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Abstract: 
Applications such as instant messaging and push email require long-lived connections between clients and 

servers. In the absence of other traffic, stateful firewalls and Network Address Translators (NATs) require 
“keep-alive” messages to maintain state for such persistent connections. We present new measurements 
analyzing the energy consumption of these keep-alive messages on a mobile phone in 2G (GSM), 3G 
(WCDMA), High-Speed Downlink Packet Access (HSDPA), and IEEE 802.11 Wireless LAN networks. The 
measurements confirm earlier results showing that frequent keep-alive messages consume significant 
amounts of energy in 2G and 3G networks, but suggest they are not a significant problem in Wireless LANs. 

To reduce energy consumption, we introduce TCP Wake-Up, an extension to Mobile IPv4 and IPsec NAT 
traversal mechanisms. This extension significantly reduces the need for keep-alive messages, while still 
avoiding complexity of IP-over-TCP tunneling. Our measurements show that TCP Wake-Up can extend 
battery lifetime by a factor of 2 to 7 in 2G/3G networks. The results also suggest guidelines for developers of 
future protocols: in particular, we claim that “always-on” applications that aim to be used in current 2G/3G 
networks cannot be solely based on UDP. 
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Abstract—Applications such as instant messaging and push 
email require long-lived connections between clients and servers. 
In the absence of other traffic, stateful firewalls and Network 
Address Translators (NATs) require “keep-alive” messages to 
maintain state for such persistent connections. We present new 
measurements analyzing the energy consumption of these keep-
alive messages on a mobile phone in 2G (GSM), 3G (WCDMA), 
High-Speed Downlink Packet Access (HSDPA), and IEEE 802.11 
Wireless LAN networks. The measurements confirm earlier 
results showing that frequent keep-alive messages consume sig-
nificant amounts of energy in 2G and 3G networks, but suggest 
they are not a significant problem in Wireless LANs. 

To reduce energy consumption, we introduce TCP Wake-Up, 
an extension to Mobile IPv4 and IPsec NAT traversal mech-
anisms. This extension significantly reduces the need for keep-
alive messages, while still avoiding complexity of IP-over-TCP 
tunneling. Our measurements show that TCP Wake-Up can 
extend battery lifetime by a factor of 2 to 7 in 2G/3G networks. 
The results also suggest guidelines for developers of future 
protocols: in particular, we claim that “always-on” applications 
that aim to be used in current 2G/3G networks cannot be solely 
based on UDP. 

I. INTRODUCTION 
Firewalls and Network Address Translators (NATs) are 

ubiquitous in today’s Internet, and it is increasingly rare to 
have a personal, non-server computer with global IP layer 
reachability. Instead, the host is protected by a stateful 
“middlebox” that keeps track of active connections, and drops 
packets coming from the “outside” unless they are part of an 
existing connection. 

The firewall/NAT state is automatically created when the 
host “inside” the firewall/NAT (later called “client”) initiates a 
connection, and it will be removed once the connection has 
been unused for some time. Because the connection state is 
created only by packets sent by the client, servers outside the 
firewall/NAT are not able to reach the client if the state has 
expired. To prevent this, many protocols regularly send dum-
my “keep-alive” packets that reset the timers in the NAT or 
firewall and preserve reachability. 

The connection state timeout values vary from product to 
product, but typical values are 30…180 seconds for UDP and 
30…60 minutes for TCP [8]. This implies that applications 
using UDP need to send keep-alive messages much more 
frequently than those based on TCP. 

Most application layer protocols use TCP, but UDP is 
commonly used to allow network layer mobility and security 
mechanisms to co-exist with NATs and firewalls. In partic-
ular, the NAT/firewall traversal mechanisms for Mobile IPv4 

[15] and IPsec [11] tunnel IP packets over UDP. Using UDP 
instead of TCP avoids the performance problems associated 
with multiple layers of TCP retransmissions [9][30] and de-
lays due to head-of-line blocking.  

Sending keep-alive messages can consume significant 
amounts of energy in small battery-powered devices. For 
example, Haverinen et al. [8] have shown that sending UDP 
keep-alives once every 40 seconds increases idle energy con-
sumption in 3G WCDMA by a factor of 3 to 16 depending on 
the radio network configuration.  

In Section II, we revisit the  results of Haverinen et al. to 
examine the impact of phone model, new radio technologies 
(HSDPA and Wireless LAN), and the type of keep-alive 
message used. The results confirm that UDP keep-alives will 
lead to unacceptably short battery lifetimes in 2G, 3G, and 
HSDPA, but their impact is much smaller in Wireless LAN. 

In Section III of this paper, we introduce TCP Wake-Up, an 
extension to Mobile IPv4 and IPsec NAT traversal mech-
anisms. The extension keeps the benefits of tunneling IP pack-
ets over UDP, but does not require sending UDP keep-alives. 
The basic idea is to establish a separate TCP connection be-
tween the client and home agent (or VPN gateway in the case 
of IPsec). When there is no ordinary data traffic, UDP keep-
alives are not sent; thus, the connection state in the NAT or 
firewall will expire, and the client cannot be reached with 
UDP-tunneled packets. Instead, when the home agent needs to 
reach the client, it uses the TCP connection to “wake up” the 
client; the client will then re-establish the UDP-based tunnel.  

All ordinary data packets are still sent using UDP encapsu-
lation, avoiding the performance problems and complexity as-
sociated with TCP encapsulation. However, when the client is 
idle, the NAT mappings for UDP can be allowed to expire 
without losing reachability.  Keep-alive messages are still 
needed for the TCP connection, but since the typical TCP 
mapping timeout is much larger than for UDP (at least one 
order of magnitude), the number of keep-alive messages, and 
thus energy consumption, is reduced. For example, in the 3G 
WCDMA network used for measurements in Section II, using 
TCP Wake-Up with typical NAT timeout parameters extends 
battery lifetime by a factor of 7. A more detailed analysis of 
the benefits and costs is presented in Section IV. 

Compared to alternative solutions discussed in Section V, 
our work requires modifications only in the client and home 
agent/VPN gateway, but not in the network elements, such as 
radio access networks and NATs, between them. Thus, the 
solution can be deployed by, for example, enterprises that do 
not have control over the radio network. 
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II. ENERGY CONSUMPTION OF KEEP-ALIVE MESSAGES 
Haverinen et al. [8] have measured the energy consumption 

of keep-alive messages in 3G WCDMA networks. The results 
show that keep-alive messages are expensive in 3G chiefly 
because the radio channel stays allocated for a long time (at 
least several seconds) after the packet has been sent. This is 
because releasing the channel, and thus transitioning back to 
“low-power” state, is triggered by inactivity timers in the 
Radio Network Controller (RNC), not by the phone. Thus, 
configuration of RNC parameters has significant impact on the 
total energy consumption. 

In this section, we present additional measurements with the 
following goals: 

First, we want to find out if the results vary significantly 
from one phone model to another. The phone used by 
Haverinen et al., Nokia 6630, was announced in June 2004, 
and was Nokia’s first 3G phone based on the Symbian 
operating system. It is plausible that hardware and software 
improvements have changed the situation since then. 

Second, we want to examine additional radio technologies 
available in newer phones, including High-Speed Downlink 
Packet Access (HSDPA) and IEEE 802.11 Wireless LAN. 

Third, we want to determine the effect of different types of 
keep-alive message exchanges. For example, in IPsec, keep-
alive messages are sent only by the client, while in Mobile 
IPv4, the home agent sends back an acknowledgment. 

A. Measurement Setup 
The measurements were performed in Elisa 2G/3G/HSDPA 

network in Helsinki, Finland. Using a live network introduces 
aspects beyond our control (such as RNC configuration), but it 
may also give a more realistic picture than using a test 
network, as was done by Haverinen et al.  

The phone used was Nokia E65 [17], except for HSDPA 
tests which were done with Nokia N95 [18]. All unneeded 
features of the phone, such as Bluetooth and display backlight, 
were turned off during the measurements.   

To measure the energy consumption, we connected the 
phone to a power supply using a “dummy battery” and a high-
precision 0.1 ohm shunt resistor. The dummy battery is an 
adapter commonly used in phone certification testing: it 
emulates the signaling provided by real batteries, and contains 
capacitors to smooth sudden voltage spikes. 

Measurements were recorded using a National Instruments 
DAQPad 6015 data acquisition unit, connected to PC over 
USB. The voltage drop across the shunt resistor was sampled 
at 100 kHz with custom LabVIEW-based software, averaged 
over 100 ms intervals, and post-processed in Excel.  

The software consisted of a Java MIDP application that sent 
keep-alive packets at configurable intervals, and correspond-
ing server software for sending reply packets when needed.  

B. Phone Model and Keep-alive Type 
To determine the impact of phone model and keep-alive 

type, we measured the average power with two different types 
of keep-alive exchanges (a single unacknowledged UDP 
packet,  similar to IPsec, and a two-message exchange with an 
acknowledgment packet, similar to Mobile IPv4), with both 
2G and 3G networks. The measurements were repeated with 

several different keep-alive intervals (20, 40, 60, and 150 
seconds), and without keep-alive messages. 

A trace from typical measurement is shown in Fig. 1, with a 
detail magnified in Fig. 2. Fig. 2 shows clearly the transition 
from idle state to CELL_DCH, staying in CELL_DCH for 
6…7 seconds (“T1” timer), transitioning to CELL_FACH for 
2 seconds (“T2” timer), and eventually back to idle. (See [8] 
for a more detailed description of the state transitions and 
associated timers.) 

Fig. 3 shows the results for 3G with acknowledgment 
packet with different keep-alive intervals. As expected, the 
result fit nicely on a line, and a least-squares fitting results in 
energy consumption of 9200 mJ/keep-alive exchange, plus 29 
mW background consumption.  
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Fig. 1: Power consumption trace of keep-alive messages (with 

acknowledgment) in 3G with 40-second interval.  
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Fig. 2: Detail from Fig. 1, showing the time  

spent in different RRC states. 
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Fig. 3: Average 3G power consumption of keep-alive  

messages (with acknowledgment) with different intervals.  
The least-squares fitted line corresponds to 9200 mJ/keep-alive  

plus 29mW background consumption. 
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Fig. 4: Energy consumed by a single keep-alive exchange, for 
both 2G and 3G, with and without acknowledgment packet.  
 
Fig. 4 summarizes the results of least-squares fitting for the 

other combinations. The background consumption in 2G was 
16…19 mW, significantly less than in 3G. With this particular 
RNC configuration, the cost of a single keep-alive exchange 
was also much smaller in 2G.  

These results are reasonably in line with earlier 
measurements. For 3G network (with T2=2 s and CELL_PCH 
disabled), Haverinen et al. estimate that a single keep-alive 
exchange consumes 0.61 mAh (8100 mJ at nominal battery 
voltage of 3.7 V), with background current of 6.1 mA (23 
mW). We can thus conclude that the impact of phone model is 
small in 2G/3G networks compared to the network parameters 
and keep-alive interval. 

An interesting result is that in 2G, a keep-alive exchange 
with acknowledgment packet consumed almost three times as 
much energy as a single packet. Apparently, the presence of 
downlink packet led to different state transitions in this partic-
ular network configuration. For 3G, there was no significant 
difference.  

We also tested a simple application-layer keep-alive 
exchange over TCP; although this results in three packets (the 
client has to send TCP ACK last), the energy consumption 
was basically the same as with two-packet exchange. 

C. HSDPA 
The second set of measurement investigated the impact of 

HSDPA. We measured the power consumption of a two-
message keep-alive exchange with plain 3G and HSDPA, 
using two different keep-alive intervals (20 and 40 seconds). 
Fig. 5 shows the average power in these four cases.  

In this particular network setup, there does not seem to be 
significant difference between plain 3G and HSDPA. The 
phone display indicators also suggested that HSDPA channels 
were allocated only during heavy traffic (such as web 
browsing), and normal 3G channels were used when sending 
only keep-alives. 

D. Wireless LAN 
Wireless LAN measurements were performed in a Nokia 

office 802.11b/g network used mostly for voice-over-IP. No 
attempt was made to control for Wireless LAN network 
settings known to have impact on energy consumption, such  
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Fig. 5: Average power consumption of a keep-alive  

exchange (with acknowledgment) on Nokia N95,  
comparing 3G (without HSDPA) with HSDPA.  

 
as beacon and DTIM periods, U-APSD, and ARP caching (see 
[19] for discussion). 

Fig. 6 shows the average power at different keep-alive 
intervals. The energy consumed by keep-alive messages is 
significantly smaller than in 2G and 3G, so the limitations of 
the measurement setup and background noise are more visible. 
However, we can estimate that the cost of a single keep-alive 
message to be around 200…400 mJ. 

The type of keep-alive exchange was not important for 
WLAN. 
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Fig. 6: Average Wireless LAN power consumption of  
keep-alive messages (with acknowledgment) with different 

intervals.  The least-squares fitted line corresponds to  
280 mJ/keep-alive plus 33 mW background consumption. 

 

E. Discussion  
Although we are not aware of other papers (beyond [8]) that 

measure energy consumption of keep-alive messages specif-
ically, it is interesting to compare our results with other mea-
surements about idle energy consumption. 

Several authors have studied power consumption of IEEE 
802.11 Wireless LANs. One recent paper by Agarwal et al. [2] 
reports that two CompactFlash 802.11b cards, intended for 
PDAs, consumed about 260 mW in idle (power save) mode. 
This figure includes only the network interface, not the PDA 
itself. The same paper also reports that Cingular 2125 smart 
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UDP: packet 
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Fig. 7: Overview of TCP Wake-Up with Mobile IPv4. 

phone (based on Windows Mobile 5.0) consumed 440 mW 
when connected to Wi-Fi network (this includes the whole 
phone). In another recent paper, Rahmati and Zhong report 
idle (power save) mode power consumption of 70…300 mW 
(for the wireless LAN interface alone) for three Windows 
Mobile-based smartphones [22]. 

These figures are remarkably different from our Wireless 
LAN measurements (33 mW background consumption for the 
whole phone), suggesting that low-power Wireless LAN 
chipsets are an area of active development, and vary signif-
icantly from product to product.  

III. TCP WAKE-UP 
In this section, we introduce “TCP Wake-Up”, an extension 

to Mobile IPv4 and IPsec NAT traversal mechanisms. 
A typical session using this extension would look as follows 

(also shown in Fig. 7): 
1. During the Mobile IPv4 registration, the home agent 

provides the client with the information it needs to establish a 
TCP connection (a port number) and link it to the Mobile IPv4 

registration (a connection identifier). A secret key that will be 
used to authenticate the TCP connection is also established. 
The extensions to Mobile IPv4 registration request/reply  
messages are described in detail in Section III.A, and the 
corresponding IPsec/IKE extensions in Section III.B. 

2. When the client is not idle, it sends UDP keep-alives as 
usual.  

3. The client establishes a TCP connection to the port given 
by the home agent, sends the connection identifier, and 
performs authentication using the key established earlier. The 
TCP connection can be established when the client registers 
with the home agent, or it can be postponed until the client is 
about to enter idle mode.  The TCP-based protocol is de-
scribed in detail in Section III.C, and the authentication 
mechanism (and its justification) in Section III.D.   

4. When the client has become idle, it informs the home 
agent (requesting the home agent to send TCP-based wake-
ups), and stops sending normal UDP keep-alives. The client 
detects that it has become idle based on, e.g., the amount of 
recently sent and received packets in the Mobile IPv4 tunnel. 
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After a while, the UDP NAT mapping expires.  Keep-alives 
are still sent over the TCP connection to keep its mapping 
alive. 

5. Later, when the home agent has a packet to be sent to the 
client, it sends a wake-up message over the TCP connection. 
(As before, it also sends the packet using UDP encapsulation, 
although it is quite likely this packet will be dropped by the 
NAT since it cannot find the correct mapping.) 

6. When the client receives the wake-up message, it sends a 
new registration request message. This causes a new NAT 
mapping to be created, and communicates this information to 
the home agent (most likely the port number assigned by the 
NAT has changed). The client also starts sending UDP keep-
alives again, and informs the home agent that it has left idle 
mode (TCP-based wake-ups are no longer needed). 

7. Eventually, the correspondent node that sent the packet in 
step 5 will retransmit; as the NAT mappings are now fully up-
to-date, the packet will be received as usual. (A possible 
optimization is to buffer the packet at home agent, and send it 
only once the new NAT mapping is ready; this is discussed in 
Section IV.D.) 

Waking up can also be triggered by an outgoing packet at 
the client. The procedure for updating the NAT mapping and 
leaving idle mode is the same as above.  

The procedure for IPsec VPNs is essentially similar, except 
that the information in step 1 is carried in IKEv2 messages, 
and in step 6, any authenticated message is sufficient to update 
the NAT mapping information in the VPN gateway. 

A. Mobile IPv4 Extension 
TCP Wake-Up requires an extension to the Mobile IPv4 

registration messages. The basic requirements are to (1) 
determine whether the home agent supports this feature, (2) to 
communicate the TCP port number and (3) a connection 
identifier, and (4) to agree on a key used to secure the TCP 
connection. 

To take the TCP Wake-Up feature in use, the client includes 
a TCP-WAKE-UP-SUPPORTED extension in the registration 
request. If the home agent supports this feature, the home 
agent includes a TCP-WAKE-UP extension in the registration 
reply. If the home agent does not support the feature, it ignores 
the client’s extension and responds as usual. 

The TCP port number and connection identifier could be 
either agreed implicitly (e.g., use a well-known TCP port, and 
the home address as the connection identifier), or explicitly 
communicated. To provide implementation flexibility, we 
decided to let the home agent select these, and included them 
the TCP-WAKE-UP extension in the registration reply. 

The final requirement is to agree on a key to be used to 
authenticate the TCP connection. The client and home agent 
already share a key, the Mobile Node–Home Agent (MN–HA) 
key, which is used to authenticate the registration messages. 
We decided to derive a new key from this existing key.  Since 
the MN–HA authenticator field is usually calculated with 
HMAC-MD5, we derived a new key with as HMAC-
MD5(MN–HA key, 0x00 | “TCP Wake-Up” | nonce). The 
leading zero byte guarantees that we do not conflict with the 
use of MN–HA key for computing the MN–HA authenticator 
field, and a nonce selected by the home agent provides 
freshness.  

B. IKEv2 Extension 
In case of IPsec, similar extensions can be added to IKEv2 

[13] messages. To indicate support for TCP Wake-Up, the 
client includes a TCP_WAKE_UP_SUPPORTED notification 
in the IKE_AUTH request.  If the gateway supports TCP 
Wake-Up, it replies with a TCP_WAKE_UP notification, 
which contains the TCP port number and connection 
identifier. 

These IKE messages are encrypted, so the key for TCP 
Wake-Up is randomly generated by the gateway, and sent to 
the client.  

C. TCP Wake-Up Protocol 
The TCP Wake-Up protocol is very simple, and there are 

only three different message exchanges. The same protocol 
can be used with both Mobile IPv4 and IPsec. 

The “Start” message is sent by the client once it has 
established the TCP connection, and contains the connection 
identifier agreed on during Mobile IPv4 registration or IKE 
SA establishment. The home agent/gateway uses the 
connection identifier to find its local state, and replies with a 
“Challenge” message, containing a random nonce used to 
authenticate the client. The client completes the exchange with 
“Response” message, containing a MAC calculated using the 
agreed-on key and the challenge provided by the home agent. 

The second possible exchange is used to enable or disable 
TCP-based wake-ups; the client sends either “Enable” or 
“Disable” message (consisting of a single byte), and the home 
agent/gateway replies with an “Ack”. This exchange can also 
be used to verify that the TCP connection is working. 

The third exchange is the actual “Wake-Up” message; a 
single byte sent by the home agent/gateway, which acknowl-
edged by the client. 

D. Security Mechanisms 
The authentication of the TCP connection between the 

client and home agent/gateway deserves some explanation. In 
particular, why is authentication needed at all, and why the 
individual messages are not protected as well? 

There are basically three different threats associated with 
the TCP wake-up connection. 

First, an attacker could open a TCP connection to the home 
agent and pretend to be a valid client. The attacker would then 
receive notifications when the client has incoming packets. 
This would allow an attacker who is not otherwise able to 
eavesdrop the packets to perform some kind of traffic analysis. 
This threat is mitigated by requiring that the parties are 
authenticated when the TCP connection is established, and the 
key is agreed in a secure way. 

Second, an attacker could prevent the client from waking up 
when it should, causing incoming packets to be dropped by the 
NAT.  This attack can be carried out by attackers who are on 
the path between the client and the gateway; cryptographically 
protecting the wake-up messages would not change the 
situation. 

Third, an attacker could unnecessarily wake up the client 
without a good reason, leading to unnecessary power con-
sumption (called “sleep deprivation torture” by Stajano and 
Anderson [29]). This attack can also be carried out by an 
attacker who is on the path between the client and the 
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gateway, or is otherwise able to send packets that reach the 
client. In general, cryptographically protecting the wake-up 
messages would not change the situation significantly, since 
the client has already woken up to verify the packet. 

To summarize, the authentication of the TCP connection is 
intended to counter the first threat, traffic analysis by off-path 
attackers. The two latter threats would not be significantly 
affected by per-message cryptographic protection, so that was 
not done in order to keep the protocol as simple as possible. 

It could be claimed that the first threat is also quite 
unrealistic, and could be mitigated by requiring that the 
gateway chooses connection identifiers in an unpredictable 
manner. This is to some degree true, but it was felt the 
protocol looks more elegant this way.    

IV. ANALYSIS 
In this section, we analyze the impact of TCP Wake-Up. 
Subsection A describes the keep-alive message intervals 

used for this analysis, and their justification. Based on the 
selected keep-alive interval, Subsection B estimates how much 
energy could be saved, and Subsection C performs similar 
calculations for traffic volume. 

The savings in energy consumption and traffic volume do 
not come without some costs: Subsection D discusses addi-
tional delay due to TCP-based wake-up, and Subsection E de-
scribes implementation considerations. 

A. Keep-Alive Message Interval 
Table 1, reproduced from [8], shows the default connection 

state timeout values for some common NAT and firewall 
products. 

For the reminder of this section, we assume that UDP-based 
traffic will require keep-alive messages once every 30 
seconds, and TCP will require 600 seconds (10 minutes). This 
is a somewhat pessimistic assumption, as some products use 
significantly longer timer values. For example, NATs com-
pliant with the IETF BEHAVE working group specifications 
use a default timeout of at least 124 minutes for TCP and 120 
seconds for UDP [3][7].  

However, reliably determining what timeout is used by the 
NAT is difficult. For example, earlier versions of STUN 
specification [23] included a “binding lifetime discovery” pro-
cedure; however, this was removed from the main STUN 
specification, as it was found to be brittle and prone to error 
[24].  Mobile IPv4 and MOBIKE [6] messages can, in some 
cases, be used to detect NAT timeouts. 

Most importantly, these lifetime discovery mechanisms 
usually work on with NATs, not stateful firewalls. 

 
Product TCP timeout UDP timeout
Check Point NG FP2 firewall  60 min 40 s 
Cisco IOS router NAT  1440 min 300 s 
Cisco PIX firewall  60 min 120 s 
Juniper Netscreen firewall  30 min 60 s 
Nokia IP VPN gateway  60 min 120 s 
ZyXEL Prestige 660W/HW ADSL router  60 min 60 s 
ZyXEL ZyWALL 70 firewall  150 min 180 s 

 
Table 1: Default connection state timeout values for some 

firewall/NAT products (reproduced from [8]) 

B. Energy Consumed by Keep-Alive Messages 
Fig. 8 shows the estimated average power for normal 

Mobile IPv4 NAT traversal (with 30-second UDP keep-alives) 
and TCP Wake-Up (with 600-second TCP keep-alives), for 
2G, 3G, and WLAN. 

The figure shows that with the RNC configuration 
measured in Section II, TCP Wake-Up would have four times 
longer stand-by time in 2G, and over seven times longer stand-
by time in 3G. For WLAN, the effect would be minimal.  

It should be noted that, as shown in [8], the numbers depend 
heavily on RNC configuration. However, even with the most 
optimistic RNC configuration described in [8] (CELL_PCH 
enabled, T2 set to 2 seconds), TCP Wake-Up would still 
double the stand-by time. This is clearly a huge improvement. 
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Fig. 8: Estimated power consumed by normal Mobile IPv4  

NAT traversal (30-second UDP keep-alives) vs.  
TCP Wake-Up (600-second TCP keep-alives).  

 

C. Keep-Alive Message Traffic Volume 
While the most important cost of keep-alive messages is 

probably energy consumption, they also consume bandwidth. 
In the basic Mobile IPv4 case, a keep-alive message 

consists of the following fields (the reply packet sent by the 
home agent is of the same size): 

 
Field(s) Size (bytes)
Outer IPv4 header 20 
UDP header 8 
MIP tunnel data message header  4 
Inner IPv4 header 20 
ICMPv4 header 8 
Echo data  0+ 
Total  60+ 

 
For IPsec, the packet is as follows (the gateway does not 

reply to the keep-alive message): 
 

Field(s) Size (bytes)
Outer IPv4 header 20 
UDP header 8 
Keep-alive payload 1 
Total  29 
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For TCP Wake-Up (reply packet is similar size; the final ACK 
from client does not have any data) 

 
Field(s) Size (bytes)
Outer IPv4 header 20 
TCP header 20 
TCP options and padding 0+ 
Data 1 
Total  41+ 

 
Fig. 9 shows the total keep-alive traffic volume for a home 

agent/gateway with 10,000 clients. For Mobile IPv4, TCP 
Wake-Up reduces the daily traffic volume from 3.5 GB to 180 
MB. However, while the decrease—over 3 GB—sounds large, 
it is probably small compared to the total traffic volume of a 
home agent with 10,000 clients. 
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Fig. 9: Keep-alive traffic volume (per day) for a  

home agent/gateway with 10,000 clients. 
 

D. Wake-Up Delay 
In the design considered so far, the home agent/gateway 

never buffers data packets directed to the client. This means 
that the first data packet after wake-up is usually dropped by 
the NAT, since the necessary state has not been established 
yet. This is not very serious, since the host trying to contact 
the client has to accommodate for packet loss anyway, and 
will eventually retransmit.  

However, waiting for the host to retransmit does result in 
some extra delay. The significance of this delay depends on 
the applications used.  For example, email end-to-end delivery 
time is at least tens of seconds, so small additional delay is 
inconsequential. For voice-over-IP call establishment, the 
delay is directly visible to the calling party, so optimizing it is 
more important.  

A possible optimization would be for the gateway to buffer 
the packet, and transmit it once the new NAT mapping has 
been established. This would reduce the extra delay due to 
TCP Wake-Up to roughly 1 round-trip time (assuming that the 
delay is mostly due to round-trip time, and not, e.g., 
processing time, is probably reasonable in 2G/3G). However, 
this would increase implementation complexity of the IP 
forwarding path. 

E. Implementation Considerations 
TCP Wake-Up introduces at least one potential scalability 

concern for home agent/gateway implementations. Histor-

ically, TCP/IP stacks were not designed to handle a very large 
number of concurrent TCP connections (see e.g. [14]). With 
TCP Wake-Up, a large home agent or VPN gateway could 
potentially require tens of thousands of TCP connections. 

This question has been investigated by Shemyak and 
Vehmanen [25] in the context of SIP servers; their results 
show that scalability depends significantly on implementation 
details, but when proper APIs are used, even a low-end Linux 
box can handle 100,000 simultaneous TCP connections. 

However, using TCP may still complicate implementation 
of high-availability features, such as transparent synchro-
nization with a “stand-by” backup node.  

V. ALTERNATIVE SOLUTIONS 
In some sense, TCP Wake-Up is a “patch solution” that 

would not be needed in an ideal networking system. This 
section discusses alternative solutions to the problem of keep-
alive energy consumption. 

The obvious alternatives, reducing the energy consumed by 
a single keep-alive message, and using longer NAT/firewall 
timeouts, are discussed in Subsections A and B, respectively. 
Subsection C describes the use of TCP-based protocols in 
general, and Subsection D examines approaches that avoid the 
need for keep-alives completely by sending wake-up messages 
“out-of-band” (not going through the NAT/firewall). 

A. Reducing the Cost of Single Keep-Alive 
The results of Section II and [8] show that the energy 

consumption of a single keep-alive exchange depends heavily 
on the details of the particular radio technology and its 
parameters.  While energy consumption has been considered 
in the design of these radio technologies, it has focused largely 
on idle mode (with no traffic at all) and voice calls, and 
regular “background traffic”, such as keep-alives, has received 
little attention. 

Some HSDPA features, such as HS-SCCH-less operation 
and enhanced CELL_FACH (see Peisa et al. [20]) could be 
expected to eventually decrease keep-alive energy consump-
tion. These features decrease signaling overhead and latency, 
and thus enable using shorter RRC timer values without 
sacrificing user experience. However, the measurements in 
Section II show that these savings are not necessarily realized 
in current HSDPA networks. 

Energy consumption of Wireless LANs has also received 
significant attention from researchers (see e.g. [21] and its 
references); however, a more detailed discussion is beyond the 
scope of this paper. 

B. Increase Keep-alive Interval 
Haverinen et al. [8] and the IETF BEHAVE working group 

specifications [3][7] recommend using relatively long 
timeouts in NATs and firewalls, reducing the need for keep-
alive messages. While such recommendations can improve the 
situation in the long term, in short term the NATs are often 
beyond the control of, e.g., consumers and enterprises wanting 
to use always-on applications with mobile phones. Also, as 
noted in Section IV.A, reliably determining the timeout 
currently in use is not simple; recent work in this area includes 
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the Self-Address Fixing Evolution (SAFE) proposal in 
IETF [12].  

Middlebox signaling protocols (see [5] for one recent 
survey) would allow the client to explicitly request a longer 
timeout for a particular traffic flow, but such protocols have 
not seen widespread deployment, especially in 2G/3G net-
works. 

C.  Use TCP-based Protocols 
One obvious solution for frequent UDP keep-alives is, of 

course, to use TCP instead. This could mean, for example, 
handling connection disruptions (such as IP address changes 
due to mobility) in the application layer—which many 
applications already do—and using SSL/TLS for security, 
either end-to-end or with SSL VPNs. 

It is also good to note that some IPsec products do support 
TCP encapsulation for IPsec (e.g., “Visitor mode” in Check 
Point SecureClient [4]), and that some SSL VPN products, 
despite their name, actually do not use SSL or TCP for all 
traffic [27]. Thus, the performance differences between these 
approaches are not necessarily obvious; for example, Snyder 
[27] discovered that running voice-over-IP traffic over TCP 
does not necessarily degrade call quality. 

D. Out-of-Band Wake-Up 
A device with multiple network interfaces can also save 

energy by completely powering off some interfaces, and 
possibly leverage energy consumption differences between 
radio technologies. For example, Shih et al. [26] propose 
including a secondary low-power radio interface, which is 
used to wake up the client, allowing switching off the main 
Wireless LAN interface. Agarwal et al. [1] propose a similar 
scheme using Bluetooth as the secondary radio. 

Other proposals use non-TCP/IP based protocols to 
completely remove the need for NAT/firewall keep-alive 
messages.  For example, a number of protocols defined by 
Open Mobile Alliance (OMA), such Multimedia Messaging 
Service (MMS) and Device Management (DM), use text 
messages (SMS) to “wake up” the phone. Agarwal et al. [2] 
GSM caller ID signaling as the wake-up channel. However, 
using non-TCP/IP-based protocols complicates the system, 
and may require operator involvement. 

VI. CONCLUSIONS AND FUTURE WORK  
In this paper, we have analyzed the energy consumption of 

keep-alive messages on a mobile phone with 2G, 3G, HSDPA 
and Wireless LAN networks. The results show that “always-
on” applications with long-lived persistent connections cannot 
be based solely on UDP if they aim to be usable in current 
2G/3G networks. 

To allow Mobile IPv4 and IPsec VPNs to be used in such 
environments, we introduce TCP Wake-Up, an extension to 
Mobile IPv4 and IPsec NAT traversal mechanisms which 
avoids the need for UDP keep-alives when the connection is 
idle. The analysis in Section IV shows that TCP Wake-Up 
could extend the battery lifetime by a factor of 2 to 7.  

TCP Wake-Up requires changes only in the client and home 
agent/VPN gateway, but not in the network elements (such as 
radio access networks, NATs, and firewalls) between them, 

and thus it can be deployed by e.g. an enterprise. This 
differentiates TCP Wake-Up from many other solutions dis-
cussed in Section V.  

However, improvements in other areas—such as HSDPA 
energy consumption with improved signaling procedures—
could eventually reduce the improvement offered by TCP 
Wake-Up. Future studies on these topics are therefore rec-
ommended. Future work could also include extending the TCP 
Wake-Up concept to other protocols that include IP-over-UDP 
tunneling, such as Dual-Stack Mobile IPv6 [28] and Teredo 
[10]. 
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After we had completed the TCP Wake-Up specification,  
we discovered that something similar—using a “back-up” 
TCP connection between IPsec VPN client and gateway—had 
been proposed by David Mason already in 2001  [16]. How-
ever, as far as we know, this proposal never went beyond one 
email on the IETF IPsec working group mailing list. 
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