier checks the code when it is loaded, and ensures
that it respects the Java language rules. The byte code verifier is a very complex piece of
code, and most of the security bugs found in Java implementations so far have been in the
byte code verifier [73].

In addition to type safety, untrusted code needs to beisolated. In Java, the isolation is
provided byclass loaders. Class loaders are responsible for mapping class names (e.g.,
“java.lang.String”) to the corresponding byte code, and loading the byte code from a file or
from the network. The mapping is context-dependent: there can be two classes with the
same name running inside a single JVM, provided that they are loaded with different class
loaders. The class loaders are themselves written in Java, and programmers can write new
class loaders, if necessary.

Class loaders also interact with type safety. Because there can be more than one class with
the same name, references to names must be resolved consistently, i.e., in a way which
preserves type safety. The interaction of class loaders with typing is discussed in e.g. [22].

2.3.2 Resource access control

The resource access control framework is responsible for controlling access to valuable sys-
tem resources, such as the file system. This part of the infrastructure has considerably
evolved during the history of Java: both the enforcement and policy mechanisms are now
more flexible and fine-grained than in the original Java 1.0.

In JDK 1.0 and 1.1, all code was either untrusted or completely trusted. Untrusted code was
run side asandbox, which limited its access to sensitive operations. In JDK 1.0, all code
loaded from the local file system was considered trusted, and everything else (e.g. loaded
from the network) untrusted.

However, sometimes applets have a legitimate need to access some protected resources.
Thus, JDK 1.1 introduced the notionsigned applets. In Java the byte code for an appli-

CHAPTER 2. BACKGROUND 10

Untrusted code

System resources

SecurityManager

Signed code
Local code

Sandbox

SecurityManager

System resources

Code 1 System codeMore code

Protection domains

JDK 1.2 (Java 2) JVMJDK 1.1 JVM

full accessrestricted access

Figure 2.2: JDK 1.1 model (sandbox) and JDK 1.2 protection domains compared. In JDK
1.1 the code is either in the sandbox or trusted. In Java 2 the code is divided into different
protection domains.

cation is usually stored in a Java archive (JAR) file. The JAR file can also include a digital
signature. If the JAR file was signed by a trusted key, the code was considered trusted, even
if the JAR file itself was loaded from the network.

In Java 2 (JDK 1.2) the security architecture was almost completely redesigned. Code is no
longer treated simply untrusted or completely trusted, but is divided into protection domains.
All the code running inside one protection domain share the same access permissions, but
there can be as many protection domains as necessary. Classes are assigned to protection
domains based on the URL and digital signatures of the JAR file. This is illustrated in
Figure 2.2.

The permissions granted to protection domains are also more fine-grained than in JDK 1.1.
For instance, it is possible to grant a permission to read only a particular file, or open a
network connection to a single port on a single host. The set of permissions is not fixed but
can be extended by programmers to protect application-specific resources.

When checking permissions, the access control mechanisms check the Java call stack. The
effective permissions are the intersection of the permission of all the classes in the call stack,
from the topmost to the first “privileged” stack frame, or the whole stack if none of the
frames is marked as privileged. Privileged frames allow a piece of code to perform some
operation with its own privileges, regardless of who originally called it. For a more detailed
explanation, see e.g. [36].

CHAPTER 2. BACKGROUND 11

2.3.3 Extensions

Since the introduction of Java, many researchers have modified its security mechanisms to
provide additional functionality [42, 47, 77, 78]. The policy mechanisms have been extended
with decentralized trust management in [59]. The concept of “who is running the code”
has been implemented in the Java Authentication and Authorization Services (JAAS) [51],
and has been extended with roles in [34]. Controlling the amount of resources, such as
computational cycles, memory, etc., a program can use is discussed in [20].

While these extensions are interesting, they are beyond the scope of this thesis.

2.4 Java Remote Method Invocation

Java Remote Method Invocation (RMI) is a middleware building block for distributed Java
applications. It provides object-oriented remote method calls for Java [69, 80, 81]. RMI is
somewhat similar to the CORBA architecture, but being Java-specific gives it some unique
features.

In RMI invocation of a method on a remote object—residing in a different JVM or on a dif-
ferent machine—looks the same to the caller as a local call. The RMI middleware takes care
of converting parameters to a stream of bytes, opening the network connections, invoking
the method on the remote object, and passing the return value back to the caller.

As in other similar architectures, remote objects are described by one or more interfaces. In
RMI the interfaces are specified as normal Java interfaces, so no separate Interface Definition
Language (IDL) is required. The RMI compiler,rmic, reads the Java class files and generates
stubswhich represent the remote object on the client and are responsible for e.g. converting
the parameters to byte streams and return values back to Java objects.

In RMI the stubs can be downloaded from the network using Java’s standard facilities for
downloadable code—unlike in CORBA, for instance. This allows the stubs, in theory at
least, to implement application-specific functionality on the client side, but this functionality
is seldom used. In fact, the stubs implementing the standard functionality are no longer
downloaded from the network in the next major Java release (JDK 1.4, codenamed “Merlin”),
but are generated on the fly on the client side [66].

“Skeletons”, which are present in other similar technologies, were used in earlier versions
of Java—for converting the parameters to Java objects on the server side—but are no longer
necessary. One interesting feature in RMI not present in most distributed object architectures
is distributed garbage collection; the details of it are beyond the scope of this thesis.

CHAPTER 2. BACKGROUND 12

2.5 Jini

The Java security architecture and RMI are used heavily in the Jini networking technology,
also developed by Sun Microsystems. Jini enables devices to form ad hoc communities
without manual installation or intervention. Each device (or node) can provide services for
other nodes to use, and any necessary “device drivers”, or other required pieces of software,
are downloaded to the client automatically.

In some aspects, Jini is quite similar to other service location protocols, such as Salutation
[65], Service Location Protocol [37], and Universal Plug and Play [75]. However, Jini is
more than just a protocol for downloading device drivers. The Jini architecture provides
basic building blocks for building any kind of distributed applications: distributed events,
transactions, leases, and downloadable proxies. These do not try to hide the fact that net-
works are unreliable, and the approach, in general, encourages building more fault-tolerant
applications [58, 76].

Perhaps the largest difference between Jini and the other service location protocols is pro-
tocol independence; that is, Jini does not mandate any specific communication protocol be-
tween the clients and the services (except for bootstrapping the system, as described below),
but relies on dynamic Java class loading instead. Since the proxies are written in Java, the
system also claims operating system independence; this in contrast with the other service
location protocols which usually use non-portable device drivers.

All communication goes through proxies, which are local objects that implement some well-
known interface (such as “Printer”). Proxies can be simple RMI stubs which marshal method
calls over the network, or they can implement part of the functionality in the proxy itself—for
example, converting the data to the correct format for this printer. Also, some services do not
necessarily require network communication at all, in which case the proxy alone implements
the service.

Protocol independence and the ability to implement part of the intelligence on the client
side give Jini tremendous flexibility. For example, proxies can communicate with devices
which do not have a Java virtual machine; either legacy devices with proprietary protocols,
or resource-stripped embedded devices. On the other hand, Jini requires that the clients have
their own Java virtual machines.

This protocol independence and the generic programming model are what really separates
Jini from mere service location protocols. Although Jini was originally originally intended
to provide similar functionality, its flexible and elegant distributed programming model has
since received other uses as well (e.g., [2, 3, 40]).

CHAPTER 2. BACKGROUND 13

2.5.1 Discovery

The only part of Jini relying on some fixed protocol, i.e., that needs to be implemented in
non-downloaded code, is the discovery part. That is, obtaining the proxy object for a lookup
service. This part of Jini is also specific to the underlying network protocols used. Currently,
the Jini specification describes discovery protocols for TCP/IP networks [1].

There are actually three related discovery protocols: unicast discovery, multicast discovery,
and multicast announcements.

• The unicast discovery protocolis used when a client knows the IP address and the port
the lookup server is running on, and wishes to connect to this particular lookup service.
Basically, the serialized proxy object for the lookup service is transmitted over a TCP
connection.

• The multicast discovery protocolis used when a client wants to find all “near by”
lookup services. It works by sending a multicast UDP packet with a small time-to-live
value. All lookup servers which receive the multicast packet respond using server-
initiated version of the unicast discovery protocol.

• Multicast announcementsare used by lookup servers to periodically announce their
presence to clients. This way, when a lookup service is temporarily down, services
know when it is back on-line and ready to accept registrations again. The announce-
ment contains the IP address and port number; interested clients can reply using the
unicast discovery protocol.

While the current specification describes protocols for TCP/IP only, specifying protocols for
other transports, such as Bluetooth, should be quite straightforward.

2.5.2 Lookup service and leases

The discovery protocols are used to download the proxy for the lookup service. The lookup
service is a directory where service providers register themselves and clients search for what
they need. The lookup service also provides a good example of the use of leases. When a
service registers itself with a lookup service, it receives aleaseon the registration, with an
expiration time. If the service does not renew the lease before it expires—for example, the
service is disconnected from the network—the registration is automatically cleaned from the
lookup service. In general, leases are used in Jini whenever a server allocates some resources
for a client.

When registering in the lookup service, a service provides a serialized proxy objects and
a set of attributes. Clients can search for services based on the attributes and interfaces
implemented by the proxy.

CHAPTER 2. BACKGROUND 14

2.5.3 Other aspects of Jini

In addition to leases and the lookup service, Jini also provides distributed events, trans-
actions, and a “tuple-space” distributed programming model called JavaSpaces. The Jini
specification also defines a number of other standard services, such as event mailbox and
lease renewal services. [1, 33]

Chapter 3

Requirements for Jini security

Before designing a security framework for Jini, it is necessary to decide what kind of security
functionality is required. Naturally, this depends on the concrete applications written using
Jini and on the trust relationships involved. As described in Section 1.4, in this thesis I
concentrate on providing security for a client accessing a “generic” Jini service. The security
requirements of any specific service, and Jini’s events, leases, and transactions, are left for
future work.

My goal in this chapter is to identify requirements for security functionality. Any actual
application requires only a subset of these requirements, and identifying the relevant subsets
is a difficult problem of its own. It is also important to keep in mind that some requirements
may conflict, and not everything is technically feasible (cf. [32]).

This chapter is organized as follows. First, Section 3.1 presents a list of security services
identified in the OSI and CORBA security frameworks. These lists are used to organize the
discussion in the following sections and to identify the kind of functionality which is not
covered by the requirements presented here.

Section 3.2 outlines a few examples where Jini might be used, and identifies some threats for
each of them. Protection against these threats leads to a small number of high level goals.
In actual systems these goals must be implemented using lower level mechanisms. The
high level goals and their mapping to lower level requirements is presented in Section 3.3.
Section 3.4 lists some security issues that are left for further work. Finally, Section 3.5
presents some related design aspects.

15

CHAPTER 3. REQUIREMENTS FOR JINI SECURITY 16

3.1 Security frameworks

As stated in Section 2.2, computer security deals with the prevention and detection of unau-
thorized actions by users of a computer system [35]. To accomplish this prevention and
detection in a networked environment, the OSI security framework lists a number of security
threats and defines the following security services [45, 46, 48].

• Authentication

• Access control

• Non-repudiation

• Confidentiality

• Integrity

• Security audits and alarms

In his dissertation Karila provides a good overview of the OSI security framework, and also
criticizes it on some aspects [48]. For instance, the OSI framework does not address the
dependencies between the security services very well. For example, message integrity and
authentication are usually not completely separate mechanisms.

The OSI framework deals mostly with protocol level security services. It does not directly
address the implementation aspects which are not visible on the network. Jini is somewhat
different in this respect, because some of the implementation aspects are visible due to using
downloaded code.

Although the OSI security framework is not perfect, the security services identified in it are
used as a starting point for the discussion in this chapter.

An alternative starting point could be the CORBA security framework [61]. The framework
defines the following security functionality.

• Identification and authentication

• Authorization and access control

• Security auditing

• Security of communications

• Non-repudiation

• Administration

The CORBA security takes a somewhat broader view than just network security, as can
be seen from the inclusion of authorization and administration in the list. As a security
framework for object-oriented middleware it is probably closer in spirit to Jini and RMI than
the OSI framework. However, it still does not address the issues caused by downloaded code.

CHAPTER 3. REQUIREMENTS FOR JINI SECURITY 17

3.2 Examples and threats

The purpose of this section is to motivate the requirements listed in the next section by
presenting a couple of examples where Jini might be used, and identifying some threats for
each of them.

Example 1: An engineer uses a word processor to print a confidential document to a printer
which is attached to the company network.

In this case, the main threats are thedisclosureandmodificationof the document. An attacker
might achieve this by intercepting or tampering with the network connection, or masquerad-
ing as the printer. In some cases denial of service might be an issue, too. For example,
blocking a high security printer could cause the user to decide to use a low security one.

It would also be good if the security features would be transparent to the word processing
application.

Example 2: A small handheld device with wireless networking is used to control heating,
lighting, audio/video equipment, etc., at home.

In this case, the main threat is probablyunauthorized useof the services. Again, this might be
achieved by tampering with the network communications, or masquerading as the client de-
vice. Another threat to consider isgaining access to information or serviceon the handheld
device, possibly by uploading a malicious proxy. Denial of service might be very annoying,
but a properly designed system would still have manual controls.

Example 3: A cluster of machines is used to provide some kind of web services, and the
requests and responses are communicated using Jini (similar to Concept Technologies’ Hosta
product [19]).

Disclosureandmodificationof the information are threats in this case as well, as areunau-
thorized use of the servicesprovided, anddenial of service.

3.3 Identified requirements

3.3.1 High level goals

The previous sections outlined some of the threats present when using Jini. Security func-
tionality could be used to mitigate these threats. Loosely speaking, when using a Jini service,
we would like to have security functionality to ensure the following.

• Goal 1: The user is talking to the right service (and the service to the right user), and
the parties remain the same throughout the session (mutual authentication).

CHAPTER 3. REQUIREMENTS FOR JINI SECURITY 18

• Goal 2: Nobody else can listen on the communications (communication confidential-
ity).

• Goal 3: Only legitimate users can access the service (authorization and access con-
trol).

• Goal 4: Untrusted code, e.g. applications and proxies, cannot cause any harm (protec-
tion from untrusted code).

These goals do not cover all possible situations, and additional goals might be beneficial.
For instance, the service should be available to legitimate users when they want to access it.
Also, it should be possible, at some later point of time, to prove important actions to a third
party, such as an impartial judge. More of these open questions are described in Section 3.4.

3.3.2 Mapping goals to requirements

The goals, as defined above, are quite high level. To realize the goals, they have to be
mapped to some lower level security mechanisms or functions, which in turn can be mapped
to simple, implementable primitives.

For goal 1, mutual authentication, the following components are likely to be needed. The
numbers in parenthesis refer to a more complete discussion in the next section.

• Authentication user interface (1)—The user has to be able to distinguish the “right
service” from all other services. This usually requires some kind of user interface to
communicate the user’s intent to the software.

• Authentication of proxy identity/credentials (2)—Services are represented by proxies;
to ensure that the right service is being used, the client needs to verify that the down-
loaded proxy actually represents the service the user wants to use.

• Authentication and key agreement protocol (3)—The proxy has to know that it is com-
municating with the right service. Correspondingly, the service has to know that it is
communicating with an authorized client1. To perform this over an insecure network,
a cryptographic authentication and key agreement protocol is a required.

• Message and connection integrity (4)—After the proxy and the service have agreed on
a session key, it must be possible to use the key to ensure the integrity of subsequent
messages.

1Note that there is no way the server can ensure that the proxy is really the one provided by it. For example,
even an authorized client can modify the proxy’s code to perform actions not intended by the designer of the
service.

CHAPTER 3. REQUIREMENTS FOR JINI SECURITY 19

For goal 2, communication confidentiality:

• Message encryption (5)—To protect the contents of the messages from eavesdropping,
they have to be encrypted.

• Authentication and key agreement protocol (3)—The parties need to agree on a key
to perform encryption. Authentication is required for ensuring that the session key is
shared with the right party (and not a man-in-the-middle, for instance).

For goal 3, authorization and access control:

• Message and connection integrity (4)—If anyone can change messages on the network,
we do not know enough to perform access control.

• Authentication of client identity/credentials (through the proxy) (6)—The set of al-
lowed actions is usually based on the identity of the client and/or any credentials pre-
sented.

• Local security policy (7)—Security policy specifies what kind of authentication and
credentials are required to perform different operations.

For goal 4, protection from untrusted code:

• Access control mechanisms for local resources (8)—Since there are resources which
need to be protected, some kind of access control mechanisms are required.

• Resource consumption control (9)—Access control alone is not usually sufficient for
protecting against denial of service. Mechanisms for controlling the amount of re-
sources used are also required.

• Local security policy (7)—Local security policy specifies what kind of operations are
allowed, based on the proxy’s identity and credentials.

• Authentication of proxy identity/credentials (2)—Proxies have to be authenticated so
access control can be performed.2

The next section provides an ordered list of the numbered requirements, together with dis-
cussion.

2The reasoning here goes as follows. The client must trust the server in some respect, since it is requesting
services from it. The server signs the proxy to assure its authenticity. Due to the trust placed on the server, it is
reasonable to trust the proxy, too, within the limits placed on the trust to the server.

CHAPTER 3. REQUIREMENTS FOR JINI SECURITY 20

3.3.3 Identified requirements

Requirement 1: Authentication user interface.

Authentication protocols often verify the possession of a private key corresponding to some
public key. To ensure that the user is talking to the right service, the user has to be able to
distinguish the “right service” from all the other services. Thus, the public key of the service
is usually mapped to some user level concept, e.g., a name. This mapping might involve
a name certificate, for instance. However, names are not useful in all circumstances, and
cryptography is not necessarily involved.

Stajano and Anderson [67] describe an example of an ad hoc networking situation where a
completely different solutions are required. Consider a thermometer, having a very small
display and communicating using a short-range radio. If we have a bowl of disinfectant
containing many unused thermometers, it does not really matter which we choose; but we
want to make sure we communicate with the one we have picked from the bowl. The ther-
mometers could, of course, be given artificial names, such as serial numbers which could be
engraved on the case. However, this solution is not very user friendly. Instead, if we have a
secure (free of active middle-men) communications channel, such as short range infrared or
physical contact, we can simply transmit the public key over this channel.

It is important to notice that authentication is impossible in a number of situations. For ex-
ample, in a pure ad hoc network there may not be any prior information about the communi-
cating peers. However, in such situations, physical or topological proximity and reachability
can still be used to create some level of security.

Requirement 2: Authentication of proxy identity/credentials.

Services are represented, or sometimes completely implemented, by the proxy objects. To
ensure that the right service is being used, we need to verify that the downloaded proxy ac-
tually represents the desired service. The proxy consists of Java byte code and the serialized
state; both of them have to be authenticated.

Requirement 3: Authentication and key agreement protocol.

The proxies usually communicate with the actual service using some communications pro-
tocol. The parties need to agree on a key to perform encryption. Authentication is required
for ensuring that the session key is shared with the right party, and not a man-in-the-middle,
for instance.

There are a number of different approaches to this, such as authenticated Diffie-Hellmann
for public keys, or the Kerberos protocol, which involves a central “ticket granting server”.

CHAPTER 3. REQUIREMENTS FOR JINI SECURITY 21

Requirement 4: Message and connection integrity.

Naturally, nobody should be able to modify, insert, delete, or replay network messages un-
detected. Usually some cryptographic mechanisms, such as message authentication codes
(MACs), are used to guarantee integrity, or more correctly, to detect modifications. The
cryptographic mechanisms usually use the session key generated using an authentication
and key agreement protocol.

In some special cases, message integrity can be achieved by other means. For example, if the
network is assumed to be secure—such as a closed network, enforced by physical security—
cryptography is not required.

Requirement 5: Message encryption.

To protect the contents of the messages from eavesdropping, they need to be encrypted. As
in the case of integrity, communication confidentiality may be achieved by other means than
encryption.

Requirement 6: Authentication of client identity/credentials (through the proxy).

To ensure that only legitimate users can access the service, we need to authenticate the iden-
tity and/or credentials presented by the client. Moreover, this authentication must be securely
bound to the authentication of the server to the client, so that the server can be assured that
the client indeed wanted to access it.

Requirement 7: Local security policy.

Based on the authentication of the client identity and credentials, and possibly other circum-
stances, the service should allow operations which are properly authorized, and deny others.
The security policy can be implemented as a simple access control list (ACL) based on the
client identity, or it can also consider other credentials, such as authorization certificates.

Similar authorization mechanisms are also needed for local resources. The standard Java 2
security architecture provides mechanisms for enforcing fine-grained access policies to sen-
sitive resources, such as the file system. The standard mechanisms for specifying the security
policy, however, are not very flexible. In some cases, limited access to sensitive resources is
required, and in such cases, more flexible authorization mechanisms are probably needed.

CHAPTER 3. REQUIREMENTS FOR JINI SECURITY 22

Requirement 8: Access control mechanisms for local resources.

The standard Java 2 security architecture provides mechanisms for enforcing fine-grained
access policies to sensitive resources, such as the file system. Private security credentials,
such as keys, passwords, or Kerberos tickets, are certainly very sensitive, and mechanisms
for protecting them are also required.

Access control is not limited to downloaded proxies. In most workstation operating systems,
applications are run with user’s privileges. The Java security architecture, however, was
designed for environments where not all code is equally trusted, and allows implementation
of more fine-grained control of access to sensitive resources. Untrusted applications should
not be allowed to access Jini services with the user’s privileges, and definitely should not be
allowed to access the user’s private credentials, such as keys, passwords, or Kerberos tickets.

This feature can be used, for example, to protect the system from Trojan horse applications.
On workstations multiple JVMs with different security policies can be used to achieve similar
results, but better solutions are needed in environments where a single JVM functions as the
operating system of a small device (e.g., [10, 12]).

Requirement 9: Resource consumption control.

The standard Java platform does not have any mechanisms for limiting the amount of re-
sources a program can use. Thus, a malicious proxy could simply allocate all the available
memory in the system, and thus create a denial of service condition. This could be especially
serious in an environment where a single JVM functions as the operating system.

Some researchers have modified the Java Virtual Machine to include such restrictions, e.g.,
[9, 13, 20].

3.4 Open questions and limitations

The actual requirements, of course, vary from case to case. For example, if the client runs
only trusted applications, protection from applications might not be needed. In many cases,
the existing client side resource authorization mechanisms might be sufficient. There are,
however, several possible security mechanisms not listed. Next, I discuss some of these, and
describe why I feel that they do not belong to the list of requirements.

• End system security—Most computer security issues at the end systems are beyond
the scope of this thesis. For instance, message encryption alone does not necessarily
protect information from disclosure if, for example, the data can be observed before it

CHAPTER 3. REQUIREMENTS FOR JINI SECURITY 23

is encrypted or after it has been decrypted. Similarly, modifying important information
by bypassing the access control mechanisms must be prevented.

It is the responsibility of the application to take appropriate measures to protect the
data, and the underlying platform must provide support for this. The Java Virtual
Machine provides basic mechanisms, such as type safety and isolation, but they, of
course, must be used correctly.

Issues such as multi-level confidentiality and integrity models are also beyond the
scope of this thesis.

• Traffic flow confidentiality—Protection against traffic analysis is a very difficult topic,
depends heavily on the underlying protocols (such as TCP/IP), and is probably unnec-
essary in most environments.

• Non-repudiation—An underlying cryptographic protocol may provide some kind of
proof of origin for messages. However, since non-repudiation usually involves legal
aspects as well, it should be implemented at the application level—for instance, in an
e-mail or EDI application.

• Availability protection—Protecting against denial of service (DoS) attacks, especially
those that work by consuming some finite resource, is difficult. The attacks could
target either the client or the service.

The requirements in the previous section included resource consumption control against
downloaded code, but other scenarios are possible. For example, a malicious client (or
a number of clients) could simply send more service requests than a server can handle,
and thus deny service to other, legitimate requests. There are some countermeasures,
such as “stateless connections” and “client puzzles”, which could be used by the ser-
vice (and the proxy) to offer some protection against such attacks [7, 8, 53].

In addition, the current Jini discovery protocols do not offer much protection against
denial of service attacks.

• Audit, alarms, and management—Requirements for auditing the use of a system, and
other security management aspects, vary greatly from application to application.

3.5 Other design aspects

The requirements outlined in the previous section still leave a lot of freedom for the im-
plementor. The design choices made will certainly affect the situations where the solution
is applicable. In this section, we identify some of the design aspects. The next chapter
continues to set forth the choices made for this thesis and the reasons behind them.

CHAPTER 3. REQUIREMENTS FOR JINI SECURITY 24

The following aspects are related to the general software architecture and structure.

• Centralization vs. decentralization—Does the architecture rely on some centralized
servers or authorities? Are they required to be on-line during service access?

A centralized security architecture probably makes administration easier in large net-
works. On the other hand, it does not work well for, e.g. ad hoc networks. Further-
more, there are several somewhat independent features which could be centralized or
decentralized. For example, we could have decentralized access control with either
centralized naming (CA type) or decentralized naming (for example, PGP-style “web
of trust”).

• Trusted components—What software components and nodes are assumed to be secure?
For instance, does the system rely on the security of the lookup service, or some other
on-line security server?

• Placement of security mechanisms—The security mechanisms could be placed at sev-
eral different places. For example, message confidentiality and integrity could be pro-
tected at the link layer, the network layer using IPSEC, using TLS above the transport
layer, or with some application-level protocol.

• Point of proxy authentication—Are proxies authenticated before or after the object is
instantiated in the JVM? If the object is instantiated before authentication, untrusted
code is run on the JVM. Access control mechanisms should prevent it from doing any
damage, but at least denial of service attacks are possible.

The following aspects are related to security functionality.

• Service authorization and access control model—How flexible and fine-grained is the
access control mechanism? What kind of policies can it support? For example, appli-
cations which access medical data probably require more complicated policies than an
office environment.

This is influenced by other choices. For example, if the access control is managed by
Enterprise JavaBeans style container, the granularity is at most per method.

• Security mechanism authorization and access control model—How flexibly can the
user decide which client applications are allowed to do what? Also this is clearly in-
fluenced by other design choices. For example, if the system uses TLS client authen-
tication and a server side access control list (ACL), the restrictions cannot probably be
more specific than per service (i.e. application can use key X only to access service
Y).

CHAPTER 3. REQUIREMENTS FOR JINI SECURITY 25

• Delegation—Does the system support delegation? Can the delegated rights be re-
stricted somehow? How flexible are these restrictions?

Finally, there are several aspects which are not directly related to security, but nevertheless
are important to consider.

• Protocol independence—Is the solution tied to some transport protocol, such as the
RMI wire protocol over TLS, or CORBA’s IIOP? If the protocol is fixed, it can be
implemented using trusted code, which simplifies the security situation.

Sometimes using a specific protocol is necessary, for instance, to interoperate with
existing services. On the other hand, fixed protocols limit the flexibility of the system.

• Transparency—How transparent the security system is for service or client software?

For example, in Enterprise JavaBeans [70] security is is managed by the middleware
components, so it is quite transparent to the service software. It is probably a good
idea to make the security as transparent as possible to client applications.

• Interoperability—Are the mechanisms interoperable with some other Java/Jini or non-
Java security solution?

• Extensibility—Is the architecture closed, or does it have convenient points of control
for implementing additional features? The additional features should not, of course,
compromise the security of the existing functionality.

When applying security to a particular application, some of these design aspects could be
taken as additional requirements. For example, ad hoc networks require solutions which do
not rely on a centralized on-line party.

Chapter 4

Design

In this chapter, I propose a security architecture for Jini which implements some of the
requirements identified in Chapter 3. I have also implemented this architecture; the imple-
mentation is described in Chapter 5.

The rest of this chapter is organized as follows. First, Section 4.1 gives an overview of the
assumptions behind the design. Section 4.2 describes the parties and components involved,
and Section 4.3 discusses the trust relationships involved. The components on the client and
server sides are described in Sections 4.4 and 4.5, respectively. Finally, Section 4.6 gives a
concrete example how the services provided by the architecture are used to construct a secure
Jini service.

4.1 Design assumptions

When designing the system, the target environments in mind were wireless ad hoc networks.
For example, such a network might consist of a number of PDAs communicating with Blue-
tooth. An ad hoc environment places many restrictions on the design, and some of these, as
well as other goals in the design, can be described as follows.

• The Jini lookup server need not and is not secured in any way. In ad hoc networks, we
cannot really assume any on-line trusted servers.

• The architecture should avoid trusting centralized authorities as much as possible.

• The solution should allow application-specific means of implementing the authentica-
tion user interface. That is, it should not be limited to, e.g., name certificates.

• Trust statements about code should not rely on claims about the author of the code.
Many existing code signature schemes certify only that the author of particular piece

26

CHAPTER 4. DESIGN 27

Proxy
Server application

Client application

Lookup service

ServerClient

Client Server
security
manager

security
manager

Figure 4.1: The parties and components involved in the architecture.

of software is thought to be “trustworthy”; unfortunately, that approach deals more
with assigning blame afterwards than preventing things from going wrong in the first
place.

• On the client side, the solution should have flexible mechanisms for authorizing and
controlling access to the security mechanisms. That is, it should be possible to have
partially trusted applications.

• The solution should allow the use of existing services without modification, at least
when the applications do not use any security features.

• The implementation should not require modifications to the Java Virtual Machine, the
standard Java class libraries, or the standard Jini code supplied by Sun.

I recognize that many of the goals are quite different from what would be natural to assume
if designing a security architecture for, e.g., more traditional middleware applications. How-
ever, it is my understanding that these goals are “more difficult”, in a sense that a solution
fulfilling these goals is flexible enough to be applied in many different environments.

CHAPTER 4. DESIGN 28

4.2 Overall architecture

The parties and components involved in the architecture are shown in Figure 4.1. The “three-
dimensional” boxes show boundaries between different nodes (hosts), and arrows indicate
communication between the components.

On the client side, client applications search for services in the Jini lookup service, and use
them through the downloaded proxies. The proxies communicate with the servers using
some communications protocol, implemented by each proxy. Both the applications and the
proxies can use the services provided by a trusted component, the client security manager.
These services are described in Section 4.4.

On the server side, the server application registers its proxy in the lookup service. It uses the
services of the server security manager, which are described in Section 4.5.

In addition to the essential security services described above, the actual implementation also
provides some commonly needed utility components. These modules are not an essential
part of the architecture, and could be easily implemented by each application. However,
this would lead to duplication of code, and make the library harder to use. Since the utility
components are not part of the architecture, they are described only in the next chapter, in
Sections 5.6 and 5.10.

4.3 Trust relationships

Users and services are identified by public keys, as usually in trust management systems.
These public keys do not have any centralized certification infrastructure; anyone can start a
service and create a new key pair for it. Applications can use name certificates, for instance,
to implement an authentication user interface, but these names are not used by the rest of the
security system.

The proxies, i.e., both the code and the state of the proxies, are signed by the service the
proxy represents. Since the service’s public key is not necessarily certified by any trusted
third party, this does not guarantee that the proxy is “well behaved”, but only that the key
used to sign the proxy trusts it. This is actually one of the key assumptions in the design: if a
service signs a proxy, it is assumed that the proxy is not trying to subvert the security of that
particular service. It might, of course, be quite hostile a client to some other service.

The clients use SPKI certificate chains to prove authorization to use a service. These certifi-
cates are generated and distributed using some application-specific means. When actually
accessing a service, the chain is completed to a loop using some kind of an authentication
protocol. The service then verifies the certificate chain before performing the requested op-
eration. A concrete example of the process is presented in Section 4.6.

CHAPTER 4. DESIGN 29

Administrator N

Service

Application

User

certificate

certificate certificate

Proxy
application
specific
protocol

Administrator 1

authorizes . . .

authorizes

(using Java 2 policy)

authorizes

authorizes

calls

Figure 4.2: Authorization “loop”

On the client side, there can be multiple applications, none of which are fully trusted. The
user can specify which permissions a particular application has, i.e., which actions the ap-
plication itself and the proxies called by the application are allowed to take using the user’s
credentials. For instance, a word processing application can be allowed to use the client’s
credentials to access printers but not any other services. These restrictions are specified us-
ing the Java 2 security policy mechanisms, and they are enforced by a trusted piece of code
called the client security manager.

The trust relationships are illustrated in Figures 4.2 and 4.3. The relationships form two
loops. The service wants to verify that the user is authorized to use this particular service,
and the user wishes to verify that the client is talking to the correct service.

4.4 Client side

When a proxy is downloaded to a client, the client security manager asks the proxy which
service it represents, i.e., for the public key of the service, and then checks that the proxy was
actually signed by this key. The signatures are verified after the proxy has been instantiated.
After the verification, a new key pair is generated for the proxy.

The client security manager provides two services for the proxy. First, the proxy can ask the

CHAPTER 4. DESIGN 30

Service
Proxy

certificate

(code and state)

signs

application specific authentication UI

verifies
User/Application

Figure 4.3: Authentication “loop”

security system to sign any piece of data using the proxy’s key (the private key is not given
to the proxy). Second, the proxy can request some permissions to be delegated from the
user to the proxy’s public key (remember that the security manager holds the user’s private
key). The actual permission delegated is the intersection of the arbitrary permission the
proxy requested, and the permissions the client application who called the proxy has. This
delegation is expressed as a SPKI certificate and the certificate is given to the proxy. The
certificate also contains the identity of the service which signed the proxy (a hash of the
service’s public key) to ensure that the proxy cannot use the certificate to access some other
service. If the security manager has some other certificates which might be relevant, they are
also returned to the proxy.

The security manager also provides one service for the client applications. Given a proxy
instance, a client application can ask for the public key of the corresponding service (i.e., the
key which was used to sign the proxy). The application can then implement an authentica-
tion user interface, which could use, for instance, name certificates given by the proxy for
authentication.

Figure 4.4 shows a summary of the services provided.

4.5 Server side

The proxy can use any protocol it wishes to contact the server. The only restriction is that
it must be able to prove the possession of its private key using the interfaces provided by
the client security manager, i.e., public key signatures. The proxy then passes the client’s
request and certificates to the service using some application specific protocol. The service
application then passes the public key, the certificates, and the request to the security library,
which checks if the credentials actually permit the requested action.

The security library also provides a service for signing the proxy before it is registered in the

CHAPTER 4. DESIGN 31

Client Server

sign a piece of data

delegate to proxy

Client Server
security
manager

security
manager verify certificate chain

sign proxy

verify proxy signature

get service key

Figure 4.4: Interfaces

lookup service. The services provided by the server side security module are also shown in
Figure 4.4.

4.6 An example

This section presents a concrete example to illustrate how the services provided by the secu-
rity architecture are used to construct a secure Jini service. The normal behavior without any
security features is described first, and then the additional steps taken in this architecture are
presented.

4.6.1 Normal Jini behavior

The default behavior of a Jini client application and a service is shown in Figure 4.5. In the
presented example an application prints a document.

0. At some previous time, the service has instantiated a proxy and registered it in the
lookup service.

1. The application, wishing to use a Jini printing service, contacts the lookup service, and
performs an appropriate lookup (in this example, searching for printer services). A list
of available services is returned to the application.

2. The user (or the application itself) selects one of the listed services. A serialized proxy
object is transported to the client, and the corresponding byte code is downloaded.

3. The application calls some method on the proxy object, requesting it to do whatever
the service does. In our example, it asks the proxy to print a document.

CHAPTER 4. DESIGN 32

Application

Proxy
Printer

Client JVM

Jini lookup service

3. print(doc)

4. print(doc)

2. Proxy download

1. Lookup(Printer)

Figure 4.5: Accessing a Jini service, without any security features.

4. The proxy sends the request to the service, which prints the document.

In the next section we describe the modifications needed in our security solution.

4.6.2 Using the security architecture

When security is applied to a typical Jini scenario, a number of additional steps are needed.
The steps taken when accessing a service in our example are described below, and are illus-
trated in Figure 4.6.

At some previous time, the service has delegated appropriate access rights to the user. The
relevant delegation certificates are stored either at the server or at the client.

0. At some previous time, the service has signed the proxy using its private key, and
registered the proxy to the lookup service.

1. The application, wishing to use a Jini printing service, contacts the lookup service, and
performs an appropriate lookup (in this example, searching for printer services). A list
of is returned to the application. No special security features are assumed here.

2. The user (or the application itself) selects one of the listed services. A serialized proxy
object is transported to the client, and the corresponding byte code is downloaded
(again, using standard Jini facilities).

3. The client security manager asks the proxy for the public key of the service, and veri-
fies that the proxy was actually signed by this key.

4. Next, the application asks the client security manager for the public key of the service.
It might then use name certificates, for instance, to verify that the name of the printer
shown to the user is correct.

CHAPTER 4. DESIGN 33

Application

Proxy

Client JVM

2. Proxy download
5. print(doc)

6. Get authorization

4. Authenticate
proxy

3. Verify

Jini security manager

Printer

Jini lookup service

7. print(doc, creds)

1. Lookup(Printer)

Figure 4.6: Protocol overview with our security modifications.

5. The application calls some method on the proxy object, requesting it to do whatever
the service does. In this example, it asks the proxy to print a document.

6. The proxy then asks the client security manager for authorization. The security man-
ager checks that (1) the proxy is trying to really access the service it represents and (2)
that the application is allowed to perform this operation on behalf of the user.

The security manager then delegates the appropriate permissions to the public key of
the proxy. The certificate repositories are then searched for other certificates which
might be relevant to the case, and the certificates are returned to the proxy.

7. Next, the proxy opens a connection to the server. The proxy can implement any proto-
col it chooses, as long as it can authenticate itself using the interfaces provided by the
client security manager (i.e., signing a piece of data using the proxy’s key).

After the authentication phase has been completed, the proxy sends the certificates
and the service request to the server. The server gives the proxy’s public key and the
certificates to the server security manager, which then checks the certificate chains. If
the authorization is valid, the service performs the requested operation.

The actual implementation of these steps is described in Chapter 5.

4.7 Design consequences

The proposed solution is quite flexible. It allows the proxy to implement any communication
protocol it wants. It also allows the proxy to contact multiple hosts to provide the service.
There is no requirement that the proxies would be signed by a central trusted party. Also,

CHAPTER 4. DESIGN 34

the solution is not tied to some particular way of implementing the authentication user in-
terface. Also, even if the authentication user interface fails, i.e., the an attacker successfully
masquerades as the real service, the attacker’s proxy still cannot access the real service using
the user’s credentials.

Chapter 5

Implementation

In this chapter, the prototype implementation of the architecture is described. First, Sec-
tion 5.1 gives an overview of the different modules involved. Section 5.2 gives a brief intro-
duction to the Java 2 protection domains and permission, which is needed for understanding
some details of the implementation.

The individual components are described in more detail in Sections 5.3 through 5.10. Finally,
Section 5.11 contains a summary of the implementation.

5.1 Overview

The prototype implementation of the architecture described in the previous chapter is written
completely in Java, and consists of about 10 000 lines of code. The implementation consists
of the following components; the components are also shown in Figure 5.1.

• SPKI certificate library (siesta.security.spki) and trust management engine (siesta.security.
authorization) are responsible for encoding and decoding SPKI certificates, and veri-
fying certificate chains. These packages are described in Section 5.3.

• Certificate repository (siesta.security.repository) provides a local repository where au-
thorization certificates are stored, and a certificate gatherer which tries to find complete
certificate chains. This package is described in Section 5.4.

• The client security manager (siesta.security.core) has many responsibilities. It veri-
fies the proxy’s signatures and provides access to the service’s public key to client
applications. These functions are described in Sections 5.5 and 5.6.

35

CHAPTER 5. IMPLEMENTATION 36

security.util

security.core

security.authorization

security.spki

util.rmisecurity.repository

siesta

Figure 5.1: UML package diagram, also showing the dependencies between the packages.
Some generic utility packages which are not essential for this discussion are not shown.

The client security manager is also responsible for delegating permissions to the proxy,
enforcing access restrictions for different applications, and signing data using the
proxy’s private key, as described in Sections 5.7 through 5.9.

• The library also includes some utility routines which simply writing services and
clients (siesta.security.util). Most of these are not described in detail, but the verifi-
cation of name certificates is mentioned in Section 5.6.

• Another utility module (siesta.util.rmi) implements TLS sockets with mutual authen-
tication for RMI. This component is described in Section 5.10.

A summary of the implementation is presented in Section 5.11.

5.2 Introduction to Java 2 protection domains

Before we can proceed to the implementation, a brief introduction to Java 2 protection do-
mains and permissions is needed for understanding some details of the implementation.

As described in Section 2.3, each piece of code running inside a JVM belongs to exactly one
protection domain. Each protection domain is associated with a set of permissions.

CHAPTER 5. IMPLEMENTATION 37

The permissions are represented as subclasses of the java.security.Permission class. Exam-
ples of predefined permissions include the FilePermission and the SocketPermission classes.
The permission instances implement theimplies() method. The semantics are defined so
that x.implies(y)returns true whenever the set of actions represented byy is a subset of
actions represented byx. For instance, ifx is FilePermision(/tmp/*, read), andy is FilePer-
mission(/tmp/foo.txt, read), x.implies(y)returns true.

The permissions associated with a protection domain are stored in apermission collection,
a subclass of java.security.PermissionCollection. Permissions collections also have an im-
plies() method, with semantics similar to java.security.Permission.

Typically, permissions are checked in some privileged code using the following pattern.

SecurityManager sm = System.getSecurityManager();
if (sm != null)

sm.checkPermission(new SomePermission(...));
// do sensitive operation

The usual behavior of the SecurityManager is to call the AccessController.checkPermission()
method, which checks the protection domains in the call stack. Eventually this results in calls
to the implies() methods of some permission collections. If the action is not allowed, Access-
Controller throws an AccessControlException. For a more detailed explanation, see [36].

5.3 SPKI certificate library and trust management engine

In the implementation there are two separate packages related to SPKI certificates. The first
package is a Java Cryptographic Architecture (JCA) “provider” which provides standard
Java CertificateFactory functionality, i.e., a factory for converting byte streams to Certifi-
cate instances. The certificate instances support verification of signatures and have methods
for accessing data inside the certificates. The package also provides a custom interface for
signing new certificates.

The SPKI encoding/decoding package is used by the SPKI trust management engine, which
is responsible for verifying certificate chains. When a server has received a request from its
proxy and verified the proxy’s key, it gives the key and the certificates to the certificate chain
verifier module. The verifier then verifies certificate validity and signatures, and finds all
certificate chains from the service key to the proxy key. The algorithm used for combining
the certificates to chains is currently quite simple—essentially a depth-first search. It is
efficient enough if the chains are not very long and if they do not include many unnecessary
certificates. More efficient algorithms are described in [4, 5, 24, 60].

CHAPTER 5. IMPLEMENTATION 38

The certificate chains found are stored inside a java.security.PermissionCollection instance.
The service software can then call the implies() method of the collection, giving a parameter
corresponding to the client request. The method then returns either true or false.

Storing the authorizations inside a PermissionCollection gives the service software another
possibility. It can use the AccessController.doPrivileged call to associate the permissions
with the Java call stack. Permissions are then checked using normal System.getSecurity-
Manager().checkPermission() call. In many cases, this is a cleaner solution than passing a
PermissionCollection object through a long chain of method calls, or storing it in a visible
variable.

One of the real virtues of this approach is that it also allows communicating these permissions
to code which does not know the original call was a remote call, or does not know anything
about Jini at all.

5.4 Certificate repository

The verification of certificate chain is closely related to retrieving the necessary certificates.
The certificates can be stored on either the client or the server, they could be retrieved on-
demand from some directory service, such as DNS or LDAP [41, 60].

The current implementation of the certificate repository supports storing of certificates in a
file on the client. Retrieval is based on the client and service public keys, and the attempted
action tag. However, the implementation has interfaces which could be used to provide on-
demand certificate retrieval.

5.5 Proxy authentication

As described in Section 4.4, both the code and data of proxies are signed by the service.
Java already provides facilities for code signing, but the signature itself does not have an
expiration date. The associated X.509 certificate has an expiration date, but it is not possible
to produce signatures which have a shorter lifetime than the certificate. To ensure that the
correct version of the proxy code is always used, a small modification was necessary.

There are basically two ways of achieving the expiration. The JAR file signature could be
modified to contain an expiration date. This would, however, require modifications to the
JAR file loading code. This is by no means impossible; it has been done in the TeSSA
project to allow delegation of code permissions with SPKI certificates [59].

An alternative approach splits the signature to two parts. A new, temporary key pair is
generated, and the JAR file is signed using this key and the standard Java code signing

CHAPTER 5. IMPLEMENTATION 39

facilities. The private half of the key is then destroyed. The service then supplies a SPKI
certificate chain from the service key to this code signing key (usually just one certificate).
This certificate chain is stored in the data part of the proxy. This approach has couple of
advantages:

• After the signature expires, the JAR file does not have to be signed again if it has not
been modified. Since the JAR files are typically stored on a web server, the service
might not be able to easily modify them.

• No modifications are needed to the JAR file loading code.

• Existing JDK tools can be used for signing.

The main drawback is that the signature expiration date is not visible to the standard Java
components.

In addition to verifying the authenticity of the proxy code, it is necessary to verify the state
of the proxy object as well. The straight-forward way would be to calculate the message
digest of the serialized proxy object. However, this fails because we do not really know what
part of the data is fixed state worth signing and which is just transient state. Also, the proxy
might be composed of multiple objects, and getting hold of the serialized object before it is
deserialized is tricky.

The problem was solved by asking the proxy object to calculate its own message digest, after
it has been deserialized. The proxy byte code has been verified in this point, so the proxy
is not completely untrusted, and it is not in the service’s interest to return a wrong message
digest. On the other hand, a lazy service writer could defeat this check by always returning
the same message digest, such as zero.

5.6 Authentication user interface

After we have verified the signatures of the proxy’s code and state, we know which service
the proxy represents, as identified by the service’s public key. We still do not know if this
key actually belongs the service the user wants to access.

The application developer has to implement some kind of authentication user interface. The
implementation provides supports for verifying two common cases of human readable prop-
erties: names signed by some central authority, and ownership of services (such as “John’s
calendar” service).

To give a simple example, an application could ask the proxy for a name certificate issued
by some mutually trusted party. After verifying the certificate, the application could display

CHAPTER 5. IMPLEMENTATION 40

(sequence
(cert

(issuer (public-key (user’s public key))
(subject (public-key (proxy’s public key)))
(tag siesta.user foo.FooPermission # hash of service’s public key# read)
(not-after 2001-01-19_12:33:07))

(signature ...)))

Figure 5.2: Example of a certificate written by the client security manager. The certificate
delegates permissions from the user to the proxy.

the name on the screen and ask the user if this was indeed the service he or she intended to
access. Naturally, more user friendly approaches are possible.

5.7 Proxy authorization

When accessing a service, the proxy asks the client security manager to delegate the required
access permissions to the public key of the proxy. The proxy passes the requested “tag”
field. As described in Section 4.4, the actual permission delegated is the intersection of the
requested permission and the permissions of the calling application.

Before signing the certificate, the tag field is verified in two ways. First, to ensure that the
certificate can only be used by the service that the proxy represents, the hash of the public
key of the service is stored in a fixed position in the tag field.

Second, the local security policy is consulted to check that the application which is calling
the proxy is authorized to act with the user’s credentials. This is described in the next section.

An example of a certificate written by the client security manager is shown in Figure 5.2.

5.8 Protecting the security mechanisms

Since applications on the client side are not fully trusted, mechanisms are needed to specify
local security policy, and enforce the restrictions.

The Java 2 security architecture offers such mechanisms, and indeed they work well on the
server side. For instance, the service software can define a permission type of its own, say,
PrintPermission, and delegate these permissions using SPKI certificates. These permission
cannot, however, be used as such on the client side, because the client does not necessarily

CHAPTER 5. IMPLEMENTATION 41

have the implementation (i.e., the byte code) for the permission. Without the implementation,
it is not possible to instantiate the permission. Furthermore, the implementation has to be
trusted to work properly.

This is solved by specifying the security policy in the Java 2 security policy using a special
permission classRemotePermission. The remote permission contains a regular expression
which is used to match the tag requested by the proxy.

When the proxy calls the security manager and asks for delegation, the security manager
constructs a RemotePermission instance corresponding to the tag given by the proxy, and
uses the SecurityManager’s checkPermission method to check authorization.

The only case requiring special treatment is the proxy itself. The proxy must have a per-
mission to access the service it represents since otherwise the security check made by the
SecurityManager.checkPermission method would fail. However, when the proxy’s class is
loaded and the permissions granted, the proxy is not yet fully authenticated, and the public
key of the service is not known (as explained in Section 5.5, a different key is used for sign-
ing the JAR file). This problem is solved by having RemotePermission instances contact the
client security manager when the permission is checked, since the client security manager
knows which proxies are properly authenticated.

5.9 Implementing authentication protocols

After some permissions have been delegated to the proxy, it usually contacts the service to
actually perform the requested action. To implement an authentication and key exchange
protocol, the proxy can ask the client security manager to sign arbitrary pieces of data, using
the proxy’s private key.

The private key itself is not given to the proxy, so it cannot send the key material to some
third party, for instance. Additionally, this allows the use of the proxy key to be securely
logged. To accommodate interfaces which require a java.security.PrivateKey, such as JSSE’s
X509KeyManager, the proxy is given a “guarded object” which implements the PrivateKey
interface. The guarded key provides the same methods as the original key. Before a method
call is forwarded to the actual private key, the guarded key checks that the call is coming
from a trusted signature implementation. This is implemented using Java stack inspection
mechanisms. However, the proxy can, of course, act as a signing oracle to a third party.

CHAPTER 5. IMPLEMENTATION 42

5.10 Optional transport protocol (RMI over TLS)

Many proxies probably will not want to implement a custom protocol, and therefore the
implementation provides utilities for using RMI. The default RMI configuration uses normal
TCP sockets, but it is possible to override this behavior by supplying a pair ofsocket factories
to be used on the server and client sides of the communication. This facility is meant for
plugging in Transport Layer Security (TLS) sockets [23].

The implementation has socket factories for TLS client authentication using the Java Security
Socket Extension (JSSE) libraries [72]. During the implementation some slight deficiencies
were found in the current RMI implementation. Hopefully most of these will be fixed in the
next release of RMI and in the RMI security API [71].

5.10.1 Problems with client authentication

Although the socket factory interfaces were originally intended for plugging in TLS sockets,
the design supports only server authentication cleanly. The socket factories are given to the
constructor of java.rmi.server.UnicastRemoteObject, which is the base class of RMI server
objects. The application has no further control of the remote method invocation process.
The network connections are formed automatically whenever the client invokes a remote
method, and a server method is automatically executed with the arguments sent over the
network. Neither the client nor the server have direct access to the underlying socket.

On the client side, it is difficult to actually verify that the stub is using the secure socket
factory. Even more difficult is communicating the correct key to the socket factory, since
the socket might be opened even before any methods are called (due to distributed garbage
collection).

Similar problems appear also on the server side. Once a call is received, there it no way to
get access to the socket instance it came from. The socket, in the case of TLS, would contain
methods to get the client’s key.

The current implementation works (sort of) around these problems by communicating the
keys using thread-local variables, and controlling the deserialization of the stub by wrap-
ping it inside a MarshalledObject. We later found out that Balfanz et al. had independently
discovered a similar workaround [11].

5.10.2 Code bases

We also encountered a limitation in the way RMI serializes stubs. When sending a serial-
ized object to a remote system, a codebase URL is included with it. The URL specifies the

CHAPTER 5. IMPLEMENTATION 43

location where the byte code can be downloaded. The current RMI implementation gets this
codebase URL from a global system configuration property named “java.rmi.server.codebase”.
This makes running multiple services inside the same JVM more difficult.

However, if a class is loaded using a java.net.URLClassLoader (or some subclass of it), the
URL it was loaded from is used instead of the default codebase. Thus, if the server loads the
proxy class using URLClassLoader, and instantiates it using the reflection API, the codebase
gets set to the correct value. The use of the reflection API is needed to avoid loading multiple
copies of the same class.

5.11 Summary of implementation

The key services offered by the architecture were described in Chapter 4. The client side
security manager provides the following services.

• Verify the signatures of a proxy—Both the code and data (state) of the proxy are pro-
tected using digital signatures, which are verified when the proxy is loaded, as de-
scribed in Section 5.5.

• Given a proxy instance, get the corresponding service key—The application must im-
plement an authentication user interface, which maps the public key of the service to
a name, for instance, as outlined in Section 5.6.

• Delegate permissions to the proxy—When a properly authorized application calls a
proxy, the proxy can ask for credentials which allow it to access the service it came
from using the user’s permissions. This functionality was described in Sections 5.7
and 5.8.

• Sign a piece of data using the proxy’s key—To securely use the credentials the proxy
has received, it can implement an authentication and key agreement protocol using
digital signatures, as described in Section 5.9. A sample implementation which uses
the JSSE libraries was described in Section 5.10.

On the server side, the server security manager offers the the following services.

• Sign proxies—Proxies must be instantiated on the server and signed before they are
registered in the lookup service.

• Verify certificate chains—When a client attempts to access the service, the service
verifies that the credentials provided indeed allow the requested action, as described in
Section 5.3.

Chapter 6

Evaluation

This chapter evaluates the architecture and the implementation based on the evaluation cri-
teria first presented in Section 1.3. For easy access, the evaluation criteria are restated in
Section 6.1, and the architecture is evaluated based on these criteria in Section 6.2.

The focus is on the evaluation of the proposed architecture; however, the prototype imple-
mentation and its performance are also discussed briefly in Sections 6.3 and 6.4. Finally, the
architecture is compared with related work in Section 6.5.

6.1 Evaluation criteria

In Chapter 1 the following criteria were chosen for evaluating the proposed architecture.

• Security functionality—What security features does the solution provide? Does it have
convenient points of control for implementing additional features later? The required
features were further elaborated on in Chapter 3.

• Minimized trust relationships—What kind of trust relationships does the solution as-
sume? Are the assumptions flexible enough so that the solution can be applied in
various environments?

• Protocol independence—How well does the solution preserve Jini’s protocol indepen-
dence, and the flexibility it brings? In particular, does the solution restrict the ability
to implement part of the functionality in the proxies, or does it require some specific
wire protocol or authentication mechanism?

• Elegance—How elegant is the solution? That is, is it easy to understand, technologi-
cally justified, state of the art, etc.?

44

CHAPTER 6. EVALUATION 45

• Simplicity—How transparent the solution is to applications, and how easy it is to use?
Does the solution allow separation of security related code from the application code?

In the next section the architecture is evaluated based on these criteria.

6.2 Architecture

6.2.1 Security functionality

Chapter 3 identified a number of functional security requirements. These requirements are
included in the architecture as follows.

1. Authentication user interface—The architecture itself does not use any properties as-
sociated with the public keys, and does not impose entities, such as names, which
might not be relevant in all situations. This leaves applications free to implement the
authentication user interface.

The authentication user interface is consulted only after the proxy has been instanti-
ated. In some environments, authenticating the proxy before instantiation might be a
better solution if, for instance, denial of service attacks are a concern. However, this
would make it more difficult to use credentials provided by the proxy in the authenti-
cation decision.

2. Authentication of proxy identity/credentials—Both the code and data of a proxy are
authenticated. The authentication of data is done only after instantiation, mostly to
avoid modifications to the standard libraries.

3. Authentication and key agreement protocol—The architecture supports any authenti-
cation and key agreement protocol which is based on public key signatures. The proxy
can implement the protocol itself or use some existing libraries, such as JSSE.

4–5. Message and connection integrity; message encryption—The architecture does not
mandate any specific protocol; the proxy can either implement the necessary compo-
nents itself, or use existing third party libraries.

6. Authentication of client identity/credentials (through the proxy)—The client is authen-
ticated indirectly through certificates which delegate permissions to the proxy’s key.
To guarantee freshness the proxy can include into the certificates nonces given by the
server.

CHAPTER 6. EVALUATION 46

7. Local security policy—The architecture uses the standard Java 2 mechanisms for spec-
ifying access policies to the client JVM resources. To allow more flexible policies the
architecture could be combined with something like [59].

The server side policy for controlling remote access to a service is essentially only an
ACL with one line, specifying the public key of the service. The rest of the security
policy is specified using SPKI certificates.

Restrictions for what kinds of remote calls client applications are allowed to make
using the user’s credentials are also specified using the Java 2 policy mechanisms.

8. Access control mechanisms for local resources—Existing Java 2 mechanisms are used
to provide access control for security mechanisms, i.e., the client security manager.

The private key of the proxy is guarded using a custom stack inspection mechanism,
as described in Section 5.9.

9. Resource consumption control—The architecture does not implement any resource
consumption control mechanisms.

6.2.2 Minimized trust relationships

The key assumption behind the architecture is the following: if a service signs a proxy, it
is assumed that the proxy is not trying to subvert the security of that particular service. It
might, of course, be quite hostile a client to some other service.

The architecture does not introduce any centralized trusted third parties. In particular, proxies
are signed directly by the service, and no certificate hierarchies are required. Also, the lookup
service does not have to be trusted to contain only “friendly” services.

The problem of verifying that the public key of the service actually is the right service is left
to the application. Thus the application is free to use the most appropriate method for the
particular situation. In some cases, this might involve, for instance, a hierarchical PKI, but
other solutions are possible.

6.2.3 Protocol independence

The architecture does not mandate any specific communication protocol between the proxy
and the service. There are two limitations, however, related to the authentication of the client.
First, the authentication protocol must be based on public key signatures. Many existing
protocols, such as TLS and ISAKMP [55], support this, but some protocols are based on
public key encryption or symmetric key cryptography instead.

CHAPTER 6. EVALUATION 47

Furthermore, since the client is authenticated only indirectly through the proxy, the server
has to understand the SPKI certificates which delegate authority from the client to the proxy.
Thus the solution is not, unfortunately, interoperable with existing systems.

6.2.4 Elegance

I feel that some features of the architecture are quite elegant. For instance, since the archi-
tecture does not include any concept of names, it can be used in many circumstances where
names do not naturally occur. Yet, the application can easily use name certificates if the
situation so requires.

Another aspect worth mentioning is independence from the actual wire protocol. From an
architectural point of view, this also means a large reduction in the amount of code that
absolutely has to be trusted.

On the server side, integration of the permission checking with the standard Java 2 security
architecture allows the use of same mechanisms for checking permissions as for non-remote
calls. On the other hand, the service application is responsible for checking these permis-
sions. In some environments, separations of the application and service code, as done in, for
instance, Enterprise JavaBeans, might be a better approach.

6.2.5 Simplicity

Even though the number of interfaces provided for proxies and client applications is quite
small, some aspects of the architecture cannot be considered to be simple.

In my experience, many people without previous experience in SPKI certificates, or trust
management systems in general, find the concept of delegation chains difficult to understand.
Thus, the architecture might to considered too complex to use, or used incorrectly due to
some misunderstanding.

The Java 2 security architecture, with many components such class loaders, protection do-
mains, code sources, and the access controller, is not very simple to understand either. Thus,
the aspects of the solution that rely on it are also quite complex.

However, other proposals, such as the forthcoming RMI security API [71], seem even more
complex and harder to understand.

The proposed architecture also leaves a lot of freedom to the service developer. This naturally
gives flexibility, but in cases where such flexibility is not required, it certainly introduces
unnecessary complexity. For instance, leaving the implementation of the wire protocol to the
developer might cause an unnecessary complexity in many cases. Furthermore, as discussed
above, the architecture does not support the separation of the application and the security
related code very well.

CHAPTER 6. EVALUATION 48

Measurement average (ms) std dev (ms)
Standard Jini/RMI call 30 2
With SPKI and TLS applied 6180 80
With pre-generated keys 983 130

Table 6.1: The results of performance measurements, measuring the time required for the
first remote method call through an already authenticated proxy. The second and subse-
quent calls take about 300 ms in the secure case.

6.3 Implementation

The implementation is intended to be a research prototype, and therefore is not fully polished.
Some aspects which would require further work are mentioned next.

First of all, the client side architecture does not integrate with the Java 2 security model as
well as the server side components. As described in Section 5.8, regular expressions are used
for matching permissions given to applications, instead of the normal implies() methods.

Another inelegant aspect is that the delegation bit of SPKI certificates is not used strictly
according to the SPKI specification. The user must be able to delegate to the proxy’s key even
if delegation was not allowed in the certificate given to the user. This might be worked around
by including a “nonce” in the tag field, proving that the certificate was written recently.

The SPKI trust management components is also missing some other features. The implemen-
tation does not support fetching certificates from remote repositories. In many real applica-
tions, at least some mechanism for distributed the necessary certificates is required. Another
important aspect which requires further work is the integration of a certificate revocation or
validation mechanism. Revocation and validation of SPKI certificates are discussed in [49],
for instance.

On the positive side, the implementation contains no modifications to standard Java or Jini
libraries. However, two implementation aspects are relied upon. First, the getCallContext
method from java.lang.SecurityManager is used to inspect the call stack when guarding ac-
cess to the proxy’s private key. The same result could have been achieved by modifying
the standard libraries. Second, the RMI over TLS implementation communicates keys using
thread local variables, and this relies on certain assumptions about how threads are allocated
and connections opened inside the RMI libraries.

CHAPTER 6. EVALUATION 49

6.4 Performance

Table 6.1 shows our initial performance figures. Basically, the measurement represents the
time required to delegate a permission from the client to the server through the proxy. As
the measurements show, currently the authorization requires quite a lot of time. Most of the
time is spent in Java cryptographic primitives. However, our current implementation is quite
unoptimized. In particular, the process requires that a separate public key pair is created on
the fly; these keys can be generated beforehand, and taken from a pool of pre-generated keys
during the protocol run. As the table shows, this cuts the time required to a more reasonable
value.

The measurements were run using Sun’s JDK 1.2.2 under Red Hat Linux 6.2. Both the client
and the server were run on the same machine, which was equipped with a 750 MHz AMD
Athlon CPU and 256 MB of RAM. The measurements were run ten times, and the average
and standard deviation were calculated.

These performance figures are not meant to be comprehensive, but they illustrate that the per-
formance would be acceptable for real world applications. Possible targets for optimization
include both the security part itself and RMI in general [17, 50].

6.5 Related work and comparison

The security of Jini systems has not been studied much yet. Some of the results from other
object-oriented middleware, such as the CORBA security framework, are useful, but Jini is
fundamentally different due to the extensive use of downloaded code.

Sun presented a demonstration solution which integrates Jini with JAAS at JavaOne 2000
[68]. It is based on a centralized security server, and a certificate authority (CA) signing all
proxy code. It is somewhat similar to Geoffrey Clements’s Usersecurity project [18].

Hasselmeyer et al. have developed a Jini security solution based on a centralized secure
lookup server [39]. The lookup service authenticates all clients and services, and vice versa.
Proxies returned by the lookup service are assumed to be “well behaved” and not misuse
the client’s private credentials when authenticating the connection between the client and
the service. The authors have also built an infrastructure for associating payments with Jini
leases based on this architecture. Their work on leases, which focuses on the non-repudiation
aspects, is described in [40].

A commercial implementation of a secure lookup service is available from PersonalGenie
Inc. [63]. The whitepaper does not give very much details, but the architecture seems quite
similar to the one proposed by Hasselmeyer et al. Similar secure service directory in a non-
Jini environment is described by Czerwinski et al. in [21, 79].

CHAPTER 6. EVALUATION 50

Balfanz et al. describe a system based on RMI, though not Java, in [11]. It uses a delegation
system resembling SPKI, and also uses SSL for protecting the transmission. An important
difference is, however, that their architecture does not allow dynamic downloading of code.

Eurescom’s Jini and Friends at Work project is looking into Jini and ubiquitous computing
issues from a telecom operator’s point of view [31]. The project’s first public deliverable [30]
also gives an outline of the security issues involved. While the document does not specify any
concrete architecture, it proposes a centralized certification infrastructure—to be operated by
telecom operators, of course—as a solution to problems associated with downloaded code.

Sun’s future solution for Jini security is the RMI security API [71], which is currently under
development. It is expected to be included in the next major release of Java 2 Standard
Edition (JDK 1.4, codenamed “Merlin”). I was a member of the expert group which reviewed
the specification under the rules of Java Community Process [74].

In the RMI security API, a trusted component (not downloaded from the network) is respon-
sible for opening the network connections and implementing some authentication protocol.
The API is based on the “service provider interface” model, which means the providers for
different authentication technologies can be plugged in. A provider for TLS sockets is ex-
pected to be included in JDK 1.4.

Although the RMI security API supports intelligent proxies, which implement a part of their
functionality on the client, it could limit the benefits offered by Jini’s protocol independence.
However, it is important to remember the RMI security API is intended for a larger audience
than just Jini, such as application developers using RMI as a middleware components, and
also the Java 2 Enterprise Edition. Taking the interests of different audiences into account
in the design of the API has been difficult. On one hand, programmers need a flexible API
to control security functions. On the other hand, in the Java 2 Enterprise Edition security
issues are typically handled by the Enterprise JavaBeans “container”, and not the application
directly.

Chapter 7

Conclusions

Jini provides an elegant architecture for building distributed applications, especially in de-
centralized ad hoc environments. Programs built according to the Jini principles will be able
to function and survive in highly dynamic network environments, allowing applications to
adapt their behavior to the requirements of the current network context. However, the cur-
rent state of the technology does not adequately address the security requirements present in
many of such environments. In particular, the existing solutions are either bound to a specific
communication protocol, or rely on centralized security servers.

This thesis has two main components, a requirements analysis and a proposed architecture.

Chapter 3 analyzed the security requirements of Jini in different environments. Threat sce-
narios were used to motivate the choice of high level security goals, and these high level
goals were mapped into lower level security mechanisms. Based on existing security frame-
works, some features which were not included were identified. The chapter also presented
some related design aspects and tradeoffs.

Chapter 4 proposed one possible security architecture for Jini, based on the decentralized
trust management approach. The architecture uses SPKI certificates for authorization, and
does not compromise the protocol independence of Jini. As it does not rely on centralized
security servers, it is flexible enough to work in a wide range of environments.

The implementation described in Chapter 5 demonstrates that the architecture can be imple-
mented, and does not have unreasonable performance impact. The evaluation of the archi-
tecture in Chapter 6 showed that the design of this type of a security architecture is highly
non-trivial, and making it elegant and easy to understand is hard.

There are many possibilities for further work, dealing both with the the requirements anal-
ysis and the proposed architecture. Some unresolved questions about requirements were
mentioned in Section 3.4. The requirements for core Jini services, such as the lookup ser-

51

CHAPTER 7. CONCLUSIONS 52

vice, leases, events, and transactions, need to be clarified. Also, identifying relevant subsets
of reasonable and non-conflicting requirements for different environments is necessary.

Furthermore, it would be beneficial to study how the proposed architecture could be either
integrated or used together with other Java security mechanisms, including the forthcoming
Java Authentication and Authorization Service (JAAS) [51] and the planned RMI Security
Extension [71]. Interoperation with existing security services, such as Kerberos, could also
be interesting.

To summarize, this thesis has shown that using centralized security servers or certificate
authorities are not the only solutions to problems associated with downloaded code in Jini.

Bibliography

[1] Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim Waldo, and Ann Wollrath.The
Jini Specification. Addison-Wesley, June 1999.

[2] Gerd Aschemann, Svetlana Domnitcheva, Peer Hasselmeyer, Roger Kehr, and An-
dreas Zeidler. A framework for the integration of legacy devices into a Jini manage-
ment federation. In Rolf Stadler and Burkhard Stiller, editors,Active Technologies
for Network and Service Management: 10th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management proceedings (DSOM ’99), Lecture
Notes in Computer Science volume 1700, pages 257–268, Zürich, Switzerland, Octo-
ber 1999. Springer.

[3] Gerd Aschemann, Roger Kehr, and Andreas Zeidler. A Jini-based gateway archi-
tecture for mobile devices. In Clemens H. Cap, editor,JIT ’99: Java-Informations-
Tage 1999, Informatik aktuell series, pages 203–212, Düsseldorf, Germany, September
1999. Springer.

[4] Tuomas Aura. Comparison of graph-search algorithms for authorization verification in
delegation networks. InProceedings of the 2nd Nordic Workshop on Secure Computer
Systems (NordSec ’97), Espoo, Finland, November 1997.

[5] Tuomas Aura. Fast access control decisions from delegation certificate databases. In
Colin Boyd and Edward Dawson, editors,Proceedings of the 3rd Australasian con-
ference on information security and privacy (ACISP’ 98), Lecture Notes in Computer
Science volume 1438, pages 284–295, Brisbane, Australia, July 1998. Springer.

[6] Tuomas Aura.Authorization and availability: Aspects of open network security. Doc-
toral dissertation, Helsinki University of Technology, November 2000. Laboratory for
Theoretical Computer Science research report HUT-TCS-A64.

[7] Tuomas Aura and Pekka Nikander. Stateless connections. InProceedings of Interna-
tional Conference on Information and Communications Security (ICICS ’97), Lecture
Notes in Computer Science volume 1334, pages 87–97, Beijing, China, November
1997. Springer.

53

BIBLIOGRAPHY 54

[8] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-resistant authentication
with client puzzles. In Bruce Christianson, Bruno Crispo, and Mike Roe, editors,Pro-
ceedings of the 8th International Workshop on Security Protocols, to appear in the
Lecture Notes in Computer Science series, Cambridge, UK, April 2000. Springer.

[9] Godmar Back, Wilson C. Hsieh, and Jay Lepreau. Processes in KaffeOS: Isolation,
resource management, and sharing in Java. InProceedings of the 4th Symposium on
Operating Systems Design and Implementation (OSDI 2000), San Diego, California,
October 2000. USENIX Association.

[10] Godmar Back, Patrick Tullmann, Leigh Stoller, Wilson C. Hsieh, and Jay Lepreau.
Techniques for the design of Java operating systems. InProceedings of the USENIX
Annual 2000 Technical Conference, General Refereed Track, San Diego, California,
June 2000.

[11] Dirk Balfanz, Drew Dean, and Mike Spreitzer. A security infrastructure for distributed
Java applications. InProceedings of the 2000 IEEE Symposium on Security and Pri-
vacy, pages 15–26, Oakland, California, May 2000.

[12] Dirk Balfanz and Li Gong. Experience with securie multi-processing in Java. InPro-
ceedings the 18th International Conference on Distributed Computing Systems, Ams-
terdam, The Netherlands, May 1998.

[13] Philippe Bernadat, Dan Lambright, and Franco Travostino. Towards a resource-safe
Java for service guarantees in uncooperative environments. InProceedings of the IEEE
Workshop on Programming Languages for Real-Time Industrial Applications (PLRTIA
’98), Madrid, Spain, December 1998.

[14] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The
KeyNote trust-management system version 2. RFC 2704, IETF, September 1999.

[15] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The role
of trust management in distributed systems security. In Jan Bosch, Jan Vitek, and
Christian D. Jensen, editors,Secure Internet Programming: Security Issues for Mobile
and Distributed Objects, Lecture Notes in Computer Science volume 1603, pages 185–
210. Springer, 1999.

[16] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In
Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 164–173,
Oakland, California, May 1996.

[17] Stefano Campadello, Oskari Koskimies, Kimmo Raatikainen, and Heikki Helin. Wire-
less Java RMI. InProceedings of the 4th International Enterprise Distributed Objects

BIBLIOGRAPHY 55

Computing Conference (EDOC 2000), pages 114–123, Makuhari, Japan, September
2000. IEEE Computer Society Press.

[18] Geoffrey Clements. Jini Usersecurity project home page.
http://www.bald-mountain.com/jini.html, 2000.

[19] Concept Technologies Ltd. Hosta: Java based web server cluster controller. White pa-
per, http://www.concept-technologies.com/pages/Hosta/HostaWhitePaper.html, May
2000.

[20] Grzegorz Czajkowski and Thorsten von Eicken. JRes: a resource accounting interface
for Java. InProceedings of the Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA ’98), pages 21–35, Vancouver, Canada, Octo-
ber 1998.

[21] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph, and Randy H.
Katz. An architecture for a secure service discovery service. InProceedings of the
5th Annual ACM/IEEE International Conference on Mobile Computing and Networks
(MobiCom ’99), pages 24–35, Seattle, Washington, August 1999.

[22] Drew Dean. The security of static typing with dynamic linking. InProceedings of
the 4th ACM Conference on Computer and Communications Security (CCS ’97), pages
18–27, Zürich, Switzerland, April 1997.

[23] Tim Dierks and Christopher Allen. The TLS protocol, version 1.0. RFC 2246, IETF,
January 1999.

[24] Jean-Emile Elien. Certificate discovery using SPKI/SDSI 2.0 certificates. Master’s
thesis, Massachusetts Institute of Technology, May 1998.

[25] Carl Ellison. SPKI requirements. RFC 2692, IETF, September 1999.

[26] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu Ylönen.
SPKI certificate theory. RFC 2693, IETF, September 1999.

[27] Pasi Eronen, Christian Gehrmann, and Pekka Nikander. Securing ad hoc Jini services.
In Proceedings of the 5th Nordic Workshop on Secure IT Systems (NordSec 2000),
pages 169–177, Reykjavik, Iceland, October 2000. Reykjavik University.

[28] Pasi Eronen, Johannes Lehtinen, Jukka Zitting, and Pekka Nikander. Extending Jini
with decentralized trust management. InShort paper proceedings of the 3rd IEEE
Conference on Open Architectures and Network Programming (OPENARCH 2000),
pages 25–29, Tel Aviv, Israel, March 2000.

BIBLIOGRAPHY 56

[29] Pasi Eronen and Pekka Nikander. Decentralized Jini security. InProceedings of the
Network and Distributed System Security Symposium (NDSS 2001), pages 161–172,
San Diego, California, February 2001.

[30] Eurescom. Jini and friends at work project, deliverable 1: Jini state of the art: an
operator’s perspective. http://www.eurescom.de/Public/Projects/P1000-series/P1005/
P1005.htm, July 2000.

[31] Eurescom. Jini and friends at work project home page.
http://www.eurescom.de/Public/Projects/P1000-series/P1005/P1005.htm, 2000.

[32] William M. Farmer, Joshua D. Guttman, and Vipin Swarup. Security for mobile agents:
Issues and requirements. InProceedings of the 19th National Information Systems
Security Conference (NISSC 96), pages 591–597, 1996.

[33] Eric Freeman, Susanne Hupfer, and Ken Arnold.JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley, June 1999.

[34] Luigi Giuri. Role-based access control on the web using Java. InProceedings of the
4th ACM workshop on Role-based access control (RBAC ’99), pages 11–18, Fairfax,
Virginia, October 1999.

[35] Dieter Gollmann.Computer Security. John Wiley & Sons, February 1999.

[36] Li Gong. Inside Java 2 Platform Security: Architecture, API design, and implementa-
tion. Addison-Wesley, June 1999.

[37] Erik Guttman, Charles Perkins, John Veizades, and Michael Day. Service location
protocol, version 2. RFC 2608, IETF, June 1999.

[38] Jaap Haartsen, Mahmoud Nagshineh, Jon Inouye, Olaf J. Joeressen, and Warren Allen.
Bluetooth: Vision, goals, and architecture.Mobile Computing and Communications
Review, 2(4):38–45, October 1998.

[39] Peer Hasselmeyer, Roger Kehr, and Marco Voß. Trade-offs in a secure Jini service
architecture. In Claudia Linnhoff-Popien and Heinz-Gerd Hegering, editors,Trends in
Distributed Systems: Towards a Universal Service Market. Third International IFIP/GI
working conference proceedings (USM 2000), Lecture Notes in Computer Science vol-
ume 1890, pages 190–201, Munich, Germany, September 2000. Springer.

[40] Peer Hasselmeyer, Markus Schumacher, and Marco Voß. Pay as you go — associating
costs with Jini leases. InProceedings of the 4th International Enterprise Distributed
Objects Computing Conference (EDOC 2000), pages 48–57, Makuhari, Japan, Septem-
ber 2000. IEEE Computer Society Press.

BIBLIOGRAPHY 57

[41] Tero Hasu. Storage and retrieval of SPKI certificates using the DNS. Master’s thesis,
Helsinki University of Technology, April 1999.

[42] Manfred Hauswirth, Clemens Kerer, and Roman Kurmanowytsch. A secure execu-
tion framework for Java. InProceedings of the 7th ACM conference on computer and
communications security (CCS 2000), pages 43–52, Athens, Greece, November 2000.

[43] ISO/IEC 8802-11:1999: Information technology — Telecommunications and informa-
tion exchange between systems — Local and metropolitan area networks — Specific
requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications, August 1999. Also ANSI/IEEE standard 802.11 (1999
edition).

[44] ITU-T Recommendation X.509 (1997): Information technology — Open systems in-
terconnection — The directory: Authentication framework, June 1997. Also ISO/IEC
9594-8:1998.

[45] ITU-T Recommendation X.800 (1991): Security architecture for Open Systems Inter-
connection for CCITT applications, 1991.

[46] ITU-T Recommendation X.810 (1995): Information technology — Open systems In-
terconnection — Security frameworks for open systems: Overview, November 1995.
Also ISO/IEC 10181-1:1996.

[47] Trent Jaeger, Atul Prakash, Jochen Liedtke, and Nayeem Islam. Flexible control of
downloaded executable content.ACM Transactions on Information and System Secu-
rity, 2(2):177–228, May 1999.

[48] Arto Karila. Open Systems Security: An Architectural Framework. Doctoral disserta-
tion, Helsinki University of Technology, March 1991.

[49] Yki Kortesniemi, Tero Hasu, and Jonna Särs. A revocation, validation and authentica-
tion protocol for SPKI based delegation systems. InProceedings of the 2000 Network
and Distributed System Security Symposium (NDSS 2000), pages 85–101, San Diego,
California, February 2000.

[50] Vijaykumar Krishnaswamy, Dan Walther, Sumeer Bhola, Ethendranath Bommaiah,
George Riley, Brad Topol, and Mustaque Ahamad. Efficient implementation of Java
remote method invocation (RMI). InProceedings of the 4th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS ’98), pages 19–35, Santa Fe, New
Mexico, April 1998.

[51] Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, and Roland Schemers. User
authentication and authorization in the Java platform. InProceedings of the 15th Annual

BIBLIOGRAPHY 58

Computer Security Applications Conference (ACSAC ’99), pages 285–290, Phoenix,
Arizona, December 1999.

[52] Ilari Lehti and Pekka Nikander. Certifying trust. InPublic Key Cryptography: the 1st
International Workshop on Practice and Theory in Public Key Cryptography, proceed-
ings (PKC ’98), Lecture Notes in Computer Science volume 1431, Yokohama, Japan,
February 1998. Springer.

[53] Jussipekka Leiwo, Pekka Nikander, and Tuomas Aura. Towards network denial of ser-
vice resistant protocols. InProceedings of the 15th International Information Security
Conference (IFIP/SEC 2000), Beijing, China, August 2000. Kluwer.

[54] Sanna Liimatainen et al. Tessa project home page.
http://www.tml.hut.fi/Research/TeSSA/, 2000.

[55] Douglas Maughan, Mark Schneider, Mark Schertler, and Jeff Turner. Internet security
association and key management protocol (ISAKMP). RFC 2408, IETF, November
1998.

[56] Riku Mettälä. Bluetooth protocol architecture white paper, version 1.0. Bluetooth
Special Interest Group, August 1999.

[57] Pekka Nikander. An Architecture for Authorization and Delegation in Distributed
Object-Oriented Agent Systems. Doctoral dissertation, Helsinki University of Tech-
nology, March 1999.

[58] Pekka Nikander. Fault tolerance in decentralized and loosely coupled systems. In
Proceedings of Ericsson Conference on Software Engineering, Stockholm, Sweden,
September 2000.

[59] Pekka Nikander and Jonna Partanen. Distributed policy management for JDK 1.2. In
Proceedings of the 1999 Network and Distributed System Security Symposium (NDSS
’99), pages 91–101, San Diego, California, February 1999.

[60] Pekka Nikander and Lea Viljanen. Storing and retrieving Internet certificates. InPro-
ceedings of the 3rd Nordic Workshop on Secure IT Systems (NordSec ’98), Trondheim,
Norway, November 1998.

[61] Object Management Group.CORBAservices Security Service Specification. Version
1.5 (document 00-06-25), May 2000.

[62] Jonna Partanen. Using SPKI certificates for access control in Java 1.2. Master’s thesis,
Helsinki University of Technology, August 1998.

BIBLIOGRAPHY 59

[63] Personal Genie Inc. GuardianGenie secure lookup service white paper. Available from
http://www.personalgenie.com/, September 2000.

[64] Ronald L. Rivest and Butler Lampson. SDSI — a simple distributed security infrastruc-
ture, version 1.1. Manuscript, available from http://theory.lcs.mit.edu/˜cis/sdsi.html,
October 1996.

[65] Salutation Consortium. Salutation home page. http://www.salutation.org/, 2000.

[66] Bob Scheifler. Personal communications, 2000.

[67] Frank Stajano and Ross Anderson. The resurrecting duckling: Security issues for ad-
hoc wireless networks. In Bruce Christianson, Bruno Crispo, James A. Malcolm,
and Michael Roe, editors,Security Protocols, 7th International Workshop Proceed-
ings, Lecture Notes in Computer Science volume 1796, Cambridge, UK, April 1999.
Springer.

[68] Christopher Steel. Securing Jini connection technology. Technical presentation 573
at the JavaOne 2000 conference, San Francisco, California. Slides available from
http://java.sun.com/javaone/javaone00/, June 2000.

[69] Sun Microsystems. Java remote method invocation specification. Revision 1.7 (Java 2
SDK Standard Edition 1.3.0), December 1999. http://java.sun.com/products/jdk/rmi/.

[70] Sun Microsystems. Enterprise JavaBeans Technology home page.
http://java.sun.com/products/ejb/, 2000.

[71] Sun Microsystems. Java RMI security API. Technical specification, JSR 76 community
draft version, December 2000.

[72] Sun Microsystems. Java secure socket extension home page.
http://java.sun.com/products/jsse/, 2000.

[73] Sun Microsystems. Java security FAQ: Chronology of security-related bugs and issues.
http://java.sun.com/sfaq/chronology.html, August 2000.

[74] Sun Microsystems. Java specification request 76: RMI security.
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_076_rmisecurity.html, 2000.

[75] Universal Plug and Play Forum. Home page. http://www.upnp.org/, 2000.

[76] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on distributed com-
puting. Technical Report SMLI TR-94-29, Sun Microsystems Laboratories, November
1994. Reprinted in [1].

BIBLIOGRAPHY 60

[77] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Extensible secu-
rity architectures for Java. InProceedings of the 16th ACM Symposium on Operating
Systems Principles (SOSP ’97), pages 116–128, Saint-Malo, France, October 1997.

[78] Ian Welch and Robert J. Stroud. Supporting real world security models in Java. In
Proceedings of the 7th IEEE Workshop on Future Trends of Distributed Computing
Systems, pages 155–159, Cape Town, South Africa, December 1999.

[79] Matt Welsh. Ninja RMI: A free Java RMI.
http://www.cs.berkeley.edu/˜mdw/proj/ninja/ninjarmi.html, September 1999.

[80] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the Java
system.USENIX Computing Systems, 9(4):265–290, 1996.

[81] Ann Wollrath, Jim Waldo, and Roger Riggs. Java-centric distributed computing.IEEE
Micro, 17(3):44–53, May 1997.

