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Abstract

THIS thesis proposes signal processing methods for the analysis of musical audio
on two time scales: drum transcription on a finer time scale and music structure

analysis on the time scale of entire pieces. The former refers to the process of locating
drum sounds in the input and recognising the instruments that were used to produce
the sounds. The latter refers to the temporal segmentation of a musical piece into parts,
such as chorus and verse.

For drum transcription, both low-level acoustic recognition and high-level musico-
logical modelling methods are presented. A baseline acoustic recognition method with
a large number of features using Gaussian mixture models for the recognition of drum
combinations is presented. Since drums occur in structured patterns, modelling of the
sequential dependencies with N-grams is proposed. In addition to the conventional N-
grams, periodic N-grams are proposed to model the dependencies between events that
occur one pattern length apart. The evaluations show that incorporating musicological
modelling improves the performance considerably. As some drums are more proba-
ble to occur at certain points in a pattern, this dependency is utilised for producing
transcriptions of signals produced with arbitrary sounds, such as beatboxing.

A supervised source separation method using non-negative matrix factorisation is
proposed for transcribing mixtures of drum sounds. Despite the simple signal model, a
high performance is obtained for signals without other instruments. Most of the drum
transcription methods operate only on single-channel inputs, but multichannel signals
are available in recording studios. A multichannel extension of the source separation
method is proposed, and an increase in performance is observed in evaluations.

Many of the drum transcription methods rely on detecting sound onsets for the seg-
mentation of the signal. Detection errors will then decrease the overall performance
of the system. To overcome this problem, a method utilising a network of connected
hidden Markov models is proposed to perform the event segmentation and recogni-
tion jointly. The system is shown to be able to perform the transcription even from
polyphonic music.

The second main topic of this thesis is music structure analysis. Two methods are
proposed for this purpose. The first relies on defining a cost function for a description
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of the repeated parts. The second method defines a fitness function for descriptions
covering the entire piece. The abstract cost (and fitness) functions are formulated in
terms that can be determined from the input signal algorithmically, and optimisation
problems are formulated. In both cases, an algorithm is proposed for solving the opti-
misation problems. The first method is evaluated on a small data set, and the relevance
of the cost function terms is shown. The latter method is evaluated on three large
data sets with a total of 831 (557+174+100) songs. This is to date the largest evalu-
ation of a structure analysis method. The evaluations show that the proposed method
outperforms a reference system on two of the data sets.

Music structure analysis methods rarely provide musically meaningful names for
the parts in the result. A method is proposed to label the parts in descriptions based on
a statistical model of the sequential dependencies between musical parts. The method
is shown to label the main parts relatively reliably without any additional informa-
tion. The labelling model is further integrated into the fitness function based structure
analysis method.
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Chapter 1
Introduction

FOR most people, listening to music is a natural behaviour learnt already as a baby
from the nursery songs. People learn to listen to music through constant habitu-

ation instead of systematic teaching. Developing algorithmic music content analysis
systems can be considered as teaching computers to listen to music. At the current state
of music content analysis systems, the computer is barely able to recognise some of
the instruments used, analyse some of the underlying rhythmic structures, track some
of the most prominent harmonic sounds, and recognise some parts of the song-level
structure. Many of these tasks are near-trivial to people without any formal musical
training, and still computers struggle to accomplish them. Two specific music con-
tent analysis tasks will be discussed in this thesis in more detail: drum transcription
and music structure analysis. Before discussing them more, a brief introduction to the
wider context of this research is presented.

1.1 Music Content Analysis

In a computer system, an acoustic signal is typically presented as a sequence of sam-

ple values which correspond to the pressure level variations in the medium (e.g., air)
the sound is propagating. Though the digital signal contains all the information of the
sound, it must be interpreted somehow. This is usually done by extracting features

describing some higher-level properties of the signal. Further processing of the fea-
tures to extract even higher-level information from the signal is called audio content

analysis. Performing this analysis on everyday soundscapes is referred to as compu-

tational auditory scene analysis [Ell96]. Automatic music content analysis aims to
extract information from musical audio, i.e., aim to teach computers to listen to music.
Though music listening can be considered to be a mental process including semantic
processing of the acoustic information, a basis for it is the low-level signal processing.
Music content analysis can be seen as the opposite of music synthesis [Roa96, Väl06]
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where the aim is to generate the sample values based on a high level description of the
content.

The input audio to music content analysis systems is usually monaural, i.e., having
only one channel, or stereophonic with two input channels. If the signal is produced
so that it contains only one sound at a time, e.g., a single person singing, it is said to
be monophonic. However, monophonic music is only a small part of all the music.
Most music pieces are polyphonic, containing several instruments playing simulta-
neously. Sound source separation aims to process polyphonic signals to recover the
monophonic streams [Vir06].

1.1.1 Related Research Topics

Music content analysis often starts by analysing the spectral (or frequency) content of
the signal. In harmonic sounds the frequency components are approximately integer
multiples of the fundamental frequency. When hearing a harmonic sound, the funda-
mental frequency is often perceived as the pitch of the sound. The modelling of pitch
perception in the auditory system is a wide research topic itself [dC06]. The pitch in-
formation can be used for melody transcription [Pol07], where the pitch is quantised
into notes with specific heights and durations. Melody can be produced by any pitched
instrument, and singing transcription [Ryy06] is a specific sub-task of it. Music often
contains several simultaneous pitches forming, e.g., chords. Though pitch estimation
has been studied for a long time now, and can be considered to be solved in many
cases, multipitch estimation [Kla08] is a considerably harder problem. Still, some en-
couraging results have been obtained in simultaneous transcription of melody, chords,
and bass line from popular music [Ryy08a].

In addition to the pitched content, another important aspect of music is the timing
of the sound events. Locating the start times of sounds is referred to as onset detec-

tion [Bel05]. The onset times and durations of sounds form the basis for the rhythm

of a piece. Musical rhythm is often considered to be a hierarchical concept and the
analysis of the hierarchy is referred to as musical meter analysis [Hai06, Kla06b]. The
metrical pulse at the lowest level (finest temporal resolution) is called tatum, and it co-
incides most of the sound onsets. The next level, tactus, is more common for a music
listener as beat, corresponding to the rate a listener would tap a foot while listening to
a song. The number of beat events in a minute is referred to as tempo. The analysis of
the tactus level, beat tracking, has been studied the most from the hierarchical rhyth-
mic structure [Dix07, McK07]. The next natural level on the hierarchy is measure or
bar length defining a temporal grouping of the lower level events. The drum patterns

in music often repeat once or twice within a measure.
Various aspects of music content analysis, especially transcription, from the point

of view of signal processing are discussed in [Kla06a]. The research on music con-
tent analysis methods has gained quite much interest, and different methods for some
most popular tasks are evaluated in the annual Music Information Retrieval Evaluation
eXchange (MIREX) [Dow08] which is organised in conjunction with the International
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Society for Music Information Retrieval Conference (ISMIR)1. Some of the popular
evaluation tasks in include multipitch estimation, beat tracking, and chord detection.
Though the target concepts in these tasks are already quite high-level musically mean-
ingful entities, some tasks aim to even higher, almost semantic, level attempting to
recognise, e.g., the musical genre [Sca06, Lid07]. Though the tasks differ quite much,
it has been demonstrated [Pee08] that one basic machine learning method can be ap-
plied successfully for mood and genre classification, artist recognition, and tagging

the pieces with semantic labels.

1.1.2 Drum Transcription

The first main topic of this thesis is drum transcription. The word “drum” is here used
to denote the unpitched percussions used in Western music, especially in pop, rock and
jazz. Examples of these include bass drum, snare drum, cymbals, and tom-toms, that
are often arranged into a drum kit. In a more strict definition [Fle98], “drum” refers
only to membranophones having a membrane (a skin) stretched over an opening of
a cavity, e.g., a bass drum or tom-toms. For convenience, the definition of a “drum”
is here extended to include also some idiophones, which are rigid bodies vibrating
as a whole, such as cymbals. The main difference between pitched (transcription of
melodies, chords etc.) and drum transcription is that there is no specific pitch infor-
mation associated with the drums (kettle drums used more often in classical music are
an exception of this, but they are not included in the target drum set in this thesis).
Additionally, the drums are freely decaying sound sources that do not have an explicit
duration, instead only the onset time is important. In a way, drum transcription has
much in common with instrument recognition [HB06, Ero09].

The drum transcription methods are closely motivated by applications, especially
music production related ones. If, e.g., a poor drum set or noisy microphones cause
some sound quality problems in the recording, it would be useful to be able to recreate
the played sequence with some other sounds. An example of this kind of a drum re-

placement application is DrumTracker by Toontrack2. In case the sound of the record-
ing is adequate, but the sequence played needs editing, an automatic sampling applica-
tion, such as FxPansion GURU3, will be useful. Music listening has traditionally been
relatively passive action, and adding some interactivity is an interesting future path.
The applications Inter:D [Yos05] and Drumix [Yos07a] allow editing the drum content
while listening to the song. Different applications targeted for studios allowing manip-
ulation of existing recordings are a large potential customer base. In a less entertain-
ment oriented context searching for a specific drum loop from a large database can be
done with an example. It is even possible to produce the query with arbitrary sounds,
e.g., by beatboxing (imitating drum sounds by speech-like utterances) [Gil05b]. For

1http://www.ismir.net/
2http://www.toontrack.com/
3http://www.fxpansion.com/
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more academic applications, it would be possible to create automatic teaching tools
for learning drumming, or to musicological research of the drum track content starting
from acoustic data instead of symbolic.

1.1.3 Music Piece Structure Analysis

The second main topic of this thesis is music structure analysis [Dan08]. Many popu-
lar music pieces have a sectional form, meaning that the piece can be subdivided into
musical parts which may be repeated. The temporal scale of musical parts is con-
siderably longer than the one with musical measure, e.g., the duration of a part may
be 20–40 s. Examples of the musical parts on this level include “intro”, “verse”, and
“chorus”. In the context of this thesis, music structure analysis refers to the process of
finding a segmentation of the piece into occurrences of musical parts, and the possible
subsequent grouping of occurrences of the same musical part.

The research on music structure analysis has also been motivated by applications.
Music thumbnailing means extracting a representative sample of a piece, e.g., in online
music stores [Zha07], or for a mobile phone ring tone [Ero09]. The representative sam-
ples can be used to identify different versions of the same piece [Góm06]. Continuing
the interactive listening experience, the knowledge of the piece structure allows a user
to navigate within the piece easily, as demonstrated by SmartMusicKIOSK [Got03]
and SemanticHIFI [Vin05] players. Especially in modern highly produced music, the
different occurrences of a part may be very similar, and this similarity can be utilised
in audio compression [Rao04]. The music structure is not necessarily so prominent
in classical music, but still it can be used for synchronising different representations
of the same piece. In SyncPlayer [Mül07a] the matched versions can be both audio,
or audio and a symbolic, e.g., a score. The subdivision of a piece to musical parts
allows also combining musically meaningful segments from different pieces to create
a mash-up. Learning some structural properties from the signals and attempting to cre-
ate music algorithmically has also been proposed [Jeh05]. Further applications include
controlling light scenes in synchrony with the music in clubs.

1.2 Objectives of the Thesis

This thesis proposes methods for two music content analysis tasks: automatic tran-
scription of unpitched percussions, and analysis of music piece structure. The methods
operate on acoustic input signals, and produce a description of the desired aspect of
the content.

The drum transcription part of the thesis proposes several alternative methods for
signals ranging from signals containing only drum sounds to full polyphonic music.
The set of the target drums has to be set in advance, and in most cases is restricted to
bass drum, snare drum, and hi-hat. In other words, the task is to locate the temporal
locations where the target drums occur in the input signal. The recognition of indi-
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vidual monophonic drum hits can be considered as a special case of transcription, and
will not be discussed as a part of this thesis. In the context of the low-level analysis,
developing new acoustic features and classification methods are not in the scope of
this thesis. In addition to the bottom-up analysis, simple methods for using repetitive
rhythmic structures to provide top-down information to assist in the transcription are
discussed.

The second main objective of this thesis is to propose methods for musical piece
structure analysis, i.e., providing a description of the sectional form of a piece. The
description can consists only of parts that occur more than once during the piece, or it
can cover the entire duration of the piece. Though the main objective in music structure
analysis is to produce a temporal segmentation of the piece and a grouping of segments
representing the same musical part, a secondary objective in this thesis was to provide
the groups musically meaningful names, such as “chorus” or “verse”.

1.3 Main Results of the Thesis

The main results and contributions of the publications included in the thesis are listed
in the following, organised by the topic.

1.3.1 Drum Transcription

The following publications [P1]–[P5] discuss the problem of drum transcription.

Publication 1

Publication [P1] proposes a method to transcribe polyphonic drum signals, i.e., signals
containing only drum sounds. The main contribution of the publication is propos-
ing the use of musicological modelling of the temporal dependencies between drum
sound events. In addition to the conventional N-grams producing predictions based on
the directly preceding context, the publication proposes the use of periodic N-grams
that utilise the information from locations at pattern length intervals. The acoustic
modelling unit in the publication is a combination of drum sounds, i.e., multiple si-
multaneous drum hits. Because of the combination modelling the N-gram alphabet
size increases rapidly causing zero-occurrence problems in estimating the probabili-
ties. The publication proposes decomposing the prediction to handle individual drums
separately, and producing the combination prediction probabilities by combining these.
The proposed method is evaluated with signals synthesised from a commercial MIDI
drum track database, and the results show the importance of musicological modelling
to aid the acoustic recognition.
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Publication 2

Publication [P2] describes a method to produce a transcription from an acoustic signal
produced with arbitrary monophonic sounds instead of real drum instruments. In other
words, the input may be produced, e.g., with beatboxing or tapping any surrounding
objects, but only one sound may be active at a time. The output is a transcription of
the events so that each unique sound event is mapped to a drum in a “regular” pop and
rock drum kit, based on its rhythmic role. The main contribution of the publication
is proposing the concept of rhythmic roles: a model of the probability of different
drum sounds to occur at different points within a drum pattern. The proposed method
is evaluated on the same database as [P1], but the synthesis was done with various
multisampled beatboxing and tapping sounds. The results suggest that method is able
to produce meaningful transcription from an input in which the sounds used do not
have any direct acoustic correspondence with the drum label.

Publication 3

Publication [P3] proposes a method for transcribing polyphonic drum signals. The
method uses spectral templates for the target drums and estimates the time-varying
gains for each of them given the input signal. The gain estimation relies on non-
negative matrix factorisation. Sound event onsets are then searched from the esti-
mated gains with a psychoacoustically motivated onset detection method. The pro-
posed method is evaluated with an in-house database of drum recordings with varying
acoustic properties, and compared with two other methods proposed in the literature.
The results suggest that the method works very well when the target signal and the
used models match.

Publication 4

Publication [P4] presents an extension of the method from [P3] to multichannel record-
ings. The motivation for this is that in a studio environment the drum kit is recorded
with several microphones, and these signals are available when editing the drum tracks.
The proposed method assumes that the different microphone channels are able to pro-
duce useful information for the transcription process compared to a single-channel
mix-down. In practice, multichannel recordings contain a significant amount of acous-
tic leakage of all drums to all microphone channels which reduces the performance of
more simple methods relying on detecting sound onsets from each microphone chan-
nel. The method extends the signal model of [P3] to consider all of the input channels
simultaneously. The method is evaluated on a publicly available data set for drum
transcription research, and compared with the single-channel method and a naíve mul-
tichannel method relying only on onset detection. The results suggest that the use of
multiple channels, even with such a simple model, improve the transcription accuracy
considerably.
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Publication 5

Publication [P5] studies the use of a network of connected hidden Markov models
(HMMs) in drum transcription from polyphonic music. The publication is based on
two earlier publications [S2] and [S3] that are not included in this thesis. Using HMMs
solves the signal onset detection and drum recognition jointly. Two approaches are
compared: detector-like modelling with “sound” and “silence” models for each target
drum, and modelling of drum combinations. The detector-like modelling was found
to perform considerably better than the combination models. Acoustic feature dimen-
sionality reduction with principal component analysis and linear discriminant analysis
(LDA) are evaluated, and LDA was found to provide a significant performance in-
crease. Finally, unsupervised acoustic model adaptation with maximum likelihood
linear regression is evaluated, but the obtained performance increase was found to be
relatively small. The results suggest that drum transcription from polyphonic music is
possible using established speech recognition methods.

1.3.2 Music Piece Structure Analysis

The following publications [P6]–[P8] included in this thesis discuss the problem of
music piece structure analysis from acoustic input signals.

Publication 6

Publication [P6] proposes a method for analysing music piece structure based on the
repeated parts. The main contribution of the publication is defining a cost function
for descriptions of musical structure with intuitive terms. The publication proposes a
formal definition of the cost function with terms that can be calculated from the acous-
tic input signal. A deterministic search algorithm is presented to solve the resulting
optimisation problem. The method is evaluated on an in-house database of 50 popu-
lar music songs, and the problems of evaluating music structure analysis systems are
discussed.

Publication 7

Publication [P7] proposes a method for assigning musically meaningful labels to struc-
tural description found with some analysis method. The proposed method relies on
modelling the sequential dependencies between musical parts, and searches for an as-
signment that maximises the total N-gram probability evaluated over the description.
An algorithm for the optimisation task is proposed in the publication. The method is
evaluated on two large data sets of musical piece structure annotations, one being an
in-house collection of pieces from various genres, and the other containing the songs
by The Beatles. Even though data analysis shows that the stereotypical structures are
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not so often occurring as was expected, the proposed method is able to assign musi-
cally meaningful labels relatively accurately, taken into account the simplicity of the
model.

Publication 8

Publication [P8] proposes a music piece structure analysis system relying on a prob-
abilistically motivated fitness measure for the descriptions. The fitness measure is
based on the idea that occurrences of a musical part are similar to each other, and
differ from those of the other parts. The concept of similarity and difference is for-
mulated in terms of the probability of two musical segments to be occurrences of the
same part. The probability values are determined using different acoustic features and
different similarity aspects described earlier in [S4] using a mapping function learnt
from data. The overall fitness function for structure descriptions is defined with the
pairwise probability values. The optimisation of the fitness function given the acoustic
information is formulated as a path search in a directed acyclic graph with varying
edge costs. A deterministic greedy algorithm is proposed to solve the search prob-
lem, and the greediness of the search algorithm can be controlled with two intuitive
parameters. The fitness function is also extended to include a labelling term, based
on the earlier publication [P7], to provide the description with meaningful labels. The
proposed method is evaluated on three data sets (an in-house data set, songs by The
Beatles, and a set intended for evaluating music information retrieval methods) using
several evaluation measures, and comparing the performance with an existing state-of-
the-art method. The evaluation results suggest that the fitness function based approach
is a viable choice for music structure analysis.

1.4 Organisation of the Thesis

The main topics of this thesis are drum transcription and music structure analysis, both
from acoustic input signal. The rest of this thesis is organised to reflect this division:
Chapter 2 provides an overview of drum transcription, starting from introducing the
problem, and then going through the relevant methods that have been proposed for
solving the problem. Chapter 3 concentrates on music structure analysis, again starting
from providing an introduction to the problem, and then discussing different methods
proposed to solve it. Finally, Chapter 4 summarises the thesis findings and provides
some ideas for future work on these topics.

8



Chapter 2
Drum Transcription

IN the field of automatic music transcription drums have obtained far less consider-
ation than the pitched instruments, such as the piano. The reason for this may be

that drums are often associated with popular (less serious) music and hence have less
importance in academic studies. Even though this might be true, one should note that
drums, in some form, have been used as musical instruments for as long as there has
been any music. This is because, with the exception of singing, there may not be a
simpler way to create an instrument and to play it than to take any two solid objects
and hit them together. In the following, the properties of drum instruments will be dis-
cussed briefly, a definition of the transcription problem will be given, and an overview
of the methods proposed to date to solve the drum transcription task will be provided.
An earlier review of drum transcription methods has been given by FitzGerald and
Paulus [S1].

2.1 General Description of Drums

In this thesis, the word “drum” is used to denote the target instrument of the methods
discussed, such as bass drum or hi-hat. In [S1], the term “unpitched percussion” is
used instead; “unpitched” is used to distinguish drums from all the other percussion
instruments specifically designed to produce a sensation of pitch, e.g., vibraphone,
glockenspiel, or xylophone. Drums appear in various forms around the globe. Being
able to automatically transcribe every existing drum instrument would be a goal worth
reaching, but quite likely impossible to accomplish. This is because of the omnipres-
ence of drums they have obtained numerous physical instantiations of similar basic
ideas. The methods that will be discussed in the following have often been designed
to handle the drums used in Western pop and rock music, but many of the principles
could be applied also to other target drums.

The target drums discussed in the rest of this document are members of either
membranophones or idiophones. In [Fle98], where the physical properties of sound
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production in different instruments are discussed, the word “drum” is used to denote
only membranophones, but here it is extended to include also some idiophones. Idio-
phones are rigid bodies that produce the sound when they vibrate as a whole. Typical
examples of idiophones are vibraphone (each of the metallic bars vibrate, producing a
certain pitch), wooden blocks, and within a drum kit, the cymbals. Membranophones
on the other hand are some sort of hollow bodies that have a membrane or a skin
stretched over an opening. The body can be an otherwise closed body (e.g., kettle
drum), contain another opening with a membrane (e.g., bass drum), or contain an un-
enclosed opening (e.g., bongos).

The excitation to drums is usually produced by hitting the instrument. With idio-
phones, the sound desired determines the hitting region, while with membranophones
usually the membrane is hit (other locations are left mainly to produce accentuations).
The hitting can be done by bare hands (e.g., congas), sticks (most Western pop and
rock drums), mallets (e.g., kettle drums), or brushes (e.g., Western drums in jazz and
blues genres). Naturally, the item used to hit the drum affects the resulting sound. A
bare hand produces a softer sound than a stick, and the hand itself produces a distinct
sound during the impact. The drumsticks are hard and concentrate the impact energy
to a very small point on the drum result into a harsher sound, while the brushes are
often used to replace the stick when a softer sound is desired: the impact point consists
of several flexible bristles softening the hit. The brushes can also be used to sweep the
drum to produce a distinct brushing sound. Mallets, having a soft head in many cases,
also result in a softer sound than the stick, and can be used to create controlled builds
with cymbals (several hits with increasing intensity, adding energy to the vibrating
body and stimulating the ringing without a distinct onset). For the physics related to
the way the excitation affects the drum and produced sound, the reader is referred to
the book by Fletcher and Rossing [Fle98, Part 5].

An example of a Western pop and rock drum kit containing most of the typical
drums is illustrated in Fig. 2.1. The main rhythmic sensation is produced by a bass
drum (denoted with number 4 in the figure), a snare drum (number 6), and a hi-hat
(number 7). The sizes of the drums are often 22 inch diameter for a bass drum, 14 inch
diameter for a snare drum, and 14 inches for a hi-hat. The bass drum is hit by a foot-
operated mallet and it produces a low-frequency sound, an example waveform and the
corresponding spectrogram are illustrated in the top panels of Fig. 2.2. A snare drum is
a smaller membranophone, which is very frequently used in popular music. It has two
skins, both on the top and in the bottom of the drum, and there is a metallic (originally
catgut was used instead [Mai08, p. 491]) snare belt attached across the bottom skin.
When the top skin is hit, the bottom one vibrates against the belt and produces the
rich, very distinct sound. The lowest two panels in Fig. 2.2 contain examples of a
snare drum hit with and without the snare belt. The main difference in the amount of
high-frequency energy is visible in the spectrograms as caused by the snare belt. A hi-
hat is an idiophone that has two metal plates against each other attached to a connecting
arm. The arm is operated by a foot pedal and can be used to press the plates together
(closed hi-hat), let them stay apart (open hi-hat), or hit them briefly together (pedal hi-
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Figure 2.1: A basic drum kit seen from the front. The instruments are from left to right: (1) a
cymbal (crash or ride), (2) a floor tom-tom, (3) a tom-tom, (4) a bass drum, (5) second tom-tom,
(6) a snare drum, and (7) a hi-hat.

hat). Even though hi-hat is a cymbal, it is often distinguished from the other cymbals
in drum transcription method evaluations when defining the target drums because of its
special use. In addition to the three above-mentioned drums, a kit often includes one
or more tom-toms (a semi-pitched, low-frequency membranophone, numbers 2, 3, and
5 in Fig. 2.1), and various other cymbals (e.g., ride cymbals to bring more texture to
the rhythm, and crash cymbals to act as rhythmic accentuations, number 1 in Fig. 2.1.)
The panel second from top in Fig. 2.2 illustrates a crash cymbal hit.

Because the three drums: bass drum, snare drum, and hi-hat are most widely used
to convey the rhythmic feel in popular music, they are often selected to be the target
drums in the transcription systems. Even though it may seem that having only three
targets makes the problem trivial, it can be argued that if these three can be reliably
transcribed, it enables a large variety of information retrieval applications and still the
same principles can be applied on other drums. The importance of the three target
drums compared to the other drums in a drum kit is illustrated also by Fig. 2.3 which
depicts the relative occurrence frequencies of different drums in ENST drums [Gil06]
and RWC Popular music [Got02] data sets. The importance of the three target drums
is visible in the graphs.
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Figure 2.2: Example waveforms and spectrograms of three frequently occurring drums (from
top to bottom): bass drum, crash cymbal, snare drum, and snare drum without the snare belt.
Note the considerably longer decay time of the crash cymbal compared to the other drums.
Brighter colour in the spectrograms indicates higher intensity.
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Figure 2.3: Relative occurrence frequencies of different drum hits in ENST drums [Gil06] and
RWC Popular music [Got02] data sets. The instruments are denoted by: BD (bass drum),
CR (all crash cymbals), CY (other cymbals), HH (open and closed hi-hat), RC (all ride cym-
bals), SD (snare drum), TT (all tom-toms), and OT (other instruments, e.g., cow bell, triangle,
tambourine).

2.2 Problem Definition

In the earlier literature discussing drum transcription the task definition has varied
considerably. In the context of this thesis, the task is defined as determining the onset
times of drum sounds and recognising which instruments were played. More precisely,
the possible drums have been determined in advance, though the set may be different
than is actually present in the signal. As the drums are freely decaying sounds after
the initial excitation there is no well-defined offset time and thus such will not be
estimated. Compared to other audio content analysis tasks, such as auditory scene
analysis of our living environment, the sound events to be recognised are very short
(in the range of 0.1 s), the number of target classes is limited (in many cases, only
the three drums mentioned above), and the events occur in rhythmical patters, often
repeating several times in one input signal.

The ultimate goal of drum transcription task is to be able to transcribe any drums
from any input signal (with the same system). At the present time this appears still to
be far from possible, but many of the proposed methods can be applied on a variety
of input signals. The simplest transcription task considers signals where individual
hits are concatenated with small intervals to produce a signal where only one drum is
playing at a time, but the time instants are unknown. Though this kind of monophonic

drum tracks are able to deliver the main rhythmic feel of a drum pattern, they are not
very realistic inputs to a transcription system. Allowing the sounds to be produced
with any arbitrary1 method, novel practical applications arise. In other words, the
input signal could be created by beatboxing (producing drum-like sounds by mouth)
[Nak04, Kap04, Gil05b, Haz05, Sin05], or by drumming some basic items on the

1The sounds should still be somehow percussive-like, and to be distinguishable from each other.
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desktop [P2]. Especially if the sounds are produced by vocals, producing multiple
simultaneous sounds is very difficult and the monophonicinity assumption holds. This
kind of input might be practical when querying a database of drum loops or songs
based on the rhythmic content [Gil05b].

In a problem setup that is more closely related to this thesis the input consists of
a polyphonic drum signal. In such a signal there are multiple drums played and the
sound events and their onsets may overlap temporally. In principle this input could
be the recording of a drummer playing without any accompaniment present, e.g., a
recording of a drummer’s training session from which a transcription is required, or
editing a recorded drum track. When the drums are recorded in a studio, each of
the membranophones have a close microphone and the cymbals may have some near
microphones or they are recorded only with the overhead microphones which capture
also some of the ambiance. If these multiple tracks are available and a transcription is
wanted, the task becomes slightly different [P4].

From the point of view of many practical applications, it would be desirable that
the transcription system could handle normal polyphonic music as the input. Indeed,
many of the recently published methods are designed to accept polyphonic music as
their input, i.e., the input can be any musical piece from radio or a CD. The main
challenges with such input are caused by the presence of all the other instruments
forming the accompaniment. The accompaniment varies along time, causing segments
with similar drum content to differ radically in the actual acoustic signal. In addition,
the signal-to-noise ratio (SNR) may become very poor, as seen from Fig. 2.4, or the
accompaniment may cause spurious onset detections.

The evaluation of a drum transcription system is relatively straightforward after
the set of target drums has been decided upon. For each drum the ground truth an-
notation and the transcription result are compared, and the events are paired starting
from the ones with the smallest deviation between them. Each event may be paired
to only one event in the other set and as a result some may remain without a match.
Then a temporal threshold is applied accepting only the event pairs that have temporal
difference smaller than the given value. As there is no simple rule to decide an ap-
propriate value for the allowed deviation, values in the range from 25 ms [Yos07b] to
50 ms [Gil08] have been used. Pöppel notes in his review article [Pöp97] the follow-
ing: “If the temporal order of two stimuli has to be indicated, independent of sensory
modality, a threshold of 30 ms is observed. Data picked up within 30 ms are treated as
co-temporal, that is, a relationship between separate stimuli with respect to the before-
after dimension cannot be established.” Partly motivated by this comment, the allowed
temporal deviation that was used in the included publications [P3] and [P5] was set to
30 ms. The allowed deviation used in publication [P4] is 50 ms to enable comparisons
with the results presented in [Gil08].

After the events in the ground truth and transcription have been matched, it is
possible to calculate the recall rate

R =
#correct events

#annotated events
, (2.1)
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Figure 2.4: Some drum signal to accompaniment ratios (in dB) calculated from the ENST
drums data set [Gil06] with “balanced” mixing ratio (1/3 accompaniment, 2/3 drums). The
values are calculated using a 92.9 ms frame length with weights from the right half of a Han-
ning window aligned to the drum onsets. The presented graphs are 50-bin histograms of the
ratio of the root-mean-squared energy of the drums-only signal to the accompaniment signal.
The histogram counts are normalised to sum to unity. The green line with “×” marker is the
normalised histogram counts of segments where the target drum is the only drum having its
onset time within a 20 ms window, while the blue line without a marker denotes the normalised
histogram of all segments containing the target drum possibly with other drums.

and the precision rate

P =
#correct events

#transcribed events
, (2.2)

as defined by Cleverdon et al. [Cle66]. These two are relatively commonly used quanti-
ties in information retrieval method evaluation. For a single composite measure van Ri-
jsbergen [vR79, Chapter 7] proposed the effectiveness measure

E = 1− 1
1
2

1
P

+ 1
2

1
R

, (2.3)

which later has been transformed into more commonly used F-measure [Jur00, p. 578]

F = 1−E = 2RP/(R+P). (2.4)

Though the F-measure provides conveniently a single number for system comparison,
also the balance of the precision and recall rates should be observed.
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2.3 Approaches

Because the task of drum transcription may initially seem a trivial problem, some
methods for solving the problem have not been very systematic in nature. Still, a quite
broad range of different approaches have been proposed to solve the problem. FitzGer-
ald and Paulus [S1] divided the approaches into two categories: segment and classify

and separate and detect (these names were proposed by Gillet and Richard [Gil08]).
Later, a third category match and adapt was proposed in [Gil08]. The methods in
the first category segment the input signal temporally and then classify the contents
of the segments. The separation methods aim to segregate each target drum as a sep-
arate stream from the input signal and then detect the sound event onsets. The third
category contains systems which match initial templates (in time, time-frequency, or
feature domain) to the input signal, locate potential sounds events, and then aim to
adapt the template to fit the input better. A method that cannot be put directly to any of
the three categories relies on the use of a network of connected hidden Markov models
(HMMs) that perform the segmentation and classification jointly. The main princi-
ples of these categorisations are also illustrated in Fig. 2.5. In addition to the methods
relying purely on the low-level acoustic recognition, some attempts have been made
to utilise musicological modelling in the transcription. The main methods presented
in this chapter are gathered in Table 2.1. Before discussing the methods in more de-
tail, some of the frequently used acoustic features are described, and the target classes
defined.

2.3.1 Feature Extraction

The purpose of feature extraction is to parametrise the input signal in a way that al-
lows recognising the content, i.e., describe meaningful properties of the signal. The
features used in the published methods are often generic acoustic features that have
been used also in other tasks, such as speech recognition or instrument classification.
The features can be extracted from short, overlapping windows over the segment, or
the whole segment can be treated as one feature extraction window. In the former case,
the individual feature vectors from the shorter frames can be combined, e.g., by con-
catenating them over the segment, or by calculating some statistics, such as the mean
and variance, over the segment. In case the short frames are used, a simple modelling
of the temporal evolution of the features can be obtained by estimating (usually only
first and second order) temporal derivatives of the values over the segment and using
these delta features as additional features.

Mel-frequency Cepstral Coefficients

A feature set frequently used in audio content analysis tasks consists of mel-frequency
cepstral coefficients (MFCCs) [Dav80]. They parametrise the rough shape of the spec-
tral envelope and thus encode some timbral properties of the signal. MFCCs are cal-
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Figure 2.5: Transcription system categories. “Segment and classify” methods (left) segment
the input signal to meaningful blocks and recognise the content of each of them. “Separate
and detect” methods (middle) segregate each instrument to a separate stream that has to be
recognised in the case of unsupervised separation, and finally detect the sound event onsets.
The HMM methods (right) determine the segmentation and classification jointly. The dashed
arrows denote the adaptation in the “match and adapt” methods, i.e., a feedback loop.

culated through a process illustrated in Fig. 2.6 usually in relatively short (e.g., 20 ms)
overlapping frames (in speech recognition applications, a high-pass pre-emphasis is
often used). From each frame, the power spectrum is calculated via discrete Fourier
transform (DFT). The linear frequency scale is then changed to a logarithmic mel scale
better corresponding to human auditory system frequency resolution. Frequency in
mel scale FMEL can be calculated from the linear frequency in Hertz FHZ with [O’S87,
p. 150]

FMEL = 2595log10(1+FHZ/700). (2.5)

The frequency scale conversion is implemented using a bank of triangular bandpass
filters that are uniformly distributed on the mel scale, and calculating the power within
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Figure 2.6: Block diagram of MFCC extraction. After an optional high-pass pre-emphasis the
input signal is split into short frames, from which their power spectrum is calculated. The ener-
gies in triangular response mel-filter subbands are calculated and logarithmically compressed.
Finally, the log-powers are transformed into cepstrum by calculating discrete cosine transform
from them.

each band. After the mel-scaling, logarithmic compression is applied to the filter bank
output to address the non-linear intensity response of human hearing. Finally, discrete
cosine transform (DCT) is applied on the compressed filter bank output to produce
mel-frequency cepstrum. The DCT is calculated with

sDCT(k) = wDCT(k)
N−1

∑
n=0

x(n)cos

(

π(2n+1)k

2N

)

, (2.6)

where sDCT is the output from a transform of the length N of input signal x, and wDCT

is a scaling factor [Gon92, p. 143]

wDCT(k) =

{

1/
√

N, if k = 0
√

2/N, if 1≤ k ≤ N−1
. (2.7)

Because of the basis vector orthogonality the transform provides some decorrelation
of the features. This property is important in the context of using MFCCs with Gaus-
sian mixture models (GMMs) where the decorrelated features allow using diagonal
covariance matrices instead of full matrices. Usually only a few (from 5 to 13) low-
est coefficients are used as features, and in some applications the zeroth coefficient
corresponding to signal energy is discarded. As mentioned above, many applications
estimate also the temporal derivatives of MFCCs and these ∆MFCCs are concatenated
to the feature vector.

Temporal Pattern Features

The features traditionally used audio content analysis are extracted from short time
frames, and calculated from the whole spectrum within the frame. The short dura-
tion of the frame is intended to guarantee that the signal remains somewhat stationary
within frame and thus could be parametrised with a single spectrum. However, the
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Figure 2.7: The difference between conventional short-time features and temporal TRAPS
features illustrated. After [Her98].

importance of the temporal evolution of the feature values has been noted in many
classification tasks. In speech recognition it is a standard practise to estimate first and
second order temporal derivatives of the features and concatenate these to the feature
vector [Rab93]. The HMM architecture itself aims to address the temporal evolution
modelling issue by the states in the model: each state has a different feature observa-
tion likelihood distribution and the state sequence describes how the feature value may
evolve along time.

Hermansky and Sharma [Her98] suggested an orthogonal approach: instead of
short-time wideband features narrowband features from long frames should be used,
the difference is illustrated in Fig. 2.7. They showed that the TRAPS (TempoRAl Pat-
ternS) feature describing the evolution of the energy envelope of narrow subbands of-
fers complementary information compared to the MFCCs and improve the recognition
accuracy with speech slightly. The TRAPS idea was used by Paulus and Klapuri [S3]
to improve the recognition of a HMM transcription system. They calculate energy
envelopes within 1/3-octave bands and 100 ms frames. The shape of the envelope is
parametrised in a shift-invariant form with the DFT spectrum and the representation is
compacted further with DCT and retaining only few lowest coefficients. The coeffi-
cients from all bands are concatenated into a single feature vector and a detector-type
GMM classifier for each target drum is trained. In the transcription phase, the proba-
bility produced by the GMM that a target drum is present in the long frame is summed
to the observation likelihoods of drum combination HMMs (see Sec. 2.3.6) before
decoding. The evaluation results suggest that TRAPS is able to provide some comple-
mentary information compared to plain HMM system. Furthermore, it was noted that
even though the performance did not increase dramatically, the main error type was
changed from insertion to more balanced with insertion and deletion.
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Other Features

In addition to MFCCs, a large body of other instantaneous features have been used to
parametrise the segment content. Majority of these aim to describe the shape of the
spectrum in some way, usually with a single scalar. From the vector-form features,
band energy ratio may be the most often used. It divides the input spectrum into
subbands (usually from 5 up to 40), calculates the energy in each of these, and then
normalises by the total signal energy. The number and spacing of the bands depend on
the desired frequency resolution, but often the spacing is close to logarithmic to mimic
the human auditory system.

Many of the features used in drum transcription are scalar valued describing the
shape of the spectrum. For convenience, the normalised magnitude spectrum is de-
noted with

s̃(k) =
|s(k)|

∑K
k=1 |s(k)|

, (2.8)

where s(k) is the DFT spectrum on frequency index k ∈ [1,K]. The spectral features
used in drum transcription include the following among others.

• Spectral centroid, the centre of mass of the magnitude spectrum, defined as

CF =
K

∑
k=1

ks̃(k). (2.9)

• Spectral spread, describing the bandwidth of the signal, defined as

S2
F =

K

∑
k=1

(k−CF)
2s̃(k). (2.10)

• Spectral skewness, measuring the asymmetry of the spectrum, defined as

γ3 =
∑K

k=1(k−CF)
3s̃(k)

S3
F

. (2.11)

• Spectral kurtosis, measuring the peakiness of the spectrum, defined as

γ4 =
∑K

k=1(k−CF)
4s̃(k)

S4
F

. (2.12)

• Spectral roll-off, describing a frequency below which a certain amount r (e.g.,
85%) of the energy resides in, defined as

kROP = argmax
K̂

{

K̂

∑
k=1

s̃(k)2 ≤ r
K

∑
k=1

s̃(k)2

}

. (2.13)
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These spectral features can be calculated directly in linear frequency scale resulting
from the DFT or after logarithmic scale resampling, as suggested in MPEG-7 stan-
dard [Int02]. In his pioneering drum transcription work Schloss [Sch85] calculated the
sound decay time from the sound’s energy envelope by fitting an exponential decay
curve to it, and classified the event to damped or undamped based on the decay time.
For a more complete description of different features and their suitability for the drum
transcription refer to the publications by Herrera et al. [Her02], in the context of more
general audio classification the publication of Peeters [Pee04b], or the feature selection
with simulated annealing optimisation the publication of Degroeve et al. [Deg05].

2.3.2 Target Classes

The target class definition is a necessary step in designing a drum transcription method.
To date, excluding the publications aiming to recognise individual hits, the set of target
drums has varied from containing only bass and snare drums [Got94a, Got01, Zil02,
Vir03, vS04, Yos06], the two and hi-hat or other cymbals [Tar04, Yos07b, Gil08],
[P3], [P5], up to practically full drum set with tom-toms and other percussion instru-
ments [P1] and [Gil04]. As earlier illustrated by the occurrence frequencies in Fig. 2.3,
very few target drums are sufficient. Thus, in the recent publications, the target drum
set has settled into consisting of only three drums: bass drum, snare drum, and hi-hat.

In defining the target classes after determining the target drum set two approaches
have been adopted: drum combination recognition and detectors for individual drums.
If the target drum set consists only of bass and snare drums, the combination recogni-
tion approaches aim to detect the classes “silence”, “bass”, “snare”, and “bass + snare”,
while detectors make a binary decision for both drums independently “bass”/“no bass”
and “snare”/“no snare”. In this example, the number of resulting recognition classes
is equal, but when the number of target drums increases, the number of combinations
will increase more rapidly than with the detectors (2N vs. 2N, when the number of
target drums is N).

Not only does the number of classes increase rapidly with combination modelling,
but the combinations occur at very different rates in music. This is illustrated in
Fig. 2.8, where the occurrence frequencies of the combinations formed by five drum
classes in two data sets have been calculated. Though the order of the combinations
differ slightly, the trend is clearly visible: the five most frequently occurring combina-
tions cover approximately 80% of all drum combination events (and contain the same
combinations in both data sets), and the ten most frequent combinations cover already
approximately 95% of the occurrences in both data sets.

In practical considerations, the use of detectors instead of combinations recognition
makes a better use of the (usually very limited amount of) training data. As already
illustrated in Fig. 2.8, majority of the combinations occur quite rarely even in large data
sets. Because of this, the training of the acoustic models will have only a few examples
of the combination sound events, and the resulting models may become inaccurate or
they will overfit the examples hindering the generalisation capability. On the other
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Figure 2.8: Relative occurrence frequencies of various drum combinations in ENST
drums [Gil06] and RWC Popular music [Got02] data sets. Different drums are denoted with
HH (all hi-hats), BD (bass drum), SD (snare drum), TT (all tom-toms), and CY (all cymbals).
Two drum hits were determined to be simultaneous if their annotated onset times differ less
than 10 ms. Only the 16 most frequent combinations are shown from each data set.

hand, if detector modelling is done, occurring combinations will serve as a training
examples for all the drums present in the combinations, thus making effective use
of the data. As a result, most of the more recently published methods rely on using
drumwise detectors instead of using drum combinations as the target classes.

2.3.3 Segment and Classify Approach

As the definition of the drum transcription problem stated, the objective is to know
when drums were played and which were the drums played. The methods in the “seg-
ment and classify” category answer these questions in this same order by operating
with the following steps:

1. Divide the input signal into meaningful segments either by

(a) locating sound event onsets, or by

(b) creating a temporal grid over the signal, e.g., with musical meter analysis.

2. Extract a set of features from each segment.

3. Classify the contents of the segments based on the feature values.

These steps will now be discussed in more detail.
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Temporal Segmentation

Temporal segmentation can be performed either by detecting prominent sound events
from the signal or by creating a (constant) temporal grid over the signal. Sound onset
detection is a difficult problem in itself, and will not be discussed here in detail. Briefly,
most of the onset detection methods operate by transforming the acoustic input signal
to a detection function which has peaks in the locations of sound event onsets. This
detection function may be based on, e.g., changes in energy envelope in signal sub-
bands or large jumps in the phase information. For a tutorial on the subject, refer to
the work of Bello et al. [Bel05].

An alternative to onset detection is to create a temporal grid over the signal so that
most of the onsets will coincide with a grid point. In practice this requires applying
some sort of a musical meter analysis to determine an appropriate temporal resolu-
tion. The temporal level that is most suitable for the task is the level of tatum (or
tick [Gou02], or attack-point [Sch85]) as it has been defined by Bilmes [Bil93] as “the
regular time division that most highly coincides with all note onsets”. In the metrical
hierarchy, tatum is a subdivision of tactus (or beat, the foot-tapping rate). For more
detailed description about meter analysis, refer, e.g., to the thesis of Gouyon [Gou05]
or the book chapter by Hainsworth [Hai06].

Both of the segmentation approaches have some drawbacks and benefits. The tem-
poral grid segmentation presumably works well with music that has a constant tempo
and the played drum patterns do not deviate considerably from it. However, if the grid
parameters, i.e., tatum length and phase, are estimated incorrectly, the segmentation
will be incorrect which may affect the subsequent recognition step. In addition, even
though the tatum grid was correct, the expressivity of the drummer’s playing may shift
the sound events to non-grid point locations and the net effect is the same as with the
incorrect grid estimate. On the other hand, while the onset detection is not constrained
by assumptions on the temporal structure of the signal and can capture the expressive
temporal deviations, there is a risk that some drum onsets will be missed and lost com-
pletely. To date, most of the “segment and classify” methods utilise onset detection
as the segmentation method, and reduce the risk of missing drum events by lower-
ing the detection threshold (which in turn causes spurious detections that have to be
addressed).

The actual segmentation can be done by simply taking the part of the signal starting
at a grid point or a located onset and ending at the next grid point or onset [Gou01,
Gil04]. To reduce the variation of the segment lengths, in practice it is beneficial to
defined the minimum and maximum lengths of the segments.

Segment Content Recognition

Once the feature extraction has been done and the target classes defined, the rest of
the transcription problem is a standard classification task. The different classifica-
tion methods will not be discussed in detail here, but some basic principles will be
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mentioned instead, an interested reader is referred, e.g., to [Dud01]. A coarse cate-
gorisation of supervised classification algorithms employed in drum transcription is

• rule-based methods,

• non-parametric instance-based methods,

• linear discriminant methods, and

• statistical modelling methods.

There has been very little work on systematic comparison of different classification
methods in the drum transcription context, with the exception of Herrera et al. [Her02].
Even in the paper above, the comparison did not address recognising drum hits is a
musical context, but classifying individual hits instead. However, the obtained results
suggest that instance-based methods would be most suitable for the task.

Rule-based Classification Rule-based classification methods, such as decision tree
classifiers, aim to construct a set of rules that allow deciding the correct class. In
decision trees, the rules can be organised into a branching tree, where each node corre-
sponds to a single decision or a rule. In other words, each branching decision depends
on the value of a feature or condition, and the final classification result is obtained by
following the decision until a leaf node is reached. For more details on decision trees,
refer to [Qui93, Dud01]. To date, only Sandvold et al. [San04] have utilised decision
tree classifiers in drum transcription.

Instance-based Classification (Non-parametric Classification) Considering the su-
pervised classification task, instance-based methods are perhaps the most intuitive to
understand. In the training phase, the system is given a set of examples and is told the
class of each example, and it stores all of them or only a representative subset. Then in
the classification phase, the input is compared to the stored instances and the class is
decided based on the closest stored example(s). The k-nearest neighbour (k-NN) clas-
sifier operates with these steps storing all the training examples, and in the recognition
phase selecting the k nearest training instances and determining the classification result
with a majority vote from them.

The main shortcomings of instance-based classification methods are the amount
of space consumed by storing the training examples and the computational load from
comparing each stored training sample to the input to be classified. These can be
solved, e.g., by clustering the samples and storing only the cluster centroids.

An instance-based classifier was employed in what is presumably the first method
to handle polyphonic drum mixtures presented by Goto and Muraoka [Got93, Got94b].
It utilises a power spectrogram based template for each of the nine target drums and
matches the templates to the locations of found onsets. Thus, in a way, this is an
instance-based classification method with only a single template stored for each target
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drum. The same matching method has been later extended by Yoshii et al. [Yos07b] to
target a smaller drum set, and to include some signal-dependent adaptation. Goto used
similar idea in [Got01], but without the pre-defined templates and matching only vec-
tors instead of matrices to determine possible locations of bass and snare drums hits.
The final application, though, was beat analysis in music with drums, so actual tran-
scription was not produced. Another example of a method with spectrogram template
matching with added top-down processing was proposed by Sillanpää et al. [Sil00].

Linear Discriminant Classification In a two-class case, linear discriminant func-
tion aims to define such weights w and a bias term b that the output yi of

yi = xT

i w+b (2.14)

is positive for one class and negative for the other (xi is the ith input vector), and
that the resulting function contains maximal discriminative power. The discriminative
power can be measured, e.g., with in-class scatter versus inter-class scatter as is done
in Fisher discriminant analysis (also known as linear discriminant analysis (LDA)).
Linear discriminant functions have not been used in drum transcription as such, but
instead as a feature pre-processing before other classifiers.

Support vector machines (SVMs) can be considered as an extension of linear dis-
criminant classifiers. They aim to define such parameters w and b that the margin
between the formed decision surface and the training examples is maximised [Bur98].
The classes may not be separable by a linear decision surface in the feature space. In
such cases, a kernel function u(·) may be used to map the features to a higher dimen-
sionality space where the classes can be separated. In the training phase, the SVM
parameters are optimised to fulfil the requirement

yi =

{

u(xi)
Tw+b≥+1, if ci = +1

u(xi)
Tw+b≤−1, if ci =−1

, (2.15)

where ci is the class associated with the training feature vector xi. The training samples
that lay on the margin, i.e., the samples xi that have the result yi = {−1,+1} are
the only ones affecting the final surface and bear the name support vector. In the
classification, only the sign of the result is important and the class for feature vector xi

is determined by
ci = sign(u(xi)

Tw+b). (2.16)

In its basic form SVM is a binary classifier and as such suits to operate in a
detector-like recognition setup. Some multiclass extensions have been developed (see,
e.g., [Tso04]), combining several classifiers in 1-against-1 or 1-against-others setups.
Gillet and Richard [Gil04] compared the performance of several binary SVMs and
one multiclass SVM targeted to recognise drum combinations, but the performance
difference was so small that no conclusions could be made.
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SVMs have shown to perform well in the classification tasks in drum transcription
by van Steelant et al. [vS04], and Gillet and Richard [Gil04, Gil05b, Gil08]. In [P1]
SVMs are used as a part of a recognition system performing the temporal segmentation
with a constant grid; an SVM is used to determine if a grid point contains a drum hit
to be further recognised, or does it contain only some non-drum sound.

Statistical Modelling Methods Statistical methods aim to construct a model of the
class to be recognised. Within the field of drum transcription, practically the only
statistical modelling approach for the low-level acoustic features has been Gaussian
mixture models (GMMs). GMMs estimate the probability density function of the data
xi from a class as a weighted sum of J normal distributions

p(xi|{w j,µ j,Σ j} j=1,...,J) =
J

∑
j=1

w jN (xi;µ j,Σ j), (2.17)

where the weights are bound by ∑J
j=1 w j = 1, and N (xi;µ j,Σ j) is a multivariate normal

distribution with mean µ j and covariance matrix Σ j evaluated at point xi. Plain GMMs
have been used in drum transcription by Paulus and Klapuri [P1] where a GMM was
trained for each of the 127 non-empty combinations of seven drums. Due to the large
amount of classes, the recognition result was not very good. Gillet and Richard [Gil04]
used GMMs to recognise drum combinations and to act as detectors for individual
drums, and the recognition result was then combined with a musicological model for
the final transcription result in a hidden Markov model -like system.

More often GMMs are used within hidden Markov models (HMMs) to model the
(acoustic) observation likelihoods. The HMMs employed in the discussed methods
consist of two processes, a discrete finite state machine and a GMM producing obser-
vations from the states. The parameter set of an HMM is denoted by

λ = {A,B,π}, (2.18)

where A defines the state transition probabilities of the state machine, B parametrises
the observation likelihoods in the states, and π contains initial (and final) state occu-
pancy probabilities. If the state at time t is denoted with qt , then the values of the state
transition matrix A can be defined as

A(i, j) = p(qt+1 = j|qt = i). (2.19)

Similarly the observation likelihood parameters in B define the probability of observ-
ing ot given the HMM state and usually is evaluated with the GMM model (2.17).
Recognising with HMMs, the problem is to find a state sequence q = q1,q2, . . . ,qt , . . . ,qT

given the parameters λ and the observations (feature vectors) O = o1,o2, . . . ,ot , . . . ,oT

that is “optimal” in some sense, usually to find the single best path q̂ maximising the
total observation likelihood

q̂ = argmax
q
{p(q|O,λ)} . (2.20)

27



This can be solved, e.g., with the Viterbi algorithm. Further details of HMMs and the
training of the model parameters are not discussed here, an interested reader is referred
to the tutorial by Rabiner [Rab89].

In the drum transcription task, HMMs have been used in two ways: as a musico-
logical model [P1] and [Gil04], and in continuous recognition that will be discussed
in more detail in Sec. 2.3.6. The musicological modelling in [Gil04] used the basic
“segment and classify” approach with GMMs for the low-level recognition of differ-
ent target classes in the found onset locations. These recognition results then acted as
the observation likelihoods in the HMMs architecture and the state sequence modelled
how different drums or drum combinations follow each others. However, more simple
SVM classifier without any sequence modelling was found to outperform the HMM
approach [Gil04].

The results obtained with the “segment and classify” methods are quite encourag-
ing. However, even though it is trivial for a human to recognise that different makes
and models of the same drum still represent the same class, the acoustic features may
vary considerably within the classes. This may cause some problems in the gener-
alisation in the model training. As a related research topic, Pampalk et al. [Pam08]
compared two models for measuring the similarity of drum sound events and how the
output of the models correlate with human perception. Though the obtained results
were aimed for sample retrieval from databases, similar research should perhaps be
taken into account in the transcription task, too.

The input with beatboxing can still be considered to be similar to the transcription
tasks described above as the input sounds share likeness even across people and a su-
pervised classifier can be trained. Such beatboxing recognition systems with “segment
and classify” approach have been proposed, e.g., by Nakano et al. [Nak04], Kapur et
al. [Kap04], Gillet and Richard [Gil05b], Sinyor et al. [Sin05], and Hazan [Haz05],
with the usual application of querying a database of real drum loops with speech-like
input.

Proposed Methods

From the publications included in this thesis [P1] and [P2] can be considered to belong
to the “segment and classify” category. The former uses a tatum grid for segmentation,
an SVM to operate as a “silence” / “drum” classifier in each grid point, and a GMM
to recognise the content of the grid points deemed to contain drums. The latter uses
unsupervised classification, i.e., clustering, to group the events segmented with an
onset detector. After the grouping, the classes were assigned with rhythmic role labels,
see Sec. 2.4.2.

2.3.4 Match and Adapt Approach

The “match and adapt” methods may also be considered to belong to either of the
“segment and classify” or “separate and detect” categories, depending on their ba-
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sic approach. However, they are here treated as a separate category to emphasise the
importance of the adaptation idea. The main motivation to the use of adaptation in
recognition is that in music signal, the actual target instrument sounds vary consid-
erably between signals, and especially in polyphonic music the background “noise”
is different in every signal. These result in the situation where pre-trained generic
models do not necessarily match the properties of the actual hits and the recognition
performance suffers.

The “match and adapt” philosophy is exhibited in the purest form in the method
by Zils et al. [Zil02], in which bass and snare drums are transcribed in a time-domain
“analysis by synthesis” approach. As the initial templates the method uses low-pass
and band-pass filter impulse responses for bass and snare drum, respectively. Then
the possible onsets of the target drum are searched by calculating correlation between
the input signal and the template. The reliability of the found onsets is assessed, and
the template is adjusted to be the mean of the matched template and the weighted
average of the found events, and this process is repeated until the set of found onsets
has converged. Even though the approach may seem crude, it was reported to locate
the two drums “perfectly” in approximately half of the test cases.

Another method with multiple adaptation steps was proposed by Yoshii et al. [Yos07b].
The method locates possible drum sound onset locations from the input signal (each
target drum is handled separately), matches a fixed-length spectrogram extracted after
the onset location to a pre-calculated template, and estimates the reliability that the
target drum occurs in the segment. Then the segments with the highest reliability to
contain the target drum are used to adapt the template, and the process is repeated until
convergence. In the evaluations the template adaptation showed to improve the recog-
nition result especially with bass drum, whereas the improvement was less significant
with snare drum and hi-hat.

In addition to these iterative template matching methods, two publications have
proposed to use regular classifiers, but after initial recognition with generic models
retraining the models based on the recognition result. Sandvold et al. [San04] aim
to recognise the classes “kick”, “snare”, “cymbal”, “kick+cymbal”, “snare+cymbal”,
and “not-percussion” with localised models. The general models are C4.5 [Qui93] de-
cision trees utilising an automatically determined subset of a large (115 descriptors)
feature set. After the initial recognition few most reliably recognised sound events
are selected and the feature selection and classifier training was repeated with them.
The final transcription is then obtained using these localised models. The evaluations
showed a considerable reduction in the required feature dimensionality, and a notable
increase in the recognition accuracy. However, the reliability estimation phase was
done by picking the re-training instances by hand instead of a fully automatic system.
Gillet and Richard [Gil05c] had less success with their attempt with localised mod-
els. They used an SVM classifier, mapped the SVM output to a classification result
probability (see Sec. 2.4.1), selected the most reliable hits, and retrained the classifiers
with them. The authors reported that the use of localised models did not improve the
overall recognition result. When they analysed the reason for this, the re-training in-
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stance subset was revealed to consist of loud or solo hits that were not in the normal
rhythmic pattern context. Thus the localised models were more prone to recognise
such off-pattern hits instead of improving the result on the basic repeating pattern.

2.3.5 Separate and Detect Approach

The “segment and classify” methods answer the transcription problem in the following
order: 1. when did a sound event occur, and 2. what drums were present in the event.
In general, the “separate and detect” methods reverse the order of the questions and
aim to to first segregate each target drum as a separate stream and then detect the sound
event onsets from the stream. The “separate and detect” methods work roughly with
the following main steps:

1. Transform the input signal to an appropriate mid-level representation, e.g., a
magnitude spectrogram.

2. Separate each target drum to an individual stream.

3. Only with unsupervised separation methods: extract features and recognise each
stream.

4. Detect sound event onsets from the streams.

The main differences between the separation based methods stem from the em-
ployed source separation technique. A broad categorisation divides the approaches to
unsupervised and supervised source separation methods. In the supervised separation
there exists a specific model for each target drum that will be utilised in the separation
process, while the unsupervised methods attempt to obtain the result purely based on
the input signal and some assumptions of the sources.

Considering source separation, the method best known is probably independent
component analysis (ICA) [Com94]. ICA is intended to estimate N sources from at
least as many input signals by maximising the statistical independence between the
resulting source signals. However, drum transcription is usually done from a single-
channel or stereo input and the time-domain ICA is not applicable as such.

The restriction imposed by the single-channel input is alleviated when a differ-
ent mid-level representation is used instead of the “raw” time-domain signals. The
idea of independent subspace analysis (ISA) originally proposed by Hyvärinen and
Hoyer [Hyv00] was taken into practice by Casey and Westner [Cas00]. Multiple sen-
sor signals are constructed from a single input signal by transforming it to a time-
frequency representation, i.e., to a spectrogram, and by treating the different frequency
channels as sensor signals.
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Signal Models

With the spectrogram representation, the input signal spectrogram X can be modelled
to be a sum of N individual source (or component) magnitude spectrograms

X≈
N

∑
i=1

Xi. (2.21)

In the context of source separation methods for drum transcription, with the exception
of the convolutive model used by Virtanen [Vir06], the individual spectrograms Xi are
considered to be the outer product of two vectors, a time basis ai and a frequency
basis si,

Xi = sia
T

i . (2.22)

In other words, it is assumed that the sound source produces fixed frequency content
with a time-varying gain. When this is combined with the model (2.21) of source
summation, the overall signal model can be expressed as a matrix product

X≈ SA, (2.23)

where the basis functions are combined into source spectral content matrix

S = [s1,s2, . . . ,sN ], (2.24)

and a matrix of time-varying gains

A = [a1,a2, . . . ,aN ]T. (2.25)

An example of the applicability of this model is illustrated in Fig. 2.9 in which three
sources have produced the observed spectrogram.

Virtanen [Vir06, Chapter 4] extended the model so that each of the sound sources
has a two-dimensional time-frequency representation, and the source spectrogram is
produced by a convolution of an impulsive time-varying gain basis and the two-dimensional
source spectrogram Si

Xi = Si⊗aT

i . (2.26)

The convolution operation ⊗ between a matrix S with J columns and a vector a is
defined as

X(k,t) =
J−1

∑
j=0

S(k, j +1)a(t− j). (2.27)

Even though the separation results obtained with the convolutive model suggest that
it is able to separate drum sources from a polyphonic mixture more reliably than the
more simple model of (2.22), it has not been applied in drum transcription due to its
considerably higher computational cost.
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Figure 2.9: An example of factorisation of a spectrogram to three sources with fixed spec-
tra S and time-varying gains A. The input signal consists of a simple pattern of three drums:
“SD+HH, HH, BD+HH, HH, SD+HH, HH, BD+HH, BD+HH, HH”. The mid-level represen-
tation is a mel-frequency spectrogram, and the basis functions are calculated unsupervised with
non-negative matrix factorisation. The found basis have the following correspondence to the
drums: green is hi-hat (HH), blue is snare drum (SD), and red is bass drum (BD). It can be
noted how onsets in the gains A correspond to the played pattern.

Unsupervised Source Separation Methods

Unsupervised source separation methods aim to solve the separation problem without
any specific prior templates for the sources, even the number of sources is unknown.
In other words, the problem is to solve from

X≈
N

∑
i=1

sia
T

i (2.28)

the number of sources N, the source spectra si, and the gains ai given only the input
spectrogram X. A common practice is to manually set the number of sources into a
few different values, depending on the information available of the problem in advance,
and select the appropriate one based on the obtained results.
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Independent subspace analysis [Cas00] takes a single-channel input signal and cal-
culates a spectrogram from it. Then principal component analysis (PCA) is used to
determine the number of components (sources of variance) in the signal and to reduce
the data dimensionality to equal the number of sources. PCA also decorrelates the
sources, but they are not independent. The independence is obtained by using ICA on
the reduced-dimensionality data. The resulting sources are considered to be the main
sources in the input, and they can also be resynthesised. The use of ISA for drum
transcription has been evaluated by FitzGerald [Fit04] and Orife [Ori01]. The main
problem with the obtained result is that there are no restrictions implied on the sources
and quite often they contain negative values in both basis function sets. Consider-
ing the data model of addition of magnitude spectrograms, the negative values do not
have valid physical interpretation. In addition to the negativity problem, the recovered
sources will have to be recognised either by some heuristic rules or by a supervised
classifier.

Non-negative matrix factorisation (NMF) [Lee01] aims to solve the matrices A and
S given the input X from the model (2.23) only by restricting all the three matrices to be
non-negative. Lee and Seung [Lee01] proposed iterative update rules for estimating the
component matrices to minimise Euclidean distance or Kullback-Leibler divergence
between the input and the reconstruction. The divergence cost function between the
original input matrix X and the reconstruction X̃ = SA is defined as

dDIV(X, X̃) = ∑
i, j

X(i, j) log
X(i, j)

X̃(i, j)
−X(i, j)+ X̃(i, j), (2.29)

where the summation is done over all indices in the matrices. The multiplicative update
rules to minimise the cost function (2.29) are given as

A← A.∗ ST(X./(SA))

ST1
(2.30)

and

S← S.∗ (X./(SA))AT

1AT
, (2.31)

where 1 is a all-one matrix of the same size as X, and .∗ and ./ denote elementwise
multiplication and division, respectively [Lee01]. In the context of drum transcrip-
tion unsupervised NMF has been used to separate the drum signal from a polyphonic
mixture, as proposed by Helén and Virtanen [Hel05].

Dittmar and Uhle proposed a hybrid between “segment and classify” and “separate
and detect” approaches in [Dit04]. The system is designed to transcribe drums from
polyphonic music. After detecting sound onsets, one frame of spectrogram is extracted
from each onset location. The frames are gathered into a new matrix that is analysed
with ISA-like approach with non-negative independent component analysis [Plu03]
to produce spectral basis vectors that are used to extract time-varying gains from the
spectrogram of the input signal. The different drums are recognised from the spectral
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basis vectors with a k-NN classifier. This work was extended by Gruhne et al. [Gru04]
to produce MPEG-7 descriptions of drum patterns.

Similar approach to automatically generate spectral basis functions for a supervised
separation method (prior subspace analysis, described in the next section) with basis
vector clustering was proposed by FitzGerald et al. [Fit03a]. However, instead of a
classifier to recognise the found drums, a rule-based approach was employed. Moreau
and Flexer [Mor07] presented preliminary results of another hybrid approach. The
input signal spectrogram is decomposed using NMF, a set of spectral and temporal
features are extracted from the basis functions, and the components are recognised to
be one of the target drums or not a drum with a k-NN classifier.

Virtanen proposed to use constraints of non-negativity, temporal continuity and
temporal sparseness to separate the sources with non-negative sparse coding [Vir03].
The non-negativity constraint suits the physical interpretation of the data model, as
magnitude spectrograms are always non-negative and they can be summed in real-
ity only with non-negative gains. The temporal continuity and sparseness constraints
prefer the solved gains ai to change in a smooth way and to contain only few large
values. The separation algorithm was evaluated by transcribing bass and snare drums
from polyphonic music. The algorithm separates a fixed number of most prominent
sources, recognises the bass and snare drum sources by comparing the obtained spec-
tral basis functions to pre-calculated templates, and finally detects sound onsets from
the recovered gains.

For a more complete review of unsupervised source separation methods applied on
monaural signals, but not restricted to drum transcription, refer to, e.g., the thesis of
Virtanen [Vir06].

Supervised Source Separation Methods

As the name suggest, supervised source separation methods utilise more detailed in-
formation of the properties of the target signals to accomplish the segregation. Most
often the information is in the form of the spectral content of the target drums.

Prior subspace analysis, as proposed by FitzGerald et al. [Fit03c], includes prior
knowledge of the drum sound properties in the separation step. It is done by calculating
initial guesses, or templates, of the frequency basis functions from example hits. The
initial templates are then organised into a matrix SPR and approximations of the time-
varying gains Â are obtained through

Â = S+
PRX, (2.32)

where S+
PR is the pseudoinverse

S+
PR = (ST

PRSPR)−1. (2.33)

Since the obtained gains are not statistically independent, they are further processed
with ICA to obtain independent time-varying gains A. Finally, new estimates of the
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frequency basis functions are obtained by another pseudoinverse

S = XA+. (2.34)

The knowledge of the spectral properties of the sources improves the recognition re-
sult, but still does not solve the negativity problem inherent to the used computations,
and the ICA step may permute the order of the sources requiring them to be recognised
despite the use of template initialisation.

In [Fit03b] FitzGerald et al. experiment to improve the performance of PSA in
the presence of pitched instruments, i.e., other instruments. Hi-hat recognition per-
formance was improved by weighting the input spectrogram X by the average power
spectral density over the signal. Effectively this emphasises the high frequencies where
most of the energy of cymbals resides. The interference of the pitched instruments with
bass and snare drums was reduced by thresholding the initial gain estimates Â. The
thresholding retained the most important peaks in the gain, but removed the lower level
interference.

The basis vector negativity and permutation problems can be solved when the
source independence assumption is relaxed and supervised NMF is used to solve
the temporal basis vectors ai, as proposed by Paulus and Virtanen [P3]. The non-
negative matrix factorisation based prior subspace analysis (NMF-PSA) method pro-
posed therein calculates spectral templates si for each of the target drums by applying
the full unsupervised decomposition to a large number of training hits, and constructs
the matrix S from the individual template spectra with (2.24). Then this matrix is
kept fixed while the time-varying gains are recovered by applying (2.30) until the so-
lution converges. Finally, the sound event onsets are detected from the gains with a
method approximating the relative intensity detection properties of human hearing (af-
ter [Kla99]). The NMF-PSA method was proven to perform very well when the input
signal and the model match, i.e., when there are very few non-target drums in the sig-
nal. Similar approach was independently developed by FitzGerald et al. [Fit05], but
they extended it also to pitched sounds by introducing an additional term modelling
the shift of the spectrum between different pitches.

In a studio, a drum kit is often recorded having close microphones near the mem-
branes of each membranophone, overhead microphones over the drummer listening
the whole kit and some of the room ambiance, and possibly close microphones also
near the cymbals, especially hi-hat. The motivation to use the close microphones is
that they capture mainly the acoustic signal of the drum they are closest to, and as a
result the well-separated signals are easier to manipulate and mix in the later stages of
record production. As these multichannel signals are available in the studio, Alves et
al. [P4] proposed to extend the NMF-PSA of [P3] to handle multichannel recordings
as the input. Instead of calculating the spectrogram X from a single-channel signal, it
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is calculated from each of the NC input channels and they are combined by

X̂ =











X1

X2
...

XNC











. (2.35)

Similar stacking is done when calculating the spectral templates for the drums to pro-
duce multichannel version of the template matrix by

Ŝ =











S1

S2
...

SNC











. (2.36)

With these two stacked matrices, the time-varying gains A are calculated from

X̂≈ ŜA (2.37)

by applying the update rule (2.30). The onsets are detected from the estimated gains
with the same procedure as in [P3].

Proposed Methods

Among the publications included in this thesis, [P3] and [P4] belong to the “separate
and detect” family. Both of them implement an NMF-PSA method, the former for
single-channel input, and the latter for multichannel input available, e.g., in recording
studios.

2.3.6 HMM Recognition Approach

With “segment and classify” methods the segmentation step has to make a hard deci-
sion of the locations the onsets. Considering the later steps of the transcription meth-
ods, it would be crucial that the detection would return at least all the true onsets, and
desirable that the number of extraneous onsets would be as small as possible. Finding
this balance may be difficult in many cases. When the segment classification can be
considered to correspond to isolated word recognition in speech recognition, the direct
analogue of continuous speech recognition can also be applied in drum transcription.
The main difference between the isolated and continuous recognition is that in the lat-
ter there is no explicit segmentation before recognition, but the process itself decides
the segmentation simultaneous with recognising the events. In other words, isolated
recognition aims to decide the model that is most likely to have produced the observed
sequence, whereas continuous recognition not only decides the most likely state se-
quence, but also the most likely model sequence to have produced the observation

36



N
O

N
E

C
O

M
B

.N
C

O
M

B
.1

Figure 2.10: Illustration of the basic idea of drum transcription with HMMs modelling drum
combinations. The decoding aims to find the optimal path through the models in view of the
observed acoustic information.

sequence. The decoding can be done, e.g., with explicit separate models in token pass-
ing [You89], or by concatenating the individual models to a larger compound model
and applying Viterbi decoding. In either case an additional parameter set has to be
decided: the transition probabilities between the individual models.

Ryynänen showed that HMM recognition is able to decide note onsets in pitched
instrument transcription [Ryy08a]. Similar approach was adopted by Paulus and Kla-
puri in [P5] for drum transcription from polyphonic music. As with earlier classifi-
cation task, the HMM modelling can focus either on drum combinations or detecting
the presence of individual drums. The difference of these is illustrated in Figs. 2.10
and 2.11: with combinations, the whole signal to be transcribed will be covered by
the different combinations (including a background model when no target drum is
playing), whereas with the detectors, each target drum is handled separately from the
others and only a sequence of “sound” and “silence” for each is determined. The sound
models are trained from individual sound events that are segmented from the training
signals, and the material that is not used to train the sound models is used to train the
background (or silence) model. In the evaluations when compared with a “segment
and classify” methods using an SVM classifier [Tan05] and a “separate and detect”
method using NMF-PSA [P3], the HMM method outperforms the reference methods
both with signals containing only drums, and with polyphonic music.

2.4 Musicological Modelling

Majority of the drum transcription systems discussed above operate mainly based on
the acoustic information only. Considering once again the analogue to speech recogni-
tion, this corresponds to attempting to recognise speech one phoneme at a time without
any knowledge of the contextual dependencies between the phoneme to be recognised
and other phonemes in words and sentences. The context, however, is able to provide a
considerable amount of useful information to the recognition process, and modelling it
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Figure 2.11: Illustration of the basic idea of drum transcription with HMMs modelling of
drum detectors. Each target drum is associated with two models, “sound” and “silence”, and
the decoding is done for each drum independently from the others.

has become an important field of study [Jur00]. The usefulness of modelling temporal
dependencies of musical events (or musicological modelling) has been demonstrated
also in melody, bass line, and chord transcription with HMMs by Ryynänen [Ryy08a].
In his methods, the HMMs model the feature evolution during a note event, and musi-
cological modelling describes the temporal dependencies between consecutive notes.
Considering that the whole basis of drum patterns is that they repeat and that the re-
peats are responsible for creating a sensation of rhythm, use of musicological mod-
elling would be intuitively justified. Some drum transcription systems have attempted
to incorporate musicological modelling and will be discussed in the following.

2.4.1 Enabling from Crisp Classifiers

The high-level musicological models usually provide a probability value for the events
given the context. To be able to utilise these models meaningfully, the lower-level
acoustic recognition result has to also be expressed as a probability value. With the
“segment and classify” methods this means that the output of the classification algo-
rithm has to be a value that can be interpreted as a probability. In case the classifier
is some Bayes classifier, the output is a posterior probability already. However, if the
recognition is done with classifiers producing crisp (as opposed to fuzzy or soft) deci-
sion, the output has to be moderated somehow. With the exception of SVM classifiers,
there has not been much research on how this moderation should be done. Several
methods for moderating the SVM output were compared by Rüping [Rüp04], and the
results suggest that the logistic regression approach proposed by Platt [Pla99] would
be most suitable.

The SVM output yi given the input xi is a real number given by (2.15). In the actual
classification only the sign of yi is used to determine to which of the two classes the
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input vector belongs to. Platt proposes to interpret the output value to the posterior
probability of the input to belong into the positive class (i.e., ci = 1) by a sigmoidal
mapping

p(ci = 1|yi) =
p(yi|ci = 1)p(ci = 1)

p(yi|ci = 1)p(ci = 1)+ p(yi|ci =−1)p(ci =−1)
(2.38)

=
1

1+ eα1yi+α2
, (2.39)

where α1 and α2 are parameters that are determined from training data with a variant
of Levenberg-Marquardt algorithm given in [Pla99]. The sigmoidal mapping (2.38)
assumes that the logarithm of the posterior odds for the negative class can be modelled
as a line, i.e.,

α1yi +α2 = log
p(ci =−1|yi)

p(ci = 1|yi)
. (2.40)

This mapping has been utilised to enable the musicological modelling by Paulus and
Klapuri [P1], and Gillet and Richard [Gil05c, Gil07].

2.4.2 Models

Several models of the context in the transcription process have been proposed rang-
ing from simple feature vector concatenation to generalised N-grams. These will be
discussed in the following.

Sliding Windows

Possibly the simplest way to include contextual information in the recognition of a
drum sound event is to utilise the neighbouring feature vectors in addition to the fea-
ture vector directly from the sound event. Concatenating the feature vectors allows
the use of any supervised learning algorithm for the actual classification task [Die02].
This kind of feature vector concatenation has been used in drum transcription by Gillet
and Richard [Gil05b] who use an SVM classifier with combined feature vector of two
consecutive sound events. Even this quite simple context modelling provides improve-
ment over using only a single feature vector.

Conventional N-grams

More explicit sequence modelling method often met also in speech recognition is the
use of N-grams. An N-gram of length N uses the (N−1)th order Markov assumption
stating that the probability of event si depends only on the N−1 previous events

p(si|s1:(i−1)) = p(si|s(i−N+1):(i−1)), (2.41)

where a sequence of events is denoted in a more compact form by

s1:(i−1) ≡ s1,s2, . . . ,s(i−1). (2.42)
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The N-gram probability p(si|s(i−N+1):(i−1)) can be estimated from training data as the
ratio of the number of occurrences of the sequence s(i−N+1):(i−1),si to the number of
the prefixes s(i−N+1):(i−1) of length N−1

p(si|s(i−N+1):(i−1)) =
#(s(i−N+1):(i−1),si)

#(s(i−N+1):(i−1))
. (2.43)

The number of probabilities to be estimated with a vocabulary of size V is V N causing
it to increase rapidly as a function of the vocabulary size and the N-gram length. As
a consequence, observing all the sequences in the training data will become increas-
ingly improbable, and using the pure count ratio of (2.43) will cause zero-probability
entries. Several solutions for this problem have been proposed, including assigning
small probability value to the events never seen with Witten-Bell [Wit91] or Good-
Turing [Goo53, Chu91] discounting, or estimating the probabilities from lower-order
N-grams with back-off [Kat87] or with deleted interpolation [Jel80].

In addition to the zero-frequency problem, determining the length of the context is
not straightforward. Variable order Markov models have been proposed to solve this
problem by estimating the overall information gain of increasing the context length for
each sequence [Ron96]. For more details on N-grams and language modelling, refer
to [Jur00].

In drum transcription the data sparsity problem arises quite early if the target
classes are defined as drum combinations due to the low occurrence frequencies of
a majority of the combinations, as illustrated earlier in Fig. 2.8. To solve this problem,
Paulus and Klapuri [P1] and Gillet and Richard [Gil07] have proposed to estimate the
N-grams for individual drums and to produce the combination probabilities by

p(si|s(i−N+1):(i−1)) = ∏
r j∈si

p(r j,i|r j,(i−N+1):(i−1)) ∏
r j /∈si

(

1− p(r j,i|r j,(i−N+1):(i−1))
)

.

(2.44)
In the equation above, r j ∈ si denotes that the drum r j is present in the combination
si, and r j /∈ si that it is not. Combining the individual probabilities in this way as-
sumes that the drums occur independent from each other, which strictly speaking does
not hold and the the decomposition may produce false estimates for some combina-
tions. As suggested in [P1] this may be alleviated by incorporating combination prior
probabilities to the probability estimate given by (2.44). Regardless of the modelling
inaccuracies with combination modelling, the clear benefit from using this decompo-
sition is that training data is utilised more efficiently.

N-grams have been used in drum transcription by Paulus and Klapuri [P1], and
Gillet and Richard [Gil04]. In the first method, the acoustic recognition is done with
a combination of an SVM for silence detection and GMMs for combinations of 7 tar-
get drums from a tatum grid segmented signal. The N-grams are added as a post-
processing step and a Viterbi-like decoding is done to solve the most likely drum
combination sequence. The latter method relies on onset detection, acoustic recog-
nition with GMMs, and then applying the N-gram models to model the events in the
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Figure 2.12: Illustration of prediction with conventional (horizontal arrow) and periodic (ver-
tical arrow) N-grams of the length 3. Time scale is quantised to tatum grid and folded to rows
from musical measures. The target instruments are denoted with bass drum (B), crash cymbal
(C), hi-hat (H), snare drum (S), and tom-tom (T).

sequence. This all was formulated viewing the resulting model as an HMM. The pub-
lication [Gil04] does not present a comparison of plain GMM recognition with the
HMM-like method, so no conclusions can be made concerning the effect of using se-
quence modelling.

Periodic N-grams

In speech and language modelling in general, the sequential dependencies are very
strong: the few directly preceding units predict the following unit effectively. How-
ever, with drum sequences this is not the case, as there is usually a short pattern that
is repeated (possibly with small variations), and the repeats generate the rhythmic per-
cept. This suggests that with drums it is not the directly preceding context that is
important, but the context from a pattern length earlier instead. This is illustrated in
Fig. 2.12, where the task is to predict the content of the location marked with the ques-
tion mark, either based on the two directly preceding events “SH, H”, or based on the
two periodically preceding events “BH, BH”.

Paulus and Klapuri [P1] proposed the concept of periodic N-grams which would
utilise this periodic dependency by modifying the N-gram definition into

p(si|s1:(i−1)) = p(si|si−(N−1)L,si−(N−2)L, . . . ,si−L). (2.45)

The interval length L defines the locations from which the context for the prediction is
taken. Setting the value to L = 1 reduces the model to a conventional N-gram model.
The authors propose that the interval length should be set to a value corresponding
to the length of the musical measure in the piece, which usually corresponds to the
pattern length (or half of it). Naturally, this assumes that the temporal quantisation is
done on a constant, e.g., tatum grid instead of onset detection based segmentation to
allow skipping fixed number of events in the history.
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Generalised N-grams

The N-gram concept was taken even further by Gillet and Richard in [Gil07] in the
generalised N-gram models. The prediction for an event may depend on events that
occur τ = {τ1,τ2, . . . ,τ(N−1)} time units earlier, i.e.,

p(si|s1:(i−1)) = p(si|si−τ(N−1)
,si−τ(N−2)

, . . . ,si−τ1). (2.46)

In case τ = {N− 1,N− 2, . . . ,2,1} the model corresponds to conventional N-grams,
and with τ = {(N− 1)L,(N − 2)L, . . . ,2L,L} the model corresponds to the periodic
N-gram model. Using arbitrary intervals instead of directly or periodically consecu-
tive ones allows to focus on different time scales in the same model. Measured with
the information content of the models, the generalised N-grams showed to contain
more predictive power than conventional or periodic N-grams by looking at directly
preceding and a pattern length earlier events.

Pattern Complexity

The use of N-gram models requires that the musicological model is trained, which al-
ways requires balancing between the prediction power and overfitting the model. Ad-
ditionally, using periodic or generalised N-grams requires the generation of a reliable
grid and pattern length estimation. To avoid the problems that these steps may cause,
Gillet and Richard [Gil07] proposed to define a fitness measure for the transcription
result and use a genetic algorithm to optimise it. In other words, no explicit musico-
logical model is applied, but instead some properties of a “good” transcription result
are defined. The fitness function consists of two terms: the acoustic recognition likeli-
hood and a complexity measure as a negative term. The complexity measure estimates
the Kolmogorov complexity of the hypothesised transcription result by a compression
algorithm. The motivation for the complexity measure is that drum sequences are
constructed from regular and repeating patterns. Considering compression, these both
properties allow more efficient encoding of the data, thus the smaller the complexity
of a sequence is, the more correct it is. This assumption was confirmed by Gillet and
Richard when they noted that the average complexity of the ground truth for their eval-
uation data has a smaller complexity than the transcription result obtained with only
acoustic recognition. In the evaluations the fitness function based post-processing of
the transcription improved the recognition result to par with the one obtained by gen-
eralised N-grams. However, the authors themselves criticise the computational cost of
the genetic algorithm employed in the method.

Pattern Periodicity

In addition to the (periodic) N-grams for modelling the periodicity of drum patterns,
some less formal approaches have been taken. A common theme has been to utilise
the property that drum patterns repeat in somewhat similar form over and over again.
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Sillanpää et al. [Sil00] utilised the local periodicity to predict the next occurrence of
drum hit to follow after an interval of length equal to the interval from the preceding
hit. Gillet and Richard [Gil05c] combined the probabilities of acoustic recogniser
from three positions: the transcription location, a pattern length earlier, and a pattern
length after the location. Even though the method was shown to improve the recall
rate of the method, the precision rate lowered more and the overall performance was
degraded. Yoshii et al. [Yos06] propose a multipass approach where periodic patterns
are searched from the transcription result and the high-level information is then used
to adapt the templates used in the acoustic recognition. The evaluation results suggest
that the periodicity utilisation with acoustic model adaptation improve the transcription
accuracy slightly.

Compositional Rules

All of the methods described above rely on supervised classification in the low-level
acoustic recognition before any musicological model can be applied. The supervised
classification requires that the input patterns are produced with methods resulting to
similar (in view of the features used) observations. However, not all drum-like sounds
are produced with drums, but also using drum onomatopoeia2 and tapping any sur-
rounding objects.

If the sound set used is not known in advance, training a supervised classifier is
difficult if not impossible. In such a case the classification has to be done with an unsu-
pervised method, i.e., with clustering. In the method by Bello et al. [Bel06] the sound
events are clustered into three groups, and the groups are labelled as “low”, “mid”,
or “high” based on their average spectral content. These categories are claimed to be
enough to describe the rhythmic content of drum loops with the stereotypical class
assignments: bass drum belongs to “low”, snare drum and tom-toms are in “mid”, and
cymbals belong to “high”. After mapping a normal drum set to these three categories
for evaluation, the method showed quite high performance. Further development of
the method was presented by Ravelli et al. [Rav07] who incorporate also some infor-
mation of the metrical structure to the resulting description by denoting whether the
sound event occurs on or off-beat. The resulting string representation of drum loops
is used in pattern matching and manipulation. Even though the presented evaluations
used input signals generated with regular drums, the method should work also with any
arbitrary input as long as the spectral relationships of the three clusters are present.

The most difficult case from the point of view of drum transcription is when the
sounds used do not resemble real drums in any way and they do not have any clear
acoustic relationships that could be utilised in determining the identities as was done
above, e.g., the tapping of office supplies on a desk. Such input was considered by
Paulus and Klapuri [P2], utilising compositional rules to determine the identities of

2Imitating the sound produces by a drum with speech-like utterances, e.g., bass drum with “bum”,
snare drum with “tschak”, and hi-hat with “ss”. Beatboxing is an advanced form of this imitating the
sounds very closely with less focus on speech-likeness.
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Figure 2.13: Illustration of the probabilities for different rhythmic roles to occur at different
tatum indices within a musical measure. The probabilities are calculated from the 16 tatums
per pattern pieces in a commercial MIDI drum pattern database [Vam] allowing only one role
to be active at each tatum index. The different rhythmic roles are denoted by BD (bass drum),
SD (snare drum), and HH (hi-hat).

the events. The method creates a tatum grid over the signal with the added knowledge
of musical measure. The located sound events are clustered and information regarding
the cluster membership of each onset is stored to the nearest tatum grid points. Then
a probabilistic model is used to assign each cluster with a musically meaningful drum
role label. The model allows only one role to be present at a time, and considers the
probability of role c to be present at the jth tatum grid point of a measure which has the
length of J tatums as p(c|( j,J)). These probabilities in the case of pattern length of
16 tatums are illustrated in Fig. 2.13. Having a mapping M from clusters to rhythmic
role labels, the cluster sequence can be transformed into a rhythmic role sequence, and
the total probability over it calculated with

p(M) = ∏
i

p(ci|( ji,J)) . (2.47)

In (2.47) i indexes the tatum points of the signal, ci is the role at tatum index i after
applying the mapping M, and ji is the in-measure index of tatum i. The optimisation
task is to find the mapping MOPT that maximises the overall probability

MOPT = argmax
M
{p(M)}. (2.48)

The evaluations showed that using such a compositional rules it is possible to assign
musically more meaningful drum names to events produced with arbitrary sounds that
do not give any acoustic clue of the drum identity.

Ellis and Arroyo [Ell04] proposed to solve similar rhythmic basis functions in a
continuous form by analysing a large set of rhythmic patterns with PCA. The exper-
iments showed that the eigenrhythm method was able to recover some stereotypical
rhythmic components, but the final application of these patterns in genre classification
was less successful.
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Overall, the results obtained by different authors in utilising musicological mod-
elling in drum transcription suggest that the use of high-level information is useful.
Contrary to language modelling in speech recognition, it seems that drum transcription
does not necessarily benefit from conventional N-gram models, but instead basing the
prediction of observations rhythmically meaningful periods apart would be more use-
ful. However, the improvements obtained by using the musicological models have so
far been quite modest. The reason for this may be that the low-level acoustic recogni-
tion result is still not accurate enough to serve as a reliable basis for top-down process-
ing with these models. It should also be noted that to date, no explicit musicological
modelling has been applied with “separate and detect” methods.

Proposed Methods

From the publications included in this thesis [P1] proposes the use of periodic N-
grams to assist in the transcription, and compares their performance with conventional
N-grams. Additionally, the decomposition of drum combinations for the N-gram prob-
ability estimation and recomposition in the transcription phase are presented. [P2]
proposes to use compositional rules to assign drum labels for sequences produced with
arbitrary sound sets. The connected HMM method [P5] uses simple bigrams (N-grams
of length 2) for modelling the transition probabilities between consecutive models.

2.4.3 Non-audio Modalities

All of the methods described above are designed to handle only an acoustic signal as
the input. In some cases there is also visual information available to be utilised in
the transcription. In [Gil05a] Gillet and Richard combine an existing acoustic tran-
scription method to utilise also video data recorded from the drummer playing. The
results suggested that even though the video information alone did not have very good
performance, they allowed to improve the performance of the acoustic recognition
system slightly. The visual analysis system was developed further by McGuinness et
al. [McG07] and the results agreed with those obtained by Gillet and Richard.

2.5 Summary

This chapter has provided an overview of the drum transcription task and the methods
proposed to solve it. The main methods have been gathered to Table 2.1 on page 17
to provide an overview of the authors and approaches. The problem difficulty ranges
from recognising individual drum hits to transcribing multiple simultaneous drums
from polyphonic music. Because of the multifacetedness of the problem, several dif-
ferent approaches have been adopted and the main principles have been described.
In some of the earlier publications the target drum set has contained ambitiously a
large set of drums, but as the complexity of the problem has been understood, many
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of the more recent publications have targeted only bass drum, snare drum, and hi-hat.
These three drums have been successfully transcribed from a signal containing only
drums, but the performance with polyphonic music input still leaves some room for
improvement. Recently, more and more methods have utilised either some sort of
model adaptation, musicological modelling, or even both to improve the transcription
performance. Though the problem of drum transcription may seem initially simple,
the performance of the current state-of-the-art methods suggests that this is not the
case in reality and still more work is required to obtain reliable result.
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Chapter 3
Music Piece Structure Analysis

Form and content: the two poles around which, traditionally
discussions of works of art revolve. Form is supposed to cover the
shape or structure of the work; content its substance, meaning,
ideas, or expressive effects.

Middleton [Mid99]

THE difference between arbitrary sound sequences and music is not well-defined:
what is random noise for someone may be ingenious musical composition for

somebody else. What can be generally agreed upon is that it is the structure, or the
relationships between the sound events that create the perception of musicality. This
structure starts from the level of individual notes, their acoustic properties, durations,
and intervals in time and frequency. Notes form larger structures, phrases, chords, and
chord progressions, and these again form larger and larger constructs in a hierarchical
manner. At the level of musical pieces the subdivision can be made to musical sections,
such as intro, chorus, and verse, and recovering a description of this structure is what
is meant by structure analysis in this thesis. The kinds of form and the assumptions
made here fit mainly Western popular music, but some of the employed principles can
be utilised to analyse other kind of music, too, as demonstrated by the work of Müller
and Kurth on classical music [Mül07b]. Some of the musical sections that will be
referred to in the rest of this chapter include the following:1

• Intro - Usually a unique section in the beginning of the piece. In many pop
songs, may contain a version of the chorus melody or chord progression.

• Outro, ending - A unique section in the end of the piece acting as the opposite
of intro.

1These should not be taken as authoritative definitions, but as more informal descriptions.
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• Verse - First of the two main musical sections in a majority of pop songs. The
verse often carries the story of the piece in a narrative form, and different occur-
rences of it often have slightly differring instrumentations and lyrics.

• Chorus, refrain - Second of the two main musical sections in pop songs, pro-
viding contrast to the verse. In many cases, the most often repeating and the
most energetic section in the song. Chorus is likely to remain almost identical
across the repetitions. In some pieces, the last repetition of the chorus may be
modulated one or two semitones up.

• Solo - An occurrence of verse, chorus, or some other part in which the main
vocals are replaced with instrumentals.

• Bridge - A contrasting, interconnecting section between other parts, e.g., chorus
and verse.

• Break, breakdown - A section with greatly reduced instrumentation providing a
breather before gradually building back to the main parts.

• Interlude - A more generic name for contrasting sections with differring instru-
mentation or rhythm. Break and bridge can be considered to be more specialised
instances of an interlude.

• Theme - A section with reoccurring common melody with small variations. Used
mainly with instrumental pieces to replace chorus and verse.

Some idea of the occurrence frequencies of the musical parts mentioned above can
be obtained from Fig. 3.1 which illustrates the most often occurring musical part la-
bels2 in three different data sets. The first data set, UPF Beatles, consists of 174 songs
by The Beatles. The sectional form of the pieces has been annotated by musicologist
Alan W. Pollack [Pol01], and the segmentation time stamps were added at Universi-
tat Pompeu Fabra. The second data set, TUTstructure07 consists of 557 pieces from
various popular music genres [P8]. The data set was collected and annotated at Tam-
pere University of Technology. The third data set, RWC Pop, consists of 100 pieces
from the Real World Computing Popular Music Database [Got02] representing typical
Japanese and American chart hits from 1980’s and 1990’s. The structure annotations
were provided as a part of the AIST annotations [Got06].

Structure in music is instantiated by two main principles: sequences and repe-

titions. The sequences are formed by consecutive notes and chords following each
other. The repetition is important an factor, as Middleton states in [Mid99]: “It has

2One or more of following qualifiers can be applied to the labels: <label> and a, b, c, or d: variations
of the part in the same piece; pre-<label>, post-<label>: a clearly separate part, but always connected
to <label> either by preceding or following it; <label>h: only a half of <label>, <label>s: part can be
interpreted to be either <label> or solo, <label>i: instrumental version of the part. Furthermore, labels
a, b, and c have been used to denote parts without distinctive semantic label.
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Figure 3.1: Number of occurrences of most frequently occurring musical part labels in three
data sets: UPF Beatles (top), TUTstructure07 (middle), and RWC Pop (bottom). Only labels
that have more than one occurrence and belong to the 20 most frequently occurring labels in
each data set are shown.

often been observed that repetition plays a particularly important role in music - in vir-
tually any sort of music one can think of, actually. . . . In most popular music, repetition
processes are especially strong.” The repetition takes place especially in the rhythmic
parts of the piece (e.g., repeating drum patterns), but also the musical sections are of-
ten repeated. Some idea of the amount of musical part repeats is provided by Fig. 3.2:
the left column of the figure illustrates histograms of the number of musical part oc-
currences in the pieces in the three data sets, and comparing them to the right column
illustrating the number of unique musical parts. The statistic show that, on average, a
musical part in a piece occurs approximately twice. However, as shown in Fig. 3.3, a
considerable number of parts have only single occurrences in pieces.

In the rest of the chapter, the following terminology will used:
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Figure 3.2: Histograms showing the number of segments (left) and the number of unique
groups (right) in a piece, calculated from three data sets: UPF Beatles (top), TUTstructure07

(middle), and RWC Pop (bottom).

• Part - a musical concept that can refer to either a single instance or all the in-
stances of a musical section, such as chorus or verse.

• Segment - a technical concept referring to the temporal range of a single occur-
rence of a musical part.

• Group - one or more segments that represent all the occurrences of the same
musical part.

• Label - a musically meaningful name for a group.

For a tutorial and a review of earlier methods for music structure analysis from acoustic
signals, refer to the book chapter by Dannenberg and Goto [Dan08].

3.1 Problem Definition

Similar to the drum transcription problem, different researchers have pursued slightly
different goals under the title “structure analysis”. A common theme, however, is that
the temporal scale of the analysis has been approximately same in all the cases, i.e., the
level of musical sections. The methods discussed in the following operate by taking
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Figure 3.3: Histograms showing the average number a musical part occurs in a piece, calculated
from three data sets: UPF Beatles, TUTstructure07, and RWC Pop.

an acoustic signal as the input and produce some information about the structure. The
output of the discussed methods varies from images created for visualisation, to a
representation where each found section is defined by its time range and given some
meaningful label.

In the simplest form, no explicit structural analysis is performed, but some trans-
formation of the acoustic features of the piece are used to provide a visualisation of
the structure of the piece. Even though the visualisation method would not utilise any
formal model, the ability of humans to locate patterns can extract useful information
from the result.

A second category of methods aim only to segment the song, i.e., locate points
where the instrumentation or some other characteristics changes in the extent that a
human listener would say that there is a musical boundary at that point. The seg-
mentation info can be applied, for example, in a playback skipping to the point of
next musical change, and having an accurate segmentation enables also more complex
structure analysis to be done with less computations.

Many of the proposed methods have been motivated by creating music thumbnails,
i.e., selecting a representative part or parts of the piece that provide a compact preview
of the piece, for example, at online music stores. In some cases the chorus is defined
to be the most representative part of the piece and the methods aim at locating it.
This choice is often motivated by the fact that in popular music the chorus section is
usually repeated in a more or less identical form several times during the song and it
is the “catchiest” part, thus making it a good choice for the thumbnail. Thus, some
authors define the most often repeating section to be the chorus and aim at locating
it [Got03, Bar05, Ero07, Pee07].

Another task level is defined when the idea of locating the occurrences of the most
often repeating part is extended to retrieve all parts that are repeated [P6] and [Pee07].
Finding all repeated parts provides already a fairly good description since the remain-
ing non-repeated segments between the repeated parts can be be also returned in the
result. This leads quite naturally to the task definition where the structure of the entire
piece has to be described. The description now consists of a segmentation of the piece
and a grouping of the segments that are occurrences of the same musical part. The
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groups can then be lettered “A”, “B”, “C” and so forth in the order of their first occur-
rence. Since some of the musical parts have distinct “roles” in the Western pop music,
some methods aim to assign the groups with labels, such as “verse” and “chorus”.

Proposed Methods

From the methods proposed in this thesis [P6] aims to recover a description of the
parts that have more than one occurrence, while [P8] aims to produce a description of
all the parts in the piece. Publication [P7] proposes a method for labelling structure
descriptions with musically meaningful labels, such as “verse” and “chorus”.

3.2 Features and Data Representations

Since the acoustic signal sample values are relatively uninformative by themselves,
some feature extraction has to be employed. The question is, once again, what are the
important aspects of the signal that humans observe when determining the sectional
form of a piece, and how these aspects could be formulated in a mathematical way.
Bruderer et al. [Bru06] conducted experiments to find the perceptual cues that humans
use to determine a segmentation point in music. The results suggest that “global struc-
ture”, “change in timbre”, “change in level”, “repetition”, and “change in rhythm”
indicated the presence of a structural boundary to the test subjects. The cue category
“global structure” is not necessarily well-defined compared to the other cues as it is an
umbrella category for the general perception of song structure itself.

3.2.1 Frame Blocking for Feature Extraction

The feature extraction in audio content analysis is normally done in relatively short,
10–100 ms frames. In music structure analysis where each point in the piece is often
compared with every other point, a very short frame causes computational resource
problems (if the feature is extracted from 20 ms frames with 50% overlap from a 3-
minute piece, there will be 18000 frames and 1.62 · 108 frame pairs). For this reason
many of the proposed methods employ a considerably larger frame length in the or-
der of 100–600 ms. Not only does this reduce the amount of data, but it also allows
focusing on a musically more meaningful time scale.

The idea of musically meaningful time scale has been taken even further in some
methods that propose the use of event-synchronised feature extraction. In other words,
instead of a fixed frame length and hop, the division is defined by the temporal lo-
cations of sound events [Jeh05] or the occurrences of a metrical pulse, e.g., tatum or
beat [Mad04, Shi05, Lev06, Mar06, Che09], [P6]. Using an event-synchronised frame
division has two benefits compared to the use of fixed frame length: tempo-invariance
and sharper feature differences. The tempo-invariance property allows to adjust the
frame rate according to the input signal tempo variations, e.g., with decreasing tempo,
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the frame length and hop will increase accordingly. The event-synchronised frame
blocking also allocates consecutive sound events to different frames. In the case of
acoustically differring events, this produces clearer difference between the features
extracted from the two frames. The event-synchronisation can be obtained also by
calculating the feature from the short frames and then averaging the values over the
length of the event-synchronised frames [Ero07], [S4], and [P8].

Proposed Methods

The methods proposed [P6] utilises feature extraction frames defined by the beat pulse.
Publication [P8] uses a fixed 92.9 ms frame length with 50% overlap, but the feature
values are averaged over beat-synchronised frames.

3.2.2 Features

Because the general timbre of the music seems to be important for structure percep-
tion, features parametrising it are often employed in structure analysis methods. Per-
ceptually timbre is closely related with the recognition of sound sources, and depends
on the relative levels of the sound at critical bands and on the temporal evolution of
these. Timbral features reflect the instrumentation of the piece, and should therefore
enable discriminating between parts that differ in that respect, e.g., quite often verse
and chorus. Majority of the structure analysis methods that utilise timbral informa-
tion use MFCCs to describe it (see Sec. 2.3.1). Maddage [Mad06] used MFCC-like
idea, but replaced the mel-scale filter bank with 4-12 triangular filters in each octave.
Other parametrisations omit the DCT step and use some non-mel spacing in band
definitions, e.g., the MPEG-7 AudioSpectrumEnvelope descriptor [Int02] has been
used [Wel03, Lev08], or very similar constant-Q spectrograms, e.g., [Abd06, Cas06].
Aucouturier and Sandler [Auc01] compared different parametrisations of timbral in-
formation in music structure analysis, and found MFCCs to outperform the other fea-
tures, such as linear prediction coefficients. MFCCs calculated from an example piece
are illustrated in the top panels of Fig. 3.4.

Another important aspect of music is the pitched content. It forms harmonic and
melodic sequences that the listener will notice and use to deduce the structure. A
chromagram3 is frequently used to describe the harmonic content. Chroma relies on
the cyclic perception of pitch in human auditory system causing pitches an octave
apart, i.e., half or double the frequency, to have a similar harmonic role. In the discre-
tised version of chroma, the spectral energy is first assigned to bins with one semitone
width (also half-semitone bins have been employed, e.g., [Cha05, Mar06]), and then
the octave-equivalence classes are folded together. The process is illustrated in Fig. 3.5
where the magnitude spectrum is assigned to semitone bins, illustrated by the piano

3Chromagram refers to a spectrogram-like representation with the feature calculated from several
frames and stored as a matrix in which each column corresponds to a time frame. The feature itself is
referred as chroma, or pitch-class profile.
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Figure 3.5: Illustration of the chroma calculation with octave folding from an input signal con-
taining s a single piano note C4, Top panel contains the magnitude spectrum, and the remaining
panels illustrate how the energy corresponding to all occurrences of chroma “C” are gathered
through octave folding to the single chroma vector bin.

keys. The resulting feature vector is illustrated in the bottom of the figure after nor-
malising the values to sum to unity.

Several methods for calculating chroma have been proposed. The most straight-
forward one is to calculate the magnitude or power spectrum with discrete Fourier
transform (DFT), resample the frequency axis to correspond to the semitone scale, and
finally sum over the octave-equivalence classes. The spectral energy resampling can be
done by assigning each DFT bin to only one semitone bin, as proposed by Bartsch and
Wakefield [Bar05], or with smooth weighting functions, as proposed by Goto [Got03].

Some alternatives for the DFT analysis have been proposed. The method by Ryynä-
nen and Klapuri [Ryy08b] replaces the DFT analysis with a multipitch estimation
front-end, and was adopted to music structure analysis by Paulus and Klapuri [P8].
The method estimates the saliences of different fundamental frequencies in the range
80–640 Hz. The linear frequency scale is then transformed into a musical one by se-
lecting the maximum salience value in each semitone bin. Finally, the octave folding
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ascending scale of three octaves from C3 to B5 played with a MIDI piano. The brighter the
image element, the larger the value in the chroma matrix.

is done as with the other chroma calculation methods. An example of a chromagram
calculated in this way from an ascending three-octave scale is illustrated in Fig. 3.6.
Müller and Kurth [Mül07b] proposed using a bank of time-domain band-pass filters
corresponding to the semitone bands to replace the DFT analysis and frequency scale
resampling.

Other chroma-like features are compared in a music structure analysis application
by Ong et al. in [Ong06b]. Recently, Müller et al. [Mül09] proposed a method to
increase the timbre-robustness of chroma. The method applies a linear operation on
the semitone band energies in each frame to discard some information correlating with
timbral properties of the signal. Some timbre-robustness is achieved also by the funda-
mental frequency salience estimation front-end in the method from [Ryy08b] through
spectral whitening. Some more advanced chroma and pitch based features including
also local energy information are described in the book by Müller [Mül07a, Chapter 3].
Chromagrams for an example piece are illustrated in the middle panels of Fig. 3.4.

In addition to the timbral and harmonic content parametrisations, the third aspect
relating to the findings of Bruderer et al. is the rhythmic content. There has been very
little effort in creating a rhythmic feature for music structure analysis. In addition to
the simple loudness curve parametrisation proposed by Jehan [Jeh05], the rhythmo-

gram, originally proposed by Jensen [Jen04], has possibly been the only effort in this
direction. Rhythmogram is closely related to musical meter or beat analysis as it aims
to find periodicities in an onset accentuation signal. The original publication proposes
to use perceptual spectral flux (PSF) as the accentuation signal. PSF is defined as

h(t) =
K

∑
k=1

w(k)
(

X(k,t)1/3−X(k,t−1)1/3
)

, (3.1)

where w is a perceptually motivated frequency weighting accounting for the frequency-
dependent sensitivity of hearing, k frequency index, X magnitude spectrogram, and t
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is a time index. Next, autocorrelation of the PSF is calculated by

ACORR(i,t) =
a−1

∑
i=0

h(t)h(t + i) (3.2)

in sliding windows of several second in length and the correlation values for lags up
to 2 s are retained. Peaks in this function indicate periodicities with period equal to
the lag. Paulus and Klapuri noted in [S4] that the use of the rhythmogram information
in addition to timbral and harmonic features provides useful information to structure
analysis. They replace the PSF front-end with a musical accent signal which is a
by-product of musical meter analysis method [Kla06b] used for creating an event-
synchronised frame division. Rhythmograms calculated from an example piece are
illustrated in the lowest panels of Fig. 3.4.

The “dynamic features” proposed by Peeters [Pee04a] are also aiming to parametrise
the rhythmic content by describing the temporal evolution of features in frames up to
10 s in length. The specific feature proposed in [Pee04a] consists of calculating short-
time Fourier transform (STFT) of the energy envelopes of mel-scale filter bank and
using the result as the feature representation for one frame. This feature resembles the
TRAPS feature discussed earlier in Sec. 2.3.1.

In addition to the timbral, harmonic, and rhythmic features discussed above, also
other more “traditional” features, such as the ones discussed in Sec. 2.3.1, have been
utilised in some music structure analysis methods, e.g., by Ong [Ong06a] and Xu et
al. [Xu04]. As a related multimodal method, Zhu et al. [Zhu05] propose to use the
image representation of the piece lyrics on a karaoke videos to distinguish between
chorus and verse after locating them based on the acoustic information. The differen-
tiation is relatively simple: choruses have similar melodic content and similar lyrics,
while the verses have similar melodic content, but differring lyrics.

Even though different features describe different musical properties, to date very
few methods have utilised more than one feature at a time (except the methods with
a large number of more simple features combined with feature vector concatenation,
e.g., [Xu04, Ong06a]). Eronen [Ero07] proposed to combine MFCCs and chroma fea-
tures in the self-distance matrix (SDM) domain (see Sec. 3.2.3), similar to Peeters [Pee07]
who combined SDMs from MFCCs, chroma, and spectral contrast features. Levy et
al. [Lev07] compare combining the information from timbral and harmony related
features either by feature vector concatenation, or after initial processing of timbral
features and chord recognition from harmonic features against using the individual
features. The obtained results suggest that feature combination improves performance.
Similar approach was later adopted by Cheng at al. [Che09]. Paulus and Klapuri [P8]
combine the information obtained from MFCCs, chroma, and rhythmogram in proba-
bility domain, as will be described in Sec. 3.3.4.
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Proposed Methods

The methods proposed in this thesis utilise several different acoustic features. In [P6]
the initial piece segmentation is done using 13 MFCCs and their time derivatives,
and the segment matching is done with chroma from three two-octave ranges to pro-
duce a 36-dimensional feature vector. The supplemental publication [S4] evaluates the
suitability of MFCCs, chroma, and rhythmogram features and their combinations in
structure analysis. Additionally, different temporal resolutions are evaluated to focus
the feature at different time scales. The method proposed in [P8] uses MFCCs and
chroma with two different temporal scales, and a rhythmogram calculated in relatively
long frames.

3.2.3 Self-distance Matrix

As the musical structure is implied strongly by repetition, different parts of the input
piece have to be compared with other parts to locate repetitions. A frequently used
mid-level representation, self-distance matrix is obtained by calculating the distance
d(xi,x j) between all frame pairs i, j = {1,2, . . . ,NF} and storing the result in a matrix
form.4 As illustrated in Fig. 3.7, the element D(i, j) of the SDM denotes the distance
between the two frames. The origins of the matrix representation can be considered
to stem from the recurrence plots proposed by Eckmann et al. [Eck87] for the analysis

4The dual of SDMs are self-similarity matrices in which each element describes the similarity be-
tween the frames instead of distance. Most of the following operations can be done with either repre-
sentation, although here we discuss only SDMs.
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of chaotic systems. In the context of music structure analysis, the SDMs were initially
proposed by Foote [Foo99] for music visualisation.

Different distance and similarity measures have been proposed for the calculation
of SDMs, the two most often used being the Euclidean distance

dE(xi,x j) = ‖ xi−x j ‖, (3.3)

and the cosine distance

dC(xi,x j) = 0.5

(

1− 〈xi,x j〉
‖ xi ‖‖ x j ‖

)

, (3.4)

in which ‖ · ‖ denotes the vector norm and 〈·, ·〉 dot product. The main difference
between the two distances is that the Euclidean distance is affected by the scaling of the
feature values whereas the cosine distance depends only on the directional difference
of the vectors. Additionally, the range of Euclidean distance is not limited while the
cosine distance is always in the range [0,1].

The distance measures (3.3) and (3.4) are defined to compare single frames. In case
the feature is parametrising a property occurring as sequences, such as chroma feature
describing melodic or chord progressions, it is sometimes justified to include the local
temporal evolution of the feature in the distance measure. Foote [Foo99] proposed
to utilise a method resembling the sliding windows discussed earlier in Sec. 2.4.2 by
averaging the distance values from N + 1 consecutive frames and using that as the
distance value instead, i.e.,

d̂(xi,x j) =
1

N +1

N/2

∑
n=−N/2

d(xi+n,x j+n). (3.5)

Similar approach was later adopted by Müller and Kurth [Mül07b].
The idea of combining information from several consecutive frames to one SDM

element has been extended from the sliding window discussed above. Shiu et al. [Shi05]
calculate the average distance from the feature vectors within segments of one musical
measure in length, but instead of sliding the window, the consecutive windows do not
overlap. This way the information of low-level features is combined to an SDM on
the level of musical measures. This idea was extended by Paulus and Klapuri [P6] by
calculating the match between the feature vector sequences of two musical measure
with dynamic time warping (DTW), allowing more flexibility in the matching (for a
description of DTW, see Appendix A). The idea of hierarchical SDMs was taken to
the extreme by Jehan [Jeh05], where SDMs of multiple levels of temporal hierarchy
are calculated starting from individual frames to musical patterns. Each higher level in
the hierarchy was calculated based on the SDM of the finer temporal structure.

Recurring patterns in the feature vector sequence xi, i = {1,2, . . . ,NF} will form
patterns in the SDM. If the distance measure used is symmetric, i.e., d(xi,x j) =
d(x j,xi), the resulting SDM will also be symmetric around the main diagonal. The two
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Figure 3.8: An example of the patterns formed in SDMs. The sequence consists of two parts,
A and B, repeating as indicated, and darker element denotes lower distance.

most important patterns that will be formed in an SDM from the patterns of the fea-
tures are illustrated in an idealised SDM in Fig. 3.8. If the features measure something
like the instrumentation that stays somewhat constant over the duration of a musical
part, blocks of low distance will be formed. Such a feature could be, e.g., MFCCs. In
case the feature describes a property that does not remain constant over the part occur-
rence, but instead evolves forming a sequence, diagonal stripes of low distance will
be formed. An example of a such feature is chroma. Locating and interpreting these
patterns with various methods is the main approach employed in many of the structure
analysis methods in the literature.

As Peeters [Pee04a] noted, the features alone do not determine whether blocks or
stripes are formed, but the temporal parameters of the feature extraction process are
also important. In other words, the longer the temporal window is that the feature
vector describes, the more likely it is that blocks will be formed in the SDM. This
was demonstrated in [Pee04a] by varying the length of the dynamic feature calcula-
tion window: with relatively short windows stripes were formed in SDM, but as the
window length was increased, the more the stripes were surrounded by blocks. Simi-
lar observation was confirmed with MFCCs, chroma, and rhythmogram by Paulus and
Klapuri [S4]. They low-pass filtered the MFCCs and chroma features over time with
various cut-off frequencies before the SDM calculation, and varied the autocorrelation
window length in the rhythmogram calculation. The aim was to select such time scale
parameters that the distance measures for block- and stripe-likeness in the SDM was
optimal, i.e., prominent stripes when two parts are true occurrences of the same part as
well as prominent blocks. Similar smoothing filter was proposed by Müller and Kurth
for a chroma-based feature in [Mül07b]. The effect of the time scale parameter on the
feature values extracted from an example piece is illustrated in Fig. 3.4, and the SDMs
resulting from the presented feature matrices are illustrated in Fig. 3.10.
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Figure 3.9: Time-lag matrix representation of the SDM from Fig. 3.8. The non-main diagonal
stripes will be transformed into horizontal lines with the vertical position describing the interval
(lag) between the occurrences.

Another way to present the information in an SDM is to transform it to a time-lag
format [Got03]. In an SDM both the axes represent absolute time, but in time-lag
matrix R the other axis is changed to represent time difference (lag) instead

R(i, j) = D(i, i− j), if i− j > 0. (3.6)

The ordinate transformation discards the duplicate information of symmetric SDM.
Fig. 3.9 represents the time-lag version of the information contained in the SDM of
Fig. 3.8. The diagonal stripes formed by the repeated sequences appear as horizontal
lines in the time-lag representation, and may be easier to extract. Even though time-
lag representation transforms the stripe information into a more easily interpretable
form, the block information is transformed into parallelograms and may now be more
difficult to extract.

Proposed Methods

Among the methods proposed in this thesis [P6] uses an SDM calculated with cosine
distance measure from beat-synchronised MFCCs for the initial segmentation. The
segment matching uses an SDM on the level of musical measures. Each element in the
SDM describes a DTW-based dissimilarity between the measure-length sequences of
beat-synchronised chroma frames matched with cosine distance measure. The method
proposed in [P8] uses beat-synchronised SDMs calculated with cosine distance mea-
sure.
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Figure 3.10: Example SDMs calculated using cosine distance (3.4) on the feature matrices
shown in Fig. 3.4 (top row MFCCs, middle row chroma, bottom row rhythmogram, left column
coarser time scale, right column finer time scale, darker pixel denotes lower distance). The
annotated structure of the piece is indicated by the overlay grid, and the part labels are indicated
in the top of the figure with: intro (I), theme (T), verse (V), chorus (C), solo (S), and outro (O).
The figure shows how different parts share some of the perceptual aspects, but not all, e.g.,
chorus and solo have similar harmonic but differring timbral content.

3.3 Approaches

Various methods have been proposed for music structure analysis. The main methods
are listed in Table 3.1, and Fig. 3.11 illustrates an overview block diagram contain-
ing some of the operational entities the proposed methods employ. This section will
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Figure 3.11: An overview block diagram of various operational entities employed in music
structure analysis methods.

describe the main approaches in more detail, and the interconnections between the
operations should become apparent.

A categorisation of music structure analysis methods proposed by Peeters [Pee04a]
divides them to sequence and state approaches. The sequence approaches assume that
the musical signal contains sequences of events that are repeated in the same order
later in the piece, thus forming the diagonal stripes in the SDM. Because the sequence
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methods locate only the repeats, it is more than likely that the analysis result will not
cover the entire piece. The state approaches in turn consider the piece to be produced
by a (finite) state machine, where each state produces some part of the signal. Con-
sidering the SDM representation, the state approaches can be thought to describe the
formed blocks. Some instantiations of the two categories will described in more detail
in Secs. 3.3.2 and 3.3.3 after discussing methods for segmentation only.

3.3.1 Segmentation

Even though only segmenting the input audio is not directly in the scope of this thesis,
it is a necessary pre-processing step in the methods proposed in the included publi-
cations [P6] and [P8]. Tzanetakis and Cook [Tza99] propose to segment a signal by
extracting a set of features from the signal and calculating Mahalanobis distance

dM(xi,x j) = (xi−x j)
TΣ−1(xi−x j) (3.7)

between successive frames j = i+1. Σ is the covariance matrix of the features, calcu-
lated over the whole signal. Large differences in the distance values indicate possible
segmentation points. Foote [Foo00] utilises the self-similarity matrix representation
calculated from MFCC features with cosine distance, and detected segment boundaries
with a 2D corner point detection matrix. Similar method is used to create candidate
segmentation points in [P6] and [P8], and therefore it will now be described in more
detail.

After calculating the SDM, an m×m corner point detection kernel matrix K is
correlated along the main diagonal to locate corners of blocks of low distance. The
kernel matrix has a 2×2 checkerboard -like structure

K =

(

QTL QTR
QBL QBR

)

, (3.8)

where the following symmetries hold

QTL =−JQBL =−QTRJ = JQBRJ (3.9)

and J is an (m/2)× (m/2) matrix with ones on the main anti-diagonal and zeros else-
where. It reverses the order of matrix rows when applied from left and the order of
columns when applied from right. The values in QBR can be simply all −1. However,
for the detection of a corner point the values close to the centre of the kernel should be
more important than the values further. To accomplish this, Gaussian radial weighting
has been applied to define the kernel element values by

QBR(i, j) =−exp

(

− r2

2σ2

)

, (3.10)

where the radius r is defined by

r2 =
4

m2

(

(i−1)2 +( j−1)2) , (3.11)
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Figure 3.12: An example corner point detection kernel with Gaussian radial smoothing
(m = 32, σ = 0.5.)

and σ is a shape parameter. An example detection kernel matrix used to create seg-
mentation points in [P8] is illustrated in Fig. 3.12.

The result of the correlation of SDM D with the detection kernel matrix K is called
the novelty vector and is calculated with

n(k) =
m/2−1

∑
i=−m/2

m/2−1

∑
j=−m/2

K(
m

2
+ i,

m

2
+ j)D(k + i,k + j). (3.12)

As the name suggests, the novelty value has peaks wherever there are corner points in
the input SDM, thus indicating the start of new segment. An example SDM with the
resulting novelty vector is illustrated in Fig. 3.13. The segmentation can then be done
by locating a desired number of the peaks, possibly with some minimum distance and
height constraints.

Jensen adopted a completely different approach for locating the main diagonal
blocks from the SDM in [Jen07]. The method uses a cost function to determine the
“optimal” segmentation of the signal. The cost function consists of a fixed cost of
adding a new segmentation point, and a signal-dependent term for each candidate seg-
ment. A segment in the time axis of the signal defines a submatrix, or a block, on
the main diagonal of SDM. The internal segment gain is defined as approximately the
average similarity within the defined block. Now, adding a new segment will have the
fixed addition cost and the similarity term operates as a counterweight. The resulting
optimisation problem is formulated as searching the shortest path in a edge-weighted
directed acyclic graph which can be solved, e.g., with the Dijkstra’s algorithm [Cor90,
Chapter 25].
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Figure 3.13: The block MFCC SDM from Fig. 3.10 and the novelty function resulting from
applying the kernel from Fig. 3.12. A peak in the novelty vector indicates that there is a corner
point in the SDM, and it may be a segment border location.

For other methods to music segmentation, an interested reader is referred to the
publication by Turnbull et al. [Tur07] in which several acoustic features and both su-
pervised and unsupervised segmentation methods are evaluated.

Proposed Methods

The methods proposed in this thesis utilise the novelty function based segmentation
generation to produce a set of candidate segmentation points from which the final
segmentation points are then selected. In [P6] the novelty function is calculated from
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MFCCs, while in [P8] it is calculated from all the three features used, and summed to
produce the final detection function.

3.3.2 State Approach

A direct continuation of the segmentation described earlier is to analyse the content
of the created segments and to cluster them. This is an example of a state approach
which assumes that the underlying generative process is a state machine, and each state
produces distinct observations, i.e., feature vectors. A method with the segmentation
and a following clustering stage was proposed by Cooper and Foote [Coo03]. A second
similarity matrix is calculated now using the similarities between the found segments.
The content of a segment si is parametrised by a multivariate normal distribution Ni

with a mean vector µi of length N and a covariance matrix Σi. The similarity between
two segments si and s j is defined with

dSEGS(si,s j) = exp
(

−dKL(Ni||N j)−dKL(N j||Ni)
)

, (3.13)

where dKL(·||·) is the Kullback-Leibler divergence between two multivariate normal
distributions [Gol03]

dKL(Ni||N j) =
1
2

(

log

∣

∣Σ j

∣

∣

|Σi|
+ trace(Σ−1

j Σi)+(µi−µ j)
TΣ−1

j (µi−µ j)−N

)

. (3.14)

Above |·| denotes the determinant of a matrix. Having the similarities for all segment
pairs, the segments are grouped with spectral clustering [Wei99] through singular value
decomposition. Logan and Chu [Log00] used similar Gaussian parametrisation on
fixed-length segments (1 s) that were then clustered with agglomerative hierarchical
clustering5 until the segment dissimilarity exceeds a set threshold.

The method proposed by Goodwin and Laroche [Goo04] performs the segmenta-
tion and clustering at the same time. The method itself resembles the cost function
based segmentation by Jensen [Jen07] discussed earlier, with the difference that the
searched path can now return to a state defined earlier if it is globally more efficient
for the structure description.

The concept of “state” is taken more explicitly in methods employing HMMs for
the analysis, e.g., the methods proposed by Logan and Chu [Log00], Aucouturier and
Sandler [Auc01], or Gao et al. [Gao03]. The idealised assumption is that each musical
part can be represented by a state in an HMM, and the states produce observations
from the underlying probability distribution. The methods employ a fully connected
HMM topology with Gaussian mixture models for the observation densities. A fully
connected HMM with four states is illustrated in Fig. 3.14. The analysis operates by
training the HMM with the piece to be analysed, and then decoding the same signal

5In agglomerative hierarchical clustering, each data point is initially a separate cluster. At each
iteration, the two closest clusters are merged, and this is repeated until some stopping condition is met.
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Figure 3.14: Topology of a 4-state fully connected HMM.

with the model. Effectively this implements vector quantisation of the feature vectors
with some temporal dependency modelling included in the state transition probabil-
ities. Though this model has certain appeal, it does not work very well in practice
because the result is often temporally fragmented, as noted by Peeters et al. [Pee02].
The fragmentation is due to the fact that the individual states start to model individual
sound events instead of longer musical parts.

Because of the temporal fragmentation of the analysis result obtained with HMM
approach, several post-processing methods have been proposed to alleviate the prob-
lem. Many of these utilise a large number of states, e.g., 40–80, in the HMM analysis,
and use the resulting state sequence as a mid-level representation for further analysis.
As the number of states is large, each of them now represents a certain short sound
event and the musical patterns will form patterns in the state sequence. Fig. 3.15
shows the resulting state sequences of an example piece after analysing it with fully
connected HMMs with 8 and 40 states.

The state sequence representation is included also for general audio parametri-
sation in the MPEG-7 standard as the SoundModelStatePathType descriptor [Int02].
Abdallah et al. [Abd05] proposed to calculate histograms of the states with a sliding
window over the entire sequence, and use the resulting histogram vectors as new fea-
ture vectors for each frame. The histogram calculation allows considering the local
context of a frame, i.e., similar musical segments will be parametrised using approxi-
mately the same set of states and the histogram reveals the similarity of the set contents.
For the further utilisation of the state histograms Abdallah et al. [Abd05] proposed a
probabilistic clustering, and they later extended the method to include statistical mod-
elling of the cluster durations in [Abd06]. Levy et al. [Lev06] increased the amount of
knowledge of the context with a variant of fuzzy c-means clustering applied on the his-
tograms. This approach was formalised further by Levy and Sandler in a probabilistic
framework [Lev08].

Slightly different approach to reduce the resulting fragmentation was proposed by
Peeters [Pee02]. After calculating SDM and creating a segmentation, the mean feature
vector values are used to provide initial cluster centroids. These centroids are then
updated in k-means clustering of individual frames. The outcome of the clustering may
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Figure 3.15: Example state sequences resulting from HMM based analysis. The feature data
used is the long time-scale MFCCs presented in Fig. 3.4. The top panel presents the state
sequence after using an 40-state fully connected HMM, while the middle panel presents the
result from a 8-state HMM, and the lowest panel illustrates the annotated structure. For the
part names, see Fig. 3.4.

be fragmented, and this fragmentation is addressed by using the cluster centroids as
an initialisation of HMM training. The results suggest that employing approximately
correct number of clusters and the way the HMM training is initialised from the cluster
centroids of temporally co-located data improves the result compared to direct HMM
training.

In a recent publication Barrington et al. [Bar09] propose to use dynamic texture
mixture models (DTM) for the structure analysis. DTM is basically a state model,
where each (hidden) state produces observations that have a temporal structure. The
mixture term controls how the states can be clustered to form distinctive state se-
quences. The main novelty of the method compared to the HMM-based state methods
is that the observation model itself takes into account the temporal behaviour of the
produced observations and no heuristic post-processing is necessary.

3.3.3 Sequence Approach

The methods proposed to utilise the HMM state sequence as their input have attempted
to locate regions of similar state distribution regardless of the order of the states. From
the point of view of the audio this corresponds to the situation where the occurrences
of a musical part are played with similar sound events, but the order of the sounds does
not matter. Considering the perception of repeated structures, the order of the events
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is also important. The sequence approaches aim to utilise the repeated sequences to
provide a description of the musical piece structure.

The search for diagonal stripes from the SDM is a common theme in many of
the sequence approaches. Because the stripes are often easily detected by a human,
several more or less heuristic image processing methods have been proposed to locate
them. A smoothing effect resembling the one obtained by determining the SDM values
as a mean of consecutive framewise distances (see (3.5)) can be obtained by low-pass
filtering the SDM along the diagonals [Wel03, Bar05]. Marolt [Mar06] proposed to en-
hance the stripes by calculating multiple SDMs with different sliding window lengths
and then combining them with elementwise multiplication. Lu et al. [Lu04] employed
multiple iterations of erosion and dilation6 filtering along the diagonals to enhance the
stripes by filling small breaks and removing too short line segments. Ong [Ong06a]
extended the erosion and dilation filtering into two-dimensional filter to enhance the
entire SDM. Goto [Got03] employed a two-dimensional local filter to enhance the
stripes; similar enhancement was later utilised by Eronen [Ero07]. Peeters [Pee07]
proposed to low-pass filter along the diagonal direction, and high-pass filter along the
anti-diagonal direction to enhance the stripes.

After enhancing the stripe prominence, the stripe segments can be found, e.g., by
thresholding. The RefraiD approach originally proposed by Goto [Got03] has later
been employed in several methods. It uses the time-lag version of SDM to select the
lags that are more likely to contain repeats, and then detect the line segments along the
horizontal direction of the lags. Each of the found stripes specifies two occurrences
of a sequence: the original one and a repeat. For chorus detection, or simple one-clip
thumbnailing, selecting a sequence that has been repeated most often has proven to be
an effective approach. In the case that more comprehensive structural description is
wanted, multiple stripes have to be detected and some logical reasoning to deduce the
underlying structure, as proposed by Dannenberg [Dan02].

Similar to the dynamic programming approaches used for segmentation [Goo04,
Jen07], some of the stripes can be found by a path search. Shiu et al. [Shi06] interpret
the self-similarity values as probabilities, and define a local transition cost to prefer di-
agonal movement. Then Viterbi search is employed to locate the optimal path through
the lower (or upper) triangle of SDM. The stripes have large similarity values, thus the
probability values are also large, and the path is likely to go through the stripe loca-
tions. Another method to locate stripe segments by growing them in a greedy manner
was proposed by Müller and Kurth [Mül07b].

As with the state approaches, HMMs have also been employed in sequence ap-
proaches. Rhodes and Casey [Rho07] employed a string matching method to the
HMM state sequence representation to create a hierarchical description of the struc-
ture. Though the algorithm was presented to operate on a finite alphabet formed by the
HMM states, the authors suggest that similar operations could be accomplished with

6Erosion filter replaces the element value with the minimum in the filtering range, and dilation with
the maximum.
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feature vectors after modifying the matching algorithm to accept vector inputs. Au-
couturier and Sandler [Auc02] proposed another method for inspecting the HMM state
sequences with image processing methods. The main idea is to calculate a binary co-
occurrence matrix (resembling an SDM) based on the state sequence, i.e., the element
has value 1, if the two frames have the same state assignment, and 0 otherwise. Then
a diagonal smoothing kernel is applied on the matrix to smooth out small mismatches
between sequences. Finally, stripes are searched from the resulting matrix with Hough
transform, which is claimed to be relatively robust against bad or missing data points.

3.3.4 Cost Function Based Approach

Most of the music structure analysis methods described above rely on rather straight-
forward approaches in the analysis, such as “locate blocks of low distance on SDM
main diagonal” or “locate stripes from SDM and deduce the repeated structure”. These
ground the actual analysis on the observations without too much consideration on the
motivation behind them. An alternative approach to these is to first define what are the
properties of a good structural description, formulate the properties in terms of the ob-
servations, and finally optimise the resulting fitness function with respect to the given
acoustic input.

Paulus and Klapuri [P6] proposed to define a cost function for a piece structure
description in more abstract terms (experiments on a similar approach were later re-
ported by Peiszer [Pei07]). The method aims to locate repeated parts from a piece, and
defines a cost for a structural description with the following three main terms.

• Within-group dissimilarity: The segments that are claimed to be occurrences of
the same musical part, i.e., repeats of each others, should be acoustically similar.

• Amount unexplained: It is desirable that the provided structural description would
cover as much of the piece as possible. (The method [P6] is intended to handle
only repeated parts).

• Complexity: If the found description covers the entire piece and each found
group has a small within-group dissimilarity, but the description consists of tens
or hundreds of segments and groups (similar to the HMM vector quantisation
methods with a large number of states), the result is practically useless for the
end-user. Thus a term penalising complexity is added.

When the terms are combined with some weights, an abstract version of the overall
cost is obtained

C = dissimilarity +wU unexplained+wC complexity, (3.15)

where wU and wC are the relative weights for the amount left unexplained and descrip-
tion complexity, respectively.7

7It is also possible to motivate this kind of cost function through the minimum description length
principle [Dud01, Chapter 9].

72



To be able to evaluate the cost function (3.15) for some structural description E ,
more formal definitions have to be made. The notation used in the original publica-
tion [P6] is here changed to match the one used in [P8]. All the possible segmentations
of the input piece form a set S. If the segment border locations are not restricted in
any way, the size of the set may be very large, see (B.1) in Appendix B. A subset
S′ ⊂ S of the set with S segments si ∈ S′ that do not overlap temporally form a part
of the description E of the piece. In the method for finding only repeated parts [P6],
the selected subset does not need to cover the entire duration of the piece, but this is
required in the method [P8] discussed later. Each segment si has a length L(si) asso-
ciated to it. The grouping of segments is defined with a function g(si), so that two
segments belong to the same group, i.e., are occurrences of the same musical parts, if
the function returns the same value for both of them g(si) = g(s j). Now the structural
description can be seen as a combination of a set of segments and a grouping function
E = (S′,g). The segments with the same group assignment can also be defined as a set

Gn = {si|g(si) = n,si ∈ S
′}, (3.16)

and thus a description is a union of such groups E =
SN

n=1 Gn, where N is the number
of unique groups in the description.

Using the definitions above, the cost function (3.15) can now be written as

C(E) =
N

∑
n=1

dG(Gn) ∑
si∈Gn

L(si)+wU

(

1− ∑N
n=1 ∑si∈Gn

L(si)

Λ

)

+wC log(1+N),

(3.17)
where Λ is the length of the piece, and dG(Gn) is the within-group dissimilarity of the
segments assigned to group Gn. The optimal description EOPT is the one minimising
the cost

EOPT = argmin
E
{C(E)}. (3.18)

The effect of the three different terms and their weights is illustrated in Fig. 3.16. A
detailed definition of the within-group dissimilarity dG(Gn) and the features used in its
calculation, as well as a description of an algorithm for optimising (3.18) are provided
in [P6].

The main weakness in the cost function based method described above, as well
as with most of the other methods relying on locating individual stripes or blocks in
the SDM, is that they operate only on parts of the SDM. In other words, when locating
stripes, each of the stripes is basically handled separately without any contextual infor-
mation focusing only on the distance values on the stripe itself and on its close vicinity.
Considering data clustering problem, each of the formed clusters should be compact,
i.e., have small intra-cluster distances, and the clusters should be well-separated, i.e.,
have large inter-cluster distances. These same principles apply relatively well also in
music structure analysis: all occurrences of a part should be similar to each others and
differ from occurrences of other parts.
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Figure 3.16: Example of the effect of the relative weights in the cost function (3.15). The
annotated ground truth structure is illustrated in the top panel. The second panel is the analysis
result with some reasonable values for the weights. Increasing the complexity term weight
produces the result in the third panel, and decreasing the weight of unexplained parts produces
the result in the lowest panel.

Paulus and Klapuri [P8] propose a fitness measure for structural descriptions for-
malising the “small intra- & large inter-cluster distance” idea for musical parts. The
temporal fragmentation occurring in frame-by-frame approaches is alleviated by calcu-
lating the distances from segments of several frames, similar to the earlier approach [P6].
Additionally, instead of using plain distance between segments, the distances are inter-
preted as probabilities p̂

(

g(si) = g(s j)
)

that the segments si and s j belong to the same
group. The overall fitness of a description E is defined as

P(E) = ∑
si∈S′

∑
s j∈S′

W
(

si,s j

)

l(si,s j,g), (3.19)

where

l(si,s j,g) =

{

log
(

p̂
(

g(si) = g(s j)
))

, if g(si) = g(s j)

log
(

1− p̂
(

g(si) = g(s j)
))

, if g(si) 6= g(s j)
. (3.20)

The weighting factor W
(

si,s j

)

is defined as the number of elements in (or the area of)
the submatrix D[i, j] defined by the two segments

W
(

si,s j

)

= L(si)L(s j). (3.21)

In other words, the overall fitness measure is a weighted sum of log-probabilities as-
signed to each of the submatrices defined by the piece segmentation. This is illustrated
in Fig. 3.17, where the tinted submatrices denote segment pairs from which the in-
group probability is considered, and the white submatrices the segment pairs with the
probability that the segments belong to different groups. The problem now is to locate
the description EOPT maximising the overall fitness

EOPT = argmax
E
{P(E)}. (3.22)
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Figure 3.17: An illustration of the idea of the clustering fitness measure motivated structure
description fitness measure. The description claims that the structure is “A,B,C,A,B”, i.e.,
“A1” and “A2” belong to same group as well as “B1” and “B2”. It would be desirable to have
low distance values in the tinted submatrices, and large distances in the others.

The resulting optimisation task requires the probabilities for two segments to be-
long to the same group p̂

(

g(si) = g(s j)
)

be defined. The method proposed in [P8]
aims to address several of the perceptual cues [Bru06] simultaneously by calculating
the pairwise distances d

(

si,s j

)

between two segments si and s j with three different
acoustic features: MFCCs, chroma, and rhythmogram, and defining two complemen-
tary distance measures: block and stripe distances. The use of multiple features is
intended to address the different aspects of music: MFCCs for timbre, chroma for har-
monic content, and rhythmograms for rhythmic content. The distance measures aim
to parametrise the patterns that are formed in SDM (as illustrated in Fig. 3.8) with
parametrisations whose main ideas are illustrated in Fig. 3.18. The details of calcu-
lating the distance values d

(

si,s j

)

between segments and a method for calculating the
probability p̂

(

g(si) = g(s j)
)

of the two segments to belong to the same group are given
in the publication [P8].

The problem of optimising (3.22) is combinatorial problem with a very large num-
ber of possible solutions (see Appendix B for a discussion on this) making an ex-
haustive search practically impossible to be applied. Publication [P8] formulates the
problem as a search in a directed acyclic graph with varying path costs, and proposes
an algorithm for the search.

Proposed Methods

The methods proposed in this thesis rely on defining a cost or a fitness function to
structural descriptions. In [P6] the task is to locate the description minimising the
cost function (3.17), while in [P8] the task is to locate the description maximising the
fitness function (3.19).
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segments si and s j of a piece. The stripe distance is based on the path of least cost through
the submatrix D[i, j] while the block distance is based on the average distance value within the
submatrix.

3.4 Musicological Modelling

Middleton states in [Mid99]: “Genres are defined, in part, by conventions governing
the musical process: what can be, what cannot be, what is usually, done; of course;
this includes conventions relating to form.” This suggest that there should be some
stereotypical structures in musical pieces from the same genre. Even though it is often
claimed in a more or less serious way that majority of Western popular music follows
the same sectional form over and over again, the “knowledge” of this form has not
been applied widely in music structure analysis systems. Maddage [Mad06] assumes
that the song structure is one of a pre-stored ones, and fits the acoustic observations
to the models. Shiu et al. [Shi05] assume that the musical parts in the analysed piece
follow the state model illustrated in Fig. 3.19. The transition probabilities between
the states were set manually and the stripe-like information in an SDM was used to
provide observations for the states. The final structural description was then found
by applying Viterbi search on the resulting optimisation problem. Another system
utilising statistical knowledge of the sequential dependencies between musical parts
was proposed by Paulus and Klapuri [P8].

Most of the methods that attempt to provide a full description of the structure of a
piece provide only the time stamps defining the segmentation and a grouping informa-
tion. Though this is valuable for any human end-user or further information retrieval
systems, the knowledge of the “identity” of each part would be appreciated also, as
indicated by the user study conducted by Boutard et al. [Bou06]. The identity here
means the musical role of the part: chorus, verse, etc. Paulus and Klapuri [P7] pro-
pose modelling the sequential dependencies of musical part labels with N-grams. An
example of a label bigram calculated from the UPF Beatles data set is illustrated in
Fig. 3.20. Given a structural description with arbitrary tags as the input, the method
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Figure 3.19: The musical part state model used by Shiu et al. [Shi05].

assigns a label to each of the group tags, e.g., input “p1, p2, p1, p3, p2” may be trans-
formed into “verse, chorus, verse, bridge, chorus”. The method operates by evaluating
the overall probability of different resulting label sequences over the description with

p(c1:J) =
J

∏
i=1

p(ci|c(i−N+1):(i−1)), (3.23)

where p(ci|c(i−N+1):(i−1)) is the N-gram probability of observing the label ci after
the label sequence c(i−N+1):(i−1). An algorithm to solve the optimisation problem is
presented in [P7].

If some additional information related to the piece lyrics is available, it can be
utilised in the labelling, e.g., Zhu et al. [Zhu05] use lyrics to distinguish between verses
and choruses, and Cheng et al. [Che09] label the parts after rule-based analysis of the
lyrics. As a related topic, Mahedero et al. [Mah05] perform a full structure analysis
based only on the lyrics.

Even though the N-gram model for musical part label sequences is very simple, it
is able to assign musically meaningful labels to structural descriptions to some extent.
Because of this Paulus and Klapuri [P8] propose to include a term modelling the label
knowledge to the fitness function for structural descriptions (3.19), resulting into a new
fitness function definition of

P(E) =
S

∑
i=1

S

∑
j=1

W
(

si,s j

)

l(si,s j,g)+
wLA

S−1

S

∑
i=1

log
(

p(M(g(si))|M(g(s1:(i−1))))
)

.

(3.24)
In the fitness function (3.24) above, M(·) denotes a mapping function from the arbitrary
group identifiers to the musical part labels, and thus the added term only evaluates the
resulting N-gram probability similar to (3.23). wL denotes the relative weighting factor
assigned for the labelling term, and

A =
S

∑
i=1

S

∑
j=1

W
(

si,s j

)

. (3.25)

The segment set S′ is now ordered by the starting time of the segments to an ascending
order S

′ = (s1,s2, . . . ,sS) to enable the use of N-grams. The optimisation problem
of maximising (3.24) can still be solved with the search algorithm presented in [P8].
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Figure 3.20: A bigram of the musical part transitions from the songs by The Beatles. The
named parts contribute 85% of all the musical part occurrences in the songs, and the remain-
ing ones are assigned the label “MISC”. The edge weights denote the transition probabilities
between nodes. Edges with less than 0.05 associated probability are removed for clarity. The
nodes “BEG” and “END” are added to provide a unique beginning and ending point for a path
through the graph.

However, it should be noted that the addition of the labelling information increases
the computational complexity of the search considerably (see Appendix B), and the
overall improvement in the system performance is relatively small. Because of this, it
is advisable to adhere to a simpler fitness function definition, e.g., (3.19), and to assign
the labels as a post-processing step instead.
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Proposed Methods

From the methods proposed in this thesis [P7] uses an N-gram model to assign mu-
sically meaningful “role” labels to the groups in a structure description. The method
in [P8] proposes to include the label assignment in the overall fitness function, so that
the labelling would be done jointly with the structure description is searched.

3.5 Evaluating the Obtained Result

Evaluating the performance of a music piece structure analysis method is not as simple
as it may initially seem. Some of the evaluation metrics proposed in the literature will
now be briefly discussed.

A possible evaluation metric for segmentation matches the segmentation points in
the annotation with the ones produced by the analysis accepting a small deviation.
Recall rate, precision rate, and F-measure may be calculated from the matched points
similar to the drum transcription evaluation on page 14. An alternative is to calculate
the mean (or median) time between a claimed and annotated segmentation point and
vice versa. [Tur07]

The evaluation of music thumbnailing is more difficult, since the quality of the
output is measured mainly subjectively instead of an objective metric. For this rea-
son, user studies are required to evaluate the result, as described by Chai [Cha05] and
Ong [Ong06a].

Evaluating the result of a method producing a description of the full structure of
a piece has proven to be less straightforward, as mentioned by Lukashevich [Luk08].
Many of the evaluation measures adopt an approach related to clustering result evalua-
tion: pairs of frames are inspected if they belong to any occurrence of the same musical
part, and if they do, they are considered to belong to the same cluster. Calculating an
F-measure based on these statistics was proposed by Levy and Sandler [Lev08]. An-
other closely related metric is the Rand index [Hub85], that was used by Barrington et
al. [Bar09].

Abdallah et al. [Abd05] proposed to match the segments in the analysis result and
ground truth, and calculate a directional Hamming distance between frame sequences
after the match. A similar approach with a differing background was proposed by
Peeters [Pee07]. A second evaluation measure proposed by Abdallah et al. [Abd05]
treats the structure descriptions as symbol sequences, and calculated the mutual infor-
mation between the analysis result and ground truth. The mutual information concept
was developed further by Lukashevich [Luk08] who proposed an over- and under-
segmentation measures based on the conditional entropies of the sequential represen-
tations of structures.

A property that can be considered to be a weakness in the measures relying on pairs
of frames, is that they disregard the order of the frames. In other words, they do not
penalise hierarchical level differences between the found parts, e.g., after splitting an
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occurrence into two segments with the same group as the original one. Considering the
importance of sequences for the perception of music, they should be noted in the eval-
uation. Chai [Cha05], and Paulus and Klapuri [P6] have proposed heuristics finding
a common hierarchical level for the result and ground truth. However, the evaluation
method is rather complicated and the results are still subject for discussion.

If the analysis method assigns the description with musically meaningful labels, it
is possible to base the evaluation on them, as proposed by Paulus and Klapuri [P8]. The
evaluation measure inspects the descriptions as a sequence of frames, each assigned
with a label. Then a confusion matrix is calculated between the labels in the result and
ground truth. It is possible to calculate further evaluation measures from the confusion
matrix, e.g., the amount of the piece with correct label assignment.

Finally, it should be noted that any measure evaluates only with respect to the pro-
vided ground truth annotation. As the experiments by Bruderer et al. [Bru06] suggest,
the perception of musical structures is not completely unambiguous. Thus the de-
scription provided by two persons on a same piece might be different. A small-scale
comparison of descriptions made by two annotators was presented by Paulus and Kla-
puri [P8], and slight differences in the hierarchical levels as well as in the grouping
were noted.

Proposed Methods

Among the publications included in this thesis, [P6] bases the evaluation on finding a
common hierarchical level between the result and ground truth. The publication [P8]
uses the pairwise F-measure calculated on analysis frames [Lev08], over- and user-
segmentation measures [Luk08], and the label assignment measure proposed in the
publication itself.

3.6 Summary

This chapter has provided an overview of the music structure analysis problem and
various methods proposed for solving it. The definition of music structure analysis
problem itself has varied from simple visualisation to segmentation, and further to
providing a description for the full structure of the piece including labelling the found
musical parts. Because different authors have targeted different aspects of the structure
analysis problem, the employed methods vary considerably. This chapter has aimed
to locate the methodological similarities between the methods and to organise them in
a common context. The main methods proposed in the literature have been gathered
to Table 3.1 with some notes on the targeted problem and employed method. Though
several authors have proposed successful methods for solving some sub-tasks, such
as chorus detection, there still is a need for a more general music structure analysis
method. A publication included in this thesis [P8] has aimed for a more general ap-
proach, and the results seem promising.
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Chapter 4
Conclusions and Future Work

THIS thesis has presented methods for analysing the content of music signal at two
different time scales: transcription of drums, and analysis of the sectional form

of a piece. Even though these two tasks are in quite opposite ends of the time scale,
they share some signal representations and analysis methods.

4.1 Conclusions

Related to the drum transcription problem, this thesis has proposed various acoustic
recognition methods, as well as the use of musicological modelling. Publication [P1]
proposes recognising combinations of drums with a Gaussian mixture model (GMM)
classifier. However, due to the large amount of different combination resulting from
seven target drums, the recognition result was not very good. A considerable reduction
in the error rate was obtained by including N-gram models describing the sequential
and periodical dependencies between drum hits. The results suggest that the modelling
of periodic dependencies produces more accurate predictions that the modelling of the
directly preceding context.

As the findings with periodic N-grams showed, drums occur at relatively constant
locations within rhythmic patterns. Publication [P2] proposes modelling the rhythmic
roles of various drums as occurrence probabilities depending on the location within a
pattern. The model was evaluated by using it to assign drum names to patterns per-
formed with arbitrary sounds. The results suggest that the relatively simple model is
able to predict correct labels for drums without acoustic cues. Analysing the results for
various musical genres, large differences can be noted. This suggests that in some gen-
res, e.g., “soft rock”, the drums are played in patterns with high consistency through
the piece, while in others, e.g., “world”, the patterns are more complex and difficult to
predict.

A different acoustic analysis approach is taken in [P3] where a supervised source
separation method is proposed to separate each target drum from the input signal.
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The method uses spectral templates for the target drums, and recovers time-varying
gains for them. Since the goal was to transcribe the drums instead of acoustic source
separation, a very coarse frequency resolution of only five bands was found to be ade-
quate. Evaluations with acoustic recordings of drum sequences show that the proposed
method has a near-perfect performance when the input signal consists mainly of the
three target drums. The method is extended in [P4] from the single-channel input
to multichannel signals available especially in recording studios. The evaluation re-
sults show that the use of multiple channels provides a performance increase over the
single-channel analysis. In addition, the results show that the spectral analysis inherent
in the source separation step of the method provides an improvement in performance
compared to plain onset detection from close microphones. This is mainly due to the
acoustic leakage between the microphone channels.

The “segment and classify” transcription methods often rely on onset detection
for temporal segmentation of the signal. The onset detection is difficult in the case
of polyphonic music as the input, and the result may contain spurious detections, or
some drum onsets may be missed altogether. To avoid these problems, publication [P5]
proposes to use a network of connected HMMs to perform the segmentation and recog-
nition jointly. Detector-like modelling with separate “sound” and “silence” models for
each target drum was found to outperform modelling the combinations of the target
drums. The acoustic modelling uses “standard” speech recognition tools with MFCCs
as features and GMMs to model the observation likelihoods. Feature dimensionality
reduction with PCA and LDA was evaluated, and LDA was found to provide a consid-
erable performance. Furthermore, unsupervised acoustic model adaptation with max-
imum likelihood linear regression was evaluated, but the obtained improvement was
found to be relatively small. Despite the straightforward model, the method performs
well even on polyphonic music.

Overall, the drum transcription performance from polyphonic music is still not per-
fect, but usable for some applications. With simpler inputs without other instruments
and a limited set of drums, near-perfect transcription can be obtained. Even though
drums occur in highly-predictable patterns, musicological models have not been able
to provide considerable performance increase.

In addition to the drum transcription, this thesis has presented methods for analysing
the sectional form of a music piece. The proposed analysis methods operate by defin-
ing a high-level fitness function specifying properties of a good structure description.
The first method from [P6] proposes to include terms for musical part acoustic simi-
larity, the amount of the piece not covered by the description, and the complexity of
the description. Varying the relative weights of the terms allows the method to recover
multiple descriptions for a single piece emphasising different aspects.

The structure analysis method proposed in [P8] takes a simpler approach in the
fitness function definition: occurrences of a musical part should be similar and differ
from occurrences of other parts. The main problem related to this is to define “similar”.
Three acoustic features: MFCCs, chroma, and rhythmogram are used to parametrise
different perceptually important aspects of music signals. The necessity of the features
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was evaluated in [S4], and the results suggest that the features provide complementary
information useful in the structure analysis. Even though the optimisation problem
resulting from the definition of the fitness function is difficult, a search algorithm with
intuitive control parameters is proposed for solving it. Despite the simple idea of the
fitness function, the method is able to provide useful structure descriptions.

Almost all of the structure analysis methods describing entire pieces only indicate
which segments are occurrences of the same musical part. That is, the segments are
not provided with musically meaningful names. However, the musical parts may have
certain roles in the piece, e.g., “intro”, “chorus”, or “verse”. Publication [P7] proposes
to model the sequential dependencies between these role labels with N-grams, and
then use them in labelling the descriptions. The evaluation results show that labelling
musical parts with this model is possible to some extent.

The obtained results suggest that using multiple features to parametrise different
musical aspects produces better performance than using only single features. This is
presumably because the perception of musical structures is a combination of several
factors also in humans. Additionally, using higher-level information instead of simple
low-level acoustic data appears to improve the analysis performance.

4.2 Future Work

Even though many aspects related to the drum transcription and music structure analy-
sis have been addressed both in this thesis and in other publications, there still remains
a large number of open questions for future work. One can even say that the meth-
ods developed to date are only the beginning. Most of the methods proposed so far
rely heavily on the low-level acoustic processing and omit high-level modelling. A
more general goal in the future work might be to include multiple information sources,
especially high-level musical knowledge to the analysis process. Cross-utilisation of
information between various music content analysis methods would be interesting,
e.g., drum transcription result used to assist in music structure analysis, and musical
structure to aid in drum transcription, cf. [Dan05].

An approach to be studied in drum transcription is to use more specific models in
the recognition. The specificity could be achieved on several levels: localised mod-
els, more accurate generic models, and more accurate musicological modelling. The
results of using localised models for transcription are promising [San04]. The idea
is intuitive: when a person starts listening to a new song, only some generic mental
models for different drums exist, but while listening the models are adapted to match
the acoustic properties of the drums present in the piece. Nowadays the methods aim
to transcribe everything with the same models. However, the drum sounds used in
a jazz piece usually differ considerably from the ones in a death metal piece. The
use of more accurate generic models refers to the idea of creating more specialised,
e.g., genre-specific, global models. The same applies to musicological modelling: the
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played patterns differ with styles, and instead of generic models, more specific ones
should be used.

The methods for music structure analysis are still relatively unsophisticated and
most of them rely on various heuristics. Before investing more time on developing
structure analysis methods, it would be best to create an accurate definition of the task.
This would include more research on how humans perceive musical structures, the
thesis of Bruderer [Bru08] is a good starting point for this. As with drum transcrip-
tion, it is probable that using only low-level acoustic information does not produce the
optimal result. Thus it would be interesting to develop different models for different
musical styles based on the typical structures employed in them. Regarding the musi-
cal role labelling of the segments in a music structure description, the use of acoustic
information should be considered in addition to the overly simple sequence model.

In general, research on algorithmic music content analysis has started to gain mo-
mentum in the last decade. As some of the methods are reaching the level of some
maturity, i.e., they produce a result that actually can be used for something, more com-
prehensive music listening systems have become closer to reality.
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ABSTRACT

In this paper, we describe a system for transcribing polyphonic

drum sequences from an acoustic signal to a symbolic representa-

tion. Low-level signal analysis is done with an acoustic model

consisting of a Gaussian mixture model and a support vector

machine. For higher-level modelling, periodic N-grams are pro-

posed to construct a “language model” for music, based on the

repetitive nature of musical structure. Also, a technique for esti-

mating relatively long N-grams is introduced. The performance of

N-grams in the transcription was evaluated using a database of

realistic drum sequences from different genres and yielded a per-

formance increase of 7.6 % compared to a the use of only prior

(unigram) probabilities with the acoustic model.

1.  INTRODUCTION

Drums and percussive instruments are an essential part of con-

temporary music and especially of popular music. As a conse-

quence, the recognition and transcription of rhythm sequences

from acoustic signals to MIDI has become a topic of interest.

Applications of this comprise e.g. automatic music transcription,

light effects control, and music information retrieval in general.

However, there has been relatively little previous research in this

area (for an overview, see [2]). In most of the work in this field,

e.g. in [2], the research has focused on the recognition of individ-

ual drum sounds without considering mixtures of simultaneous

sounds. Also, typically no higher-level modelling of temporal

dependencies in rhythm sequences has been attempted.

The purpose in this paper is to transcribe drum sound mix-

tures that appear in real rhythm sequences. The task has proven to

be very difficult with low-level signal processing only. We pro-

pose to improve the recognition ability by using higher-level

musicological “language models”, based on conventional and

periodic N-grams. In the periodic N-gram, the units that are used

to predict the probability of a “word” at time n are picked at mul-

tiples of interval L before the word to be predicted, i.e., at time

instances . The conventional N-

gram is a special case of this where L = 1. Many basic elements of

music exhibit periodically repeating patterns that vary over time.

This observation can be made for harmonic and rhythmic ele-

ments at a wide range of different time scales. Conventional N-

grams can be quite successfully used to predict melodies. How-

ever, when it comes to the other parts of music, such as accompa-

niment and rhythm section, instruments usually follows a

periodically regular rather than a locally predictable pattern. The

applicability of such models is evaluated and a technique which

allows the estimation for relatively large values of N is proposed.

2.  PROBABILISTIC MODEL FOR RHYTHM
SEQUENCES

2.1. Notation

Each individual drum sound is associated with a code which

uniquely identifies it. For example, the General MIDI standard

defines codes for 47 different drum sounds. Let Ψ be a set of

drum codes and Y the size of this set. Drum sounds are further

classified into broader categories by defining a mapping from the

set Ψ to a finite alphabet of symbols Σ which represents the drum

categories. The size of the alphabet Σ is typically significantly

smaller than that of Ψ. Although the size of Σ could be equal to

that of Ψ, this kind of very extensive alphabet would limit the

ability of the system to generalize or it would require huge

amounts of training data in later steps. In this paper, we chose to

use an alphabet size S=7, where the symbols represent bass

drums, snare drums, hi-hats, cymbals, ride cymbals, tom toms,

and percussion instruments, respectively. The percussion symbol

class operates as a kind of left-over class which contains all the

sounds that could not be fitted to any other category.

Words are defined to be unordered subsets of Σ, where each

symbol may occur only once. A “word” is interpreted to represent

a set of drum categories that are played simultaneously at a given

instant of time, the term “simultaneously” to be defined more

exactly in Sec. 2.2. A word can be written as a string of symbols

wi={s1,s2,...,sl.}, where . For example, {s1,s2} is a word

where sounds from two different categories play simultaneously.

An empty word which does not contain any symbols is called

silence.

V is the total number of word types in the language, that is,

the vocabulary size. This can be calculated as . I.e. each

word can be represented as a binary number, where one bit per

one symbol indicates whether on not the symbol belongs to the

word.

2.2. Rhythm sequences

A percussive music performance is modelled as follows. First,

musical time is discretized by finding the tatum of the incoming

musical performance. The term tatum, or, time quantum, refers to

the shortest durational value in a musical composition that is still

more than incidentally encountered. The other durational values

(with few exceptions) are integer multiples of the tatum. Tatum is

relative to tempo, and its value may gradually change over time,

reflecting tempo fluctuations.

After the tatum of a performance has been estimated, a grid of

equidistant tatum pulses is aligned with the performance, and

each drum event is associated with the nearest grid point. The

events that are associated to a same tatum grid point are consid-

ered as simultaneous. Following a common notation [4], the

rhythm sequence can then be written as a sequence of words

k N 1–( )L– … k 2L– k, L–, ,

l S≤

V 2S=
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w1w2...wK as , where exactly one word is generated per each

grid point. If no drum events occur in the vicinity of a grid point,

an empty word is generated.

2.3. Prior probabilities for words

Given a representative database of rhythm sequences, prior proba-

bilities for different word types, can be

estimated by performing tatum estimation for each performance

in the database and by counting the number of occurrences of

each word type in the whole database in relation to the total

number of all word occurrences in the database. From the point of

view of N-grams these can be called unigram probabilities.

2.4. Conventional N-grams

N-grams have been found to be a convenient way of modelling the

sequential dependencies in natural languages. An N-gram uses

previous words to predict what the next word would be.

This involves an (N–1)th order Markov assumption, i.e., that the

probability of the next word depends only on the N–1 immedi-

ately preceding words. Applying the N–gram model, the probabil-

ity of a word sequence can be calculated as

. (1)

Given a representative database, the N-gram probabilities

can be estimated by counting the number of

times a certain word occurs after a certain prefix, and dividing this

by the count how many times the prefix occurs in the database:

. (2)

A typical problem with N-grams is that, even for a modest

vocabulary size V, the size of the database does not suffice to esti-

mate the probabilities for large N. The number of probabilities to

be estimated for a given V and N is VN, which requires a rather

large database already for N=3. Because the training set is usually

not extensive enough to estimate all possible N-gram probabilities

reliably, some smoothing method is applied to the word counts

before transforming them to probabilities. Here Witten-Bell

smoothing was used [9].

In the case of rhythm sequences, a potential solution to the

problem of insufficient data is to estimate N-gram probabilities

for each individual symbol separately, instead of estimating them

for words. Equations are the same as those given above, but with

wk getting only binary values (symbol does or does not occur in

the word). Now the size of the vocabulary in the N-gram model-

ling shrinks to V=2, with “1” indicating that the symbol occurs at

a given point, and “0” vice versa. In this case, N-gram probabili-

ties for large values of N can be estimated. In our example, the

number of probabilities to be estimated for word bigrams is 1282,

which is equal to 214, i.e., 14-grams for binary data.

Symbol N-grams can be used to predict words by combining

the symbol-by-symbol predictions as

, (3)

where . In this way, the training corpus can be uti-

lized more efficiently. However, it is not memory-efficient to store

long word N-grams, but only the symbol N-grams which are then

combined according to Eq. (3) when processing files.

Constructing N-grams separately for each symbol may lead to

a situation where the predicted symbols at a given point of time

together constitute a very improbable word. This problem can be

solved by combining the use of symbol N-grams with word pri-

ors.

2.5. Periodic N-grams

Percussive rhythms exhibit periodicity at different time scales.

This observation can be utilized by constructing periodic N-

grams, as illustrated in Figure 1. Instead of the conventional N-

gram model given in Eq. (1), the events that are used to predict

the word wk are taken at multiples of interval L earlier, at

. The conventional N-gram is a special case of this

where . Preferably, L is set to be the length of a relatively

prominent repetition period, such as the rhythmic pattern, or the

musical measure length. In Figure 1, L is set to be the length of

the musical measure, and the bass drum is being predicted. The

horizontal arrow represents a conventional quadrigram prediction,

and the vertical arrow a periodic quadrigram prediction with

period L = 8.

To apply periodic N-grams efficiently, a musical meter esti-

mation process is required to find a suitable L. Musical meter esti-

mation is a difficult problem in itself, and is above the scope of

this paper. We have earlier presented a model which estimates the

tatum, tactus (foot tapping rate), and the musical measure length

from an acoustic musical signal [6]. We suggest setting L to corre-

spond to the musical measure length.

3.  ACOUSTIC MODELING

The foundation of signal analysis is in reliable low-level observa-

tions. Without being able to reliable extract information at the

lowest level, no amount of higher level modelling is going to lead

to a correct analysis.

Two independent acoustic models were constructed which

together constitute the overall model which provides low-level

observations for further statistical processing. The first model cal-

culates the probability that a given audio segment (word) repre-

sents an empty word, i.e., silence. The second model assumes that

the given segment is not silence and computes the probabilities

for each of the 127 non-empty words to have generated the acous-

tic signal. The latter model is considered first.

3.1. Word recognition

The acoustic model for recognizing non-empty words is based on

a Gaussian mixture model (GMM) classifier and Mel-frequency

cepstral coefficients (MFCCs) and ∆MFCCs as features [8]. The

model was constructed using the following steps:

w1
K

P wk( ) wk, 0 … 127, ,=

N 1–

P w1
K( ) P wk wk N– 1+

k 1–( )
k 1=
K∏=

P wk wk N– 1+
k 1–( )

P wk wk N– 1+
k 1–( )

C wk N 1+–
k( )

C wk N 1+–
k 1–( )

-------------------------------=

P wk w1
k 1–( ) P sn w1

k 1–( )
sn wk∈
∏ 1 P sm w1

k 1–( )–( )
sm wk∉
∏=

sn sm∪ Σ=

Fig. 1. The idea of periodic N-grams illustrated. Quantized time

indices are represented with the smaller font. Horizontal arrow

represents conventional quadrigram prediction and the vertical

arrow periodic quadrigram prediction with L = 8.

wk N 1–( )L–
k L–

L 1=
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• 100 random instances of each of the 127 non-empty words were

synthesized by allotting each constituent sound (symbol) from a

drum sound database and by mixing the sounds. This acoustic

database was not used in the subsequent testing stage.

• For each sample, six MFCCs and six ∆MFCCs (after discarding

the zeroth coefficient) were calculated in successive 20 ms frames

with 75 % overlap up to 150 ms after the onset of the sounds. Fea-

ture vectors from all the 100 samples were catenated to a single

matrix. These matrices were then mean and variance normalized.

• A GMM with two components was used to model the distribu-

tion of the feature values for each of the 127 non-empty signals.

3.2. Silence detection

In tests it proved out that the concept of an empty word or the

silence was difficult to model, and preceding sounds which con-

tinue ringing at an empty grid point are easily confused with hi-

hat sounds. Since silence and hi-hat are the two most often

appearing word types (see Fig. 2.), this was a serious problem. It

was approached with support vector machines, normally used in

binary classification. For a detailed description, refer to [1]. The

used implementation was SVMlight-toolkit [3] and a radial basis

function (RBF) kernel was used.

The output of the SVM is a distance from the decision sur-

face. Normally just the sign of the output matters. In our case, a

probability value was needed because the N-grams are based on

probabilistic computation. In [5] a sigmoid function is used for

modifying the SVM output. As the distance from the hyperplane

increases, the more probable it is that the sample is classified cor-

rectly. When choosing the “silence” class to be positive and the

“sound” negative, the probability of this word being empty is then

acquired from manipulating the SVM output f(x) with sigmoid

function:

(4)

where K is a constant determining the steepness of the sigmoid.

Finally the result is scaled as

(5)

and catenated to the vector of non-empty word probabilities,

which are scaled with .

The features that are used for silence detection are crest fac-

tor, kurtosis, skewness, zero-crossing rate, RMS-value and tem-

poral centroid [2]. They are extracted from the whole length of the

grid point. In the SVM training the samples for class “sound” are

collected from extracting the features from 150 ms part of all gen-

erated word samples, whereas the samples for class “silence” are

collected by extracting the same features at the time range 150-

300 ms from all of the generated words. This mimics the situation

that some sounds are still echoing in the background at the

moments of silence.

4.  VALIDATION EXPERIMENTS

The proposed methods were validated by applying it to the auto-

matic transcription of drum sequences. Input to the system was

presented as an acoustic signal, and the output consisted of a

sequence of recognized words, i.e. a list of drum categories play-

ing at each time instance. This can be written to a MIDI file or

displayed to the user in a symbolic form.

We assume that the temporal framework, i.e. the tatum

lengths T0 and musical measure length LT0, are given along with

the acoustic input signals. A method which can automatically

estimate these in acoustic input signals has been presented in [6].

However, in order to make the results in this paper as unambigu-

ous as possible, we use manually determined tatum and musical

measure length values in the following simulations. Thus the only

remaining task is to decide what drum sounds play at each given

time instant.

4.1. Estimation of the prior and N-gram probabilities

A commercial database, Drumtrax Library 3.0, was used to esti-

mate the N-gram probabilities and prior probabilities for words.

The database consists of 359 drum performances recorded in real

time by studio drummers and organized into 14 different catego-

ries (genres). The performances are stored as MIDI files, the aver-

age length of which is 140 seconds. From each category five

performances were taken to test set and the rest were used in cal-

culating the N-grams. The test sequences were synthesized using

Timidity program from MIDI files into monophonic audio files

with sample rate of 44100 Hz.

Word N-gram probabilities were estimated by converting

MIDI performances into a sequence of words as described in

Sec. 2.2, and then by using Eq. (2). N-grams for each of the seven

individual symbols were calculated by converting word sequences

into binary sequences (see Sec. 2.2) before applying Eq. (2). For

symbols, N-grams for N={5,10} were estimated, and for words,

unigrams (a priori probabilities), bigrams and trigrams could be

meaningfully estimated. Witten-Bell smoothing was applied to

the probabilities to account for data sparseness [9]. Even though

the training corpus was quite extensive not even all bigram proba-

bilities were able to be approximated reliably, even such words

exist that were not at all present at the training corpus. This is yet

another motivation to use symbol N-grams and calculate word

probabilities from them.

Figure 2 shows the prior probabilities of the 20 most fre-

quently occurring words in the Drumtrax database. In the figure,

characters, B, S, H, C, T, R, P refer to bass drum, snare drum, hi-

hat, cymbal, tom tom, ride cymbal, and percussion, respectively,

and BH, for example, means a bass drum and a hi-hat occurring

simultaneously. The most probable word is the empty word

(silence). As can be seen, the distribution is heavily concentrated

to the few most probable words.

4.2. Models in comparison

The simplest recognition experiment was done using only the

acoustic models. More exactly, the events at each tatum point of

an incoming acoustic signal were classified to the most likely

word model. When the word classification has been performed,

all the symbols (drum sounds) at each time point are known.

In the second experiment, only the word priors (unigrams)

P w ∅{ }=( ) 1
1 e Kf x( )–+
--------------------------=

P' w ∅{ }=( ) max P w ∅{ }≠( ){ } P w ∅{ }=( )=
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Fig. 2. Occurrence frequencies of the 20 most probable

words in the Drumtrax database.
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were used along with the acoustic model. An as could be pre-

dicted from the highly compacted distribution of Fig. 2, this

makes a significant improvement to the acoustical model per-

formance. This result operates also as the baseline result to which

the N-gram enhancements are then added.

Several different N-gram types were added to the baseline: (1)

conventional bigrams for words, (2) periodic bigrams for words,

(3) both conventional and periodic bigrams for words, (4) conven-

tional trigrams for words, (5) periodic trigrams for words, (6) both

conventional and periodic trigrams for words, (7) conventional

quintagrams (N=5) for symbols, (8) periodic quintagrams for

symbols, (9) conventional decagrams (N=10) for symbols and

(10) periodic decagrams for symbols.

Integration of the N-grams to the acoustic model was done

simply by multiplying the probabilities of the acoustic model and

the N-gram prediction. In the systems where conventional and

periodic N-grams were used simultaneously, the periods-behind

words were taken from along the path which was decoded up to

that point. The final words to the transcription were chosen with

greedy decoding. Globally optimizing Viterbi decoding was also

tested for methods 1-6, but it had no major effect on the results.

4.3. Results

To be able to evaluate system transcription results automatically, a

symbol error rate calculation formula was introduced. There

exists three different error types that are omission (certain symbol

should be present at word, but it is not), insertion (certain symbol

should not be present at word, but it is) and substitution (combi-

nation of two previous error types, but counted only as one error).

The final error rate is defined by

(6)

where i goes through all the test grid points, is the set of

symbols which are present in the word at that point in reference

transcription, is similarly the set of symbols in the word

found by the system and  means the cardinality of the set.

The final error rates for all of the systems and improvement of

N-gram methods from the baseline can be seen in Table 1. An

overview of the errors for each of the symbols can be seen in Fig.

3. A large portion of the snare drum omissions are related to bass

drum insertions. Another significant source for bass drum inser-

tions is the omission of percussions. Also about half of the hi-hat

omissions are related to insertion of silence. These are the main

sources for errors and should be noted in future work.

5.  CONCLUSIONS

We have presented a system for transcribing long sequences of

drum sound mixtures. Higher-level statistical modelling improved

the performance of acoustic models. Both periodic N-grams for

words and N-grams for symbols have the ability to use informa-

tion from a longer portion of the past events when predicting the

words. The presented statistical models are not limited to percus-

sive part only but can be used for other musical structures, too.

As suggested in [7], there are cases where increased memory

length does not increase the prediction accuracy in same ratio. In

those cases it would be useful to estimate the gained performance

improvement when increasing the N and if it is below some pre-

determined threshold, adhere to the smaller one.
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Table 1: Performance of different N-gram systems.

method
symbol error

rate (%)

improvement from

baseline (%)

acoustic model 76.1

baseline 49.5

1. conv. word bigram 47.2 4.7

2. per. word bigram 46.6 5.8

3. conv+per word bigram 47.1 4.9

4. conv. word trigram 46.9 5.2

5. per. word trigram 46.8 5.5

6. conv+per word trigram 46.5 6.0

7. conv. sym. quintagram 46.8 5.5

8. per. sym. quintagram 45.9 7.3

9. conv. sym decagram 45.7 7.6

10. per. sym. decagram 46.0 7.1
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ABSTRACT

In thispaperwedescribeamethodfor thetranscriptionof percus-
sive audiosignalswhich have beenperformedwith arbitrarynon-
drumsounds.Thesystemlocatessoundeventsfrom theinputsig-
nal using an onsetdetector. Then a set of featuresis extracted
from the onsettimes.Featurevectorsareclusteredandthe clus-
tersareassignedwith labelswhich describethe rhythmic role of
eachevent.For thelabeling,a novel methodis proposedwhich is
basedon metrical(temporal)positionsof thesoundeventswithin
themeasures.Thesystemis evaluatedusingmonophonicpercus-
sive tracks consistingof non-drumsounds.In simulations,the
systemachieved a total error rate of 33.7%. Demo signalsare
available at URL:<http://www.cs.tut.fi/~paulus/demo/>.

1.  INTRODUCTION

Theaim of this paperis to proposea methodfor transcribingper-
cussive rhythms from audio signalsinto a symbolic representa-
tion. In particular, the idea is that the input rhythms can be
performedusingan arbitrarysetof percussive sounds,for exam-
ple by hand-tappingor pencil-clickingon differentmaterials,or
even by scat singing (imitating drum instrumentsby speech
sounds).Theoutputof thesystemconsistsof a sequenceof time-
stampedlabelswhichcanbefurtherconvertede.g.to a MIDI file.
Dueto thedegreesof freedomin regardto thesoundsetsallowed,
only threerhythmically differentsoundsareattemptedto be rec-
ognized.Theseare referredto as rhythmic role labels, and are
denotedasB (bassdrum),S (snaredrum)andH (hi-hat),accord-
ing to the instrumentsthat are usually usedto play the roles of
these labels in real world music.

A systemof the describedkind actsas a user interface for
presentingmusical rhythms to a computer. Specific musical
instrumentsor musicaleducation(e.g.scorewriting ability) is not
necessary. Such a user interface has several applications.For
example,it canbeusedto enteraquerystringto amusicinforma-
tion retrieval system.A musicianmayuseit to input a drumtrack
to a score-writingprogram.A non-musicianmay want to create
music by tappinga rhythm (and simultaneouslysinging a mel-
ody), andto have a computerprogramwhich listensandaccom-
paniesaccordingto a particularmusicalstyle.Themostintuitive
methodfor presentingthe rhythms would be tappingthem with
e.g.fingersandrecordtheproducedsoundwith a microphone.If

somespecialhardwareis neededfor presentingthedesiredrhyth-
mical patterns to the computer, the usability of the system
degrades.Also, the extra hardware may be intimidating for the
user. The taskfor the systemis to somehow recognizeandlabel
the percussive sound events.

A ratherconstrainingmodelwith only threerhythmically dif-
ferentlabelsis proposed.Althoughthis dropsall timbral nuances
of the audiosignals,the basicrhythmic perceptcanbe retained
for a large body of music from different genres.As has been
shown by Zils et al., a drum track of popularmusiccanbe pre-
sentedwith very few actualelementsoccurringand still it will
producethesamerhythmicperceptastheoriginal track[1]. Their
systemattemptsto extract a drum track consistingof bassand
snaredrum occurrences.Here, the label H was added,because
even though the rhythmic perceptgeneratedby only bassand
snaredrumsarecloseto theoriginal one,still somethingis miss-
ing. Thismissingpartis in popularmusicoftenplayedby hi-hats,
hencethe label. The initial intuition predicts that this kind of
model for rhythmssuits for the genrespop, rock, bluesandhip
hop, and to some degree for electronic music.

To our knowledge, transcriptionof percussive tracks per-
formed with arbitrary non-drumsoundshasnot beenattempted
before.Transcriptionof percussive tracksperformedwith actual
drum instrumentshas beenattemptede.g. by FitzGeraldet al.
who usedsub-bandindependentsubspaceanalysisin transcribing
drum tracksconsistingof kick drums,snaredrumsand hi-hats
[2]. Their systemusedmanuallysetrulesin determiningthecor-
rect namingof the found components.Performanceof their sys-
tem wasquite reasonable(total successrate89.5%)considering
thatthematerialwaspolyphonic.Theweakpoint is thattheir sys-
tem neededhumaninterferenceand so the systemcan be used
with onekind of a drum setonly, not with arbitrarysounds.Vir-
tanenusedadata-adaptivesparsecodingapproach,wherethecost
functiontook temporalcontinuity into accountin [3] whentrying
to separatedifferentsoundsourcesfrom a mixture.He testedthe
systemin automaticdrum transcription,trying to separatekick
and snaredrumsfrom polyphonicmixtures.The total error rate
for his systemwas34%.Theweaknessin thatsystemwasthat it
neededspectraltemplatesto identify the separatedsources.Also
hi-hats were not separated due to their relatively weak energy.

Whennormaldrumsoundsareused,anacoustic-modelbased
approachcanbeused.Earlierwepresentedasystemfor transcrib-
ing polyphonicdrum tracksof real drumswith the aid of simple
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acousticmodelsandN-grambasedlanguagemodelsin [4]. But
whenusingarbitrarysoundsin the input, acousticinformationit
is notenoughto identify thesounds.In [5] PatelandIversenhave
studiedtheNorth Indiantabladrummingtraditionin whichasys-
tem of nonsensesyllablesis usedto namedrum sounds.They
wantedto know if thereexists an acousticandperceptualbasis
for themappingfrom drumsoundsto thesesyllables.As a result
they found that there exists acousticfeatures,such as spectral
centroidanddecaytime, that canbe usedin the mappingwhen
usedin relation to eachother. In their perceptualtests,people
unfamiliar with tabladrummingwereableto createthemapping
quite well when setsof two syllable soundsand corresponding
tablasoundswerepresentedto them.This methodworks when
individualsoundsneedto belabeled,but themetricalinformation
informationtendsto overruletheacousticinformationwhendeal-
ing with rhythmicalpatterns.This is partly dueto thediversityof
the possible sound sets.

2.  PROPOSED METHOD

Overview of theproposedsystemis shown in Figure1. Thebot-
tom-upclusteringpartof thesystemresemblesthatof Herreraet
al. wheredrumtracksconsistingof hi-hats,bassandsnaredrums
areautomaticallylabeled.Their systemanalysesthesignalusing
a constanttemporalgrid, extractsfeaturesat eachgrid point and
finally clusters the extracted features [6].

Another systemwhich usespercussive soundclustering is
thatof Wanget al. which detectspercussive soundsin a musical
piece and then clustersthem into as many clustersas needed
according to their perceptualsimilarity. The obtained cluster
information is thenusedin reconstructingacousticsignal in the
caseof apacket lossin thetransmissionof anencodedsignal[7].

In oursystem,featuresareextractedonly at thebeginningsof
detectedsoundevents,similarly to [7]. For this purpose,onset
detectionis performedusing the mid-level representationof the
systempresentedin [8]. At eachonsetlocationa small frameof
thesignalis extractedandanalysedwith a methodsimilar to [6].
The analysis result, i.e. the clustering information, is then
insertedto agrid of tatumpulsesaccordingto thetiming informa-
tion resultingto a symbolic representation.As the crucial step,
this informationis fed to the labelingsystem,which thenusesa
simple probabilistic model in determinationthe labeling. The
termlabeling is usedto referto thenamingof thecreatedclusters
usingthelimited setof rhythmic role labelsavailable.If theclus-
tering was not accomplishedtotally correct,a simple algorithm

for post-labeling cluster assignment changes is applied.

2.1. Meter estimation and sound onset detection

Temporalsegmentationin theproposedsystemis doneusingthe
musicalmeterestimatordescribedin [8]. Meter refersto thetem-
poralregularityof musicsignals,consistingof pulsesensationsat
different levels. The appliedmeterestimatoranalysesmeterat
threedifferent time scales.Beat (foot tappingrate) is the most
prominent level. Tatum (time quantum)refers to the shortest
durationalvaluesthat are still more than incidentally encoun-
tered.Theotherdurationalvalues,with few exceptions,areinte-
ger multiples of the tatum. Musical measure is related to the
harmonicchangerateandto the lengthof rhythmicalpatternsin
music.Theaccuracy of themeterestimatorhasbeenevaluatedin
[8] andit wasfoundto beapplicablein musicfrom differentgen-
res.

Here, information about the temporalstructureis usedfor
two purposes.First, thebottom-upfeatureextractiontakesplace
only at the instantsof detectedonsets. The featurevectorsare
thenclusteredfurtheraswill bedescribedin Sec2.2and2.3.Sec-
ondly, a subsequentprobabilisticmodel usesthe metrical posi-
tions of the soundeventsbelongingto eachclusterto infer the
rhythmical role (label)of eachcluster. This is describedin more
detail in Sec.2.4.A discretetimegrid of equidistanttatumpulses
is created using the information extracted from the signal.

2.2. Feature extraction

Fromthelocationof eachdetectedsoundonset,a partof thesig-
nal is extractedusinga Hanningwindow. Sincethesoundevents
are limited in time by their nature,a rectangularwindow could
also be used.The length of the window is to the next detected
onset,but 100 ms at maximum.From eachframetemporalcen-
troid, signalcrestfactor, signalenergy, spectralkurtosisandsix
MFCCs(Mel-frequency cepstralcoefficients)areextracted.The
zerothMFCC is not used.Finally the featuresarenormalizedto
have zero mean and unity variance over time.

2.3. Clustering of sound events

Thenormalizedfeaturevectorsareclusteredwith fuzzyK-means
algorithm.Likewith its crispversion,thenumberof desiredclus-
tersis setmanually. Thetermcrisp is usedhereastheoppositeof
fuzzy. In additionto thenormalclusterinformation,thealgorithm
alsocalculatesfor eachdatapointdegreesof membershipto each
cluster. The datapoint is assignedto the clusterto which it has
thelargestmembershipvalue.Whenleft to this state,thecluster-
ing resultis similar to theoneproducedby thecrispversion.The
membership values are used in the post-labeling enhancement.

Theresultafterclusteringis asequenceof timestampedclus-
ter numbers , where K denotes the total
numberof clustersandt is thecontinuoustimeindex over thesig-
nal.Eachclusternumber is assignedto thenearestgrid point.
If thereis no clusternumberassignedto a certaingrid point, it
will containthenumber0. Theresultinggrid containsthecluster
numbers , where i is discretetime index
over thesignalin stepsof onetatum.In furthersteps,whenusing
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onsets

meter

cluster
information

features

audio
input

ct 1 2 … K, , ,{ }∈

ct

ci 0 1 2 … K, , , ,{ }∈



Proc. of the 6th Int. Conference on Digital Audio Effects (DAFX-03), London, UK, September 8-11, 2003

DAFX-3

the term cluster numbers, the set  is referred.
The degreesof clustermembershipsafter time quantization,

arestorein a matrix , wheretheelement is thedegree
of membershipof the data point at the time i in the cluster
numberk. On thelocationsi wherenoonsetswasassignedto, the
matrix containsthe value1 in locationcorrespondingto the
clusternumber , and0 on the locationscorrespondingto
theotherclusters.Similarly, thevalue0 is setto thelocationcor-
respondingto theclusternumber on thelocationsi where
any other cluster number was assigned.

2.4. Probabilistic model

Theremainingproblemis to find a way for labelingtheclusters,
i.e. to find a mapping from
clusternumbers to labels . The label is
directly mappedto the clusternumberrepresentingsilence,i.e.

. Therestof themappingcouldbecreatedwith themeth-
ods of acoustic pattern recognition, e.g. a Gaussianmixture
model.Themainproblemwith acousticmodelsis that they can-
not generalizeto extremecaseslike the soundsetvariationcon-
sidered here. If the input signals are performed with drum
instruments,an acousticmodelbasedrecognitionsystemcanbe
constructed,aswedemonstratedin [4]. As theaimwasto beable
to handleand label any percussive tracks,independentlyof the
usedinstruments,acousticmodelsneedto besetaside.Instead,a
methodrelying on the timing of soundeventswithin patternsis
introduced.

The model estimatesthe probability of a certain rhythmic
label q to be presentat a certaintime index within a measure,
whenthetime is discretizedto stepsof onetatum.An illustration
of the data structureof the matrix of probability values is in
Figure2. The measure length in tatum units is m and

denotesthepositionof thesoundeventwithin
the measure.Sincethereexists numerousdifferentmusicaltime
signatures, the measure lengths from 1 to 48 were modeled.

2.4.1.  Model estimation

Probabilitiesfor eachlabel q to occur at different metrical
positions wereestimatedusinga commerciallyavailable
MIDI databaseDrumtrax 3.0. The databasecovers most of the
westernmusical genrescontaining 359 performancesin total.

The piecesareorganizedin 14 differentcategories,of which 13
aredifferentgenresandthelastoneis akind of a tool box.Varied
subsetof 26 pieces(two from eachgenre)wasleft for thetestset
andtherestwereusedin trainingof themodel.Thedivision was
donefor tentimesandthepresentedresultsareaveragedover all
tests. In probability estimationthe musical grid of songswas
annotatedby handandnotesaredistributedto this discretetime
grid. TheneachMIDI drum instrumentis assignedto belongto
onelabel . Thegrid is dividedto measuresandthey arehandled
individually. The numberof occurrencesof eachlabel in each
metrical position are calculated to a data structure seen in
Figure2, and the resulting probabilities estimated.

Though the usedtraining set containedquite an extensive
rangeof pieces,not all probabilitiescould be determineddueto
thelack of properdata.Thenumberof songsin thetrainingsub-
setof thedatabase,having acertainmeasurelengthin tatumscan
be seenin Figure3. This zerooccurrenceproblemwashandled
by applyingWitten-Bell smoothing.An exampleof theproduced
probabilities can be seen in Figure4.

2.4.2.  Model usage

Eachof the clusternumbersk is mappedto oneof the rhythmic
role labelsq. After assigninga mapping,theresultingprobability
can be calculated with

, (1)

wherei denotesthediscretetime index, the labelassignedto
thatpositionusingthemappingL, themetricalpositionof the
time index i within the measureof the lengthm. Becauseof the
small numberof the clustersandpossiblelabels,every possible
mappingpermutationcan be calculatedin brute force and the
optimalonefound.Theoptimal labelingis definedto be theone
having thelargesttotalprobability. This labelingstrategy is based
on the assumptionthat a majority of eventsare correctly clus-
tered.

2.5. Post-labeling cluster changes

Sinceit is morethanlikely thatnot all of thedatapointsareclus-
tered correctly in a realistic situation, a simple method for
enhancingthefinal resultis presented.Thebasisfor thechanges
is the clustermembershipvaluesfrom the fuzzy K-means.It is
assumedthatmostof thedatapointsis assignedto a correctclus-
terandhenceonly smallchangesareallowed.Also, it is assumed
that the chosenmapping is the correct one and it is not
changedin the algorithm. It shouldbe notedthat the algorithm
canchangeonly the datapointsthat containedan onset,i.e. not
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the ones containing the label . It proceeds as follows:
calculate base line probability  with Eq. (1)
for

for
if

assign label  to be the one mapped from clusterk
calculate total probability  using the Eq.(1)
if

retain the change
else

discard the change
endif

endif
endfor

endfor
The membershipvalue limit is in the range . It has
theeffect thatthesmallerit is, thelessthesystemtruststheclus-
tering result. If it set to 0, the systemcan changeany cluster
assignment.Whenthetotal numberof clustersis 4, includingthe
silence,thebestworkingvaluefor wasfoundto beca.0.10.
Valuethis smallallows thealgorithmto changeca.40%of label
assignments,wherea non-silencelabel wasset.The numberof
actuallychangedlabelsis verysmall,lessthan5%in mostcases.

3.  SYSTEM EVALUATION

Thesystemwasevaluatedwith simulations.Theinput to thesys-
tem, audio trackswith percussive soundswasproducedby syn-
thesizing30 secondsfrom eachof theMIDI piecesleft to thetest
set. The test and train set division was donerandomly for ten
times and the presentedresultsare the averageof all divisions.
The evaluationcould be doneautomaticallysincethe reference
was obtained from the MIDI piece.

In all simulations,themetricalinformationwasannotatedby
handinsteadof usingthemusicalmeterestimator. This wasdone
becauseof theneedfor automatictranscriptionevaluation.Since
thereferencedatawasannotatedin MIDI files, it wasdecidedto
use the annotatedmetrical information. The accuracy of the
musical meter estimator was evaluated in [8].

3.1. Audio synthesis

Sincethe aim was away from the more traditional drum tracks
towardstracksperformedwith arbitrarypercussivesounds,aspe-
cific synthesizeris needed.It wasconstructedby recordingtotal
of 68 differentsoundsthatcanbethoughtto beusedin a realsit-
uation.For eachsound15 repetitionswererecordedto guarantee
somedegreeof variation in the synthesis.The soundsweredis-
tributedsothat48 of themwereproducedby tappingwith hands
or pento tables,books,coffeemugsetc.,or by foot tappingwith
differentfootwear. Theremaining20 soundswerespeechsounds
by two persons,both performingthe same10 sounds.From the
recordedsamples,five sets of percussive sounds were con-
structed.Two of theseset consistonly soundsproducedwith
speechandtherestconsistof clicksandtappingsounds.It should
benotedthatsinceno acousticmodelingwasdone,therewasno
need to do any division to train and test sets.

The synthesisproducesmonophonicsignal, i.e. only one
soundis playingat a time. In a casewheremorethanonesound
wasto beplayedsimultaneously, theoneto beplayedwaschosen
by a simple priority schemewhere the soundmappedto from
MIDI notesto label S have the highestpriority, B the second
highest, andH the lowest.

3.2. Simulation setups

Sincethe total systemperformancedependsheavily on the suc-
cessive sub-blocks,it was decidedto test it in four individual
steps:
1. Theperformanceof onset detection and clustering accuracy.

In this setup,the systemperformsonsetdetection,feature
extraction and clustering. The clusters are assignedwith
labels manually, so that the error rate is minimized.

2. Test if the rhythmic role labeling is theoreticallypossible
basedonthemetricalpositionof events.In thissetup,thesys-
tem was given the referencetranscriptionexcept that the
soundlabelswere hiddenand had to be inferred using the
method described in Sec. 2.4.

3. The performanceof the whole system without post-labeling
cluster changes. Here,thesystemis givenonly acousticsig-
nal and the metrical information and it neededto detect
onsets,extractfeatures,performclusteringandinfer thelabe-
ling.

4. Theperformanceof thewhole system with post-labeling clus-
ter changes. This setupis similar to the step3, but the post-
labeling cluster change algorithm is also used.

Eachof thesecasesareevaluatedusingthesametestmaterialand
it canbedeterminedwhich partsof thesystemmayneedfurther
development. The used error rate measure was

, (2)

wherei is the discrete time index over the whole signal and

. (3)
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3.3. Simulation results

The simulation results for the four individual stepsare in the
Table1. In additionto thetotalerrorrateoverall soundsets,there
is alsotheaverageerrorratesof speechbasedsoundsetsandtap-
ping basedsoundsets.More detailederrorratestatisticsfor each
of the 13 genres and five sets can be seen on Figure5.

As from the resultscan be seen,it seemsthat soundspro-
ducedwith speecharemoredifficult for thesystemto copewith.
When inspectingthe error ratesfor eachgenre,seemsthat soft
rock, r’n’b and jazz are the easiestonesfor the systemwhile
alternative and world genresare the most difficult. The within
genrevariationswerelarge,mostlycausedby therandomchoice
of thepartof thepiecesto beanalysed.Thepost-labelingcluster
changealgorithm turnedout to have a very small effect to the
total performance.This is due to the fact that errorsin labeling
stepcausehigh total error rate and minor changescan not fix
enough errors.

Some demo signals from the simulationsare available at
URL:<http://www.cs.tut.fi/~paulus/demo/>.

4.  DISCUSSION

In generationof the tatumgrid, the tempois assumedto be
constantover the whole signal.Similarly, it is assumedthat the
lengthof the measureis constant.However, it is very likely that
theseassumptionsdo not hold when operatingwith real world
signals.Musiciansmay vary the tempowhen playing, creating
theirown versionsof thepieceandthetimesignaturemaybedif-
ferent in the verse and chorus of the piece.

Whenconstructingthe models, fixed assignmentfrom MIDI
notesto therhythmic role labelsturnedout to generateproblems.
Though in many casesthe rhythmic roles are operatedby the

specifieddruminstruments,this wasnot thecasewith all genres.
Especiallywith jazz, latin andworld musicgenres,moreexotic
percussionswereusedor the instrumentwas in a different role
(e.g.cymbalin rock is usuallyin the“snare”role whilst in jazzit
may be in the “bass” role). This causedproblemsin automatic
handlingof the testdata.It turnedout that on mostof the cases
wherelabelingafter “perfectclustering”waserroneous,the time
signaturewassuchthattherewasonly few otherpiecesavailable
for training material.

5.  CONCLUSIONS

This paperhasintroduceda methodfor transcribingpercussive
audiosignalsconsistingof arbitrarysounds.It usesthestatistical
dependenciesof metrical positions of rhythmical elementsin
labelingof theevents.Theefficiency of themethodwasevaluated
with simulations.The transcriptionfor arbitrary soundsetsis a
difficult task,andespeciallyerrorsin label assignmentincrease
theerrorratesignificantlycomparedto theerrorsin theclustering
step.Basedon the results,usingmetricalpositionsin the rhyth-
mic role labeling is possible to some degree.
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Figure 5:Genre error rate averages for each of the used five
sound sets.

Table 1:Error rates for different test steps for speech sounds
(average of two sets), tapping sounds (average of three sets)

and the average of all systems.

test step speech ER tapping ER total avg ER

1. clustering 15.28% 13.12% 13.98%

2. role labeling 27.91% 27.91% 27.91%

3. whole w/o post fix 34.91% 33.15% 33.85%

4. whole w/ post fix 35.68% 33.01% 33.67%
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ABSTRACT

This paper describes a novel method for the automatic transcrip-
tion of drum sequences. The method is based on separating the
target drum sounds from the input signal using non-negative ma-
trix factorisation, and on detecting sound onsets from the separated
signals. The separation algorithm factorises the spectrogram of the
input signal into a sum of instrument spectrograms, each having
a fixed spectrum and a time-varying gain. The spectra are cal-
culated from a set of training signals, and the time-varying gains
are estimated with an algorithm stemming from non-negative ma-
trix factorisation. Onset times of the instruments are detected from
the estimated time-varying gains. The system gave better results
than two state-of-the-art methods in simulations with acoustic sig-
nals containing polyphonic drum sequences, and overall hit rate of
96% was accomplished. Demonstrational signals are available at
http://www.cs.tut.fi/˜paulus/demo/.

1. INTRODUCTION

Automatic music transcription and music information retrieval have
recently become more popular as the needed computational power
has become available. In general, automatic music transcription
can be divided into separate tasks of transcribing the tonal parts
and the percussive parts (drums). This paper will concentrate on
the drum transcription task, which can be defined as the task of
estimating the temporal locations of percussive sound events and
recognising the instruments which have been used to produce them.
In many systems, like in the one proposed here, the task is modified
to detecting the temporal locations of pre-defined percussive sound
events.

One of the earliest works on automatic drum transcription was
by Schloss, whose system transcribed percussion-only music in
which only one instrument is present at a time [12]. The system
located the sound event onsets based on rapid increases on ampli-
tude envelope. Each located sound event was classified to one of
the groups trained for the system based on subband-energy related
features.

Another early work was introduced by Goto and Muraoka [5].
In their system, drum transcription was used as an aid in a beat
tracking polyphonic music signals. The onset detection in their sys-
tem was done by locating power increases in frequency domain.
Bass drums and snare drums were sought from the located onsets
by inspecting peaks in the spectral content of the onsets. This work
was continued by Yoshii et al. in [17], where the event recogni-
tion was done by matching template spectrograms of individual bass
drum and snare drum events to the detected sound onset locations
in polyphonic music. The templates were automatically adapted to
the target signal, because the drum sounds used in the signal to be
analysed may differ from the template sounds.

Traditional pattern recognition approaches have also been
utilised in several ways. Herrera et al. made a thorough comparison
of different features and classification techniques for analysing indi-
vidual drum sound events [6]. In drum transcription, these methods
generally first locate possible sound onsets using, e.g., the method
suggested by Klapuri [8]. Then a set of features is extracted from

the signal at the locations of the detected onsets. The detected
onsets are labelled using standard pattern recognition techniques,
for example, k-nearest neighbours [11], support vector machines
(SVM) [4, 14], or Gaussian mixture models [4, 10]. None of these
methods seem to perform clearly better than the others, so some ad-
vanced techniques and higher-level processing have been developed
to increase the performance, such as, language modelling with ex-
plicit N-grams [10] or hidden Markov models [4], or choosing best
feature subset dynamically [11].

1.1 Separation of drum sounds

Even though individual drum sound events can be recognised quite
reliably [6], the recognition from polyphonic music is a difficult
task, because of other simultaneously occurring sounds [4]. Sepa-
ration of sound sources has been used to address the problem, e.g.,
by using methods based on independent subspace analysis (ISA)
[1, 2], and sparse coding [16].

In the case of music signals, ISA and sparse coding have been
used to separate the input signal into a sum of sources, each of
which has a fixed spectrum and a time-varying gain. This model
suits quite well for representing drum signals. The signal model
for spectrum Xt( f ) in frame t can be written as a weighted sum of
source spectra Sn( f ):

Xt ( f )≈
N

∑
n=1

an,t Sn( f ), (1)

where N is the number of sources, n is the source index, an,t is the
gain of the nth source in frame t, and f is the discrete frequency
index.

There are several different criteria for estimating an,t and Sn( f ),
including the independence of the sources [1], non-negativity [13],
or sparseness of the sources [16]. In some systems, the sources are
estimated blindly, i.e., there is no prior knowledge of the parame-
ters of the sources. Also, some proposals for the use of pre-trained
sources have been made [15].

Prior subspace analysis (PSA) proposed by FitzGerald simpli-
fies the decomposition by initialising the spectral subspaces Sn( f )
with values calculated from a large sample set [3]. Then the
time-varying gains an,t are calculated using matrix inverse, passed
through independent component analysis (ICA) and finally sub-
jected to onset detection. The main problem with PSA is that an,t
can have also negative values which do not have a reasonable phys-
ical counterpart.

Recently, non-negative matrix factorisation (NMF) has been
successfully used in several unsupervised learning tasks [9] and also
in the analysis of music signals, e.g., by Smaragdis and Brown [13].
In NMF, both the spectra Sn( f ) and gains an,t are restricted to be
non-negative. In the case of audio source separation, this can be in-
terpreted so that the spectrograms are purely additive. It has turned
out that the non-negativity constraint alone is sufficient for separat-
ing sources, to some degree.



1.2 Improvements in the proposed method

The proposed method combines the ideas of PSA and NMF. The
spectrogram of the mixture signal is decomposed into spectrograms
of target drum instruments using pre-defined fixed spectra Sn( f ) and
non-negativity constraints in the estimation of the gains an,t .

Natural drum sounds do not have an exactly fixed spectrum over
time. When examined with high frequency resolution, the spectro-
grams exhibit stochastic nature within an individual sound event. In
addition, there are differences between the occurrences of a same
drum instrument sound events. The variation of the spectrum is re-
duced by using a coarse frequency resolution, and the signal model
of Equation (1) can be used. The spectrum of a drum instrument
is approximately fixed on a coarse frequency grid, e.g., bass drums
have low-frequency energy and hi-hats have high-frequency energy.

Some publications have discussed the matter of recognising
drum patterns from polyphonic music [5, 11, 17]. Before aiming
directly to that level, the transcription task in this paper is restricted
to material consisting only of a limited number of different drum
instruments. Namely, only bass drum, snare drum, and hi-hat oc-
currences are transcribed.

2. PROPOSED METHOD

The proposed method consists of three stages: at first, source spec-
tra Sn( f ) are estimated for each instrument using training material,
as will be described in Section 2.1. At the second stage, each drum
instrument is separated from the input signal using the trained spec-
tra and the method that will be described in Section 2.2. Finally, the
temporal locations of sound events are sought from the separated
signals with the method that will be described in Section 2.3.

The magnitude spectrogram is used as a mid-level signal rep-
resentation. Since drum transcription requires a good temporal res-
olution, the length of the analysis frame is 24 ms with 75 % over-
lap between consecutive frames, leading into temporal resolution of
6 ms.

The segregation between different drum classes can be made
using a coarse frequency resolution. Only five bands (20-180 Hz,
180-400 Hz, 400-1000 Hz, 1-10 kHz and 10-20 kHz) were used in
the simulations. The number and locations of the bands were not
specifically optimised for the transcription, but these yielded the
best result from the ones tested (e.g., linearly spaced 512 frequency
bins or 25 critical bands). The magnitude spectrogram Xt ( f ) is ob-
tained by using short-time Fourier transform, summing the squared
magnitudes within each band to obtain bandwise energies, and by
taking the square root.

2.1 Estimation of the source spectra

There are several possibilities for obtaining the instrument spectra
Sn( f ) from the training data. In our simulations the best results were
obtained by using the following procedure. A set of recordings of
individual examples of a certain drum instrument n is taken. NMF
[9, 13] is used to dismantle the magnitude spectrogram Y i

t ( f ) of
each example event i into a product of non-negative spectrum W i( f )
and non-negative time-varying gain hi

t , so that Y i
t ( f ) ≈W i( f )hi

t .
The spectral basis vectors W i( f ) are then averaged over i to produce
the instrument spectra Sn( f ) of drum instrument n. The procedure
is repeated for all instruments n ∈ [1,N].

2.2 Estimation of the time-varying gains

The separation algorithm estimates time-varying gains an,t for each
drum instrument n in each frame t, so that the magnitude spectrum
Xt( f ) of the input signal is presented as a weighted sum of the fixed
spectra Sn( f ), as represented in Equation (1). The estimation is
done by minimising a cost function between the observed spectrum
Xt( f ) and the model Mt( f ) = ∑N

n=1 an,tSn( f ). The gains an,t are re-
stricted to be non-negative. The method does not make any explicit
assumptions of the independence or sparseness of the gains.

The best transcription result was obtained using the divergence
proposed by Lee and Seung [9] as the cost function. The divergence
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Figure 1: Block diagram of procedure for detecting onsets from an
estimated time-varying gain an,t .

D between Xt( f ) and Mt ( f ) is defined as

D(Xt( f )||Mt( f )) = ∑
t, f

d(Xt( f ),Mt( f )), (2)

where the function d is defined as

d(p,q) = p log(
p

q
)− p+q. (3)

The divergence is minimised by an iterative algorithm, which
uses multiplicative updates, given as

an,t ← an,t
∑ f Xt( f )Sn( f )/Mt( f )

∑ f Sn( f )
. (4)

The iterative estimation algorithm is given by the following pro-
cedure:
1. Initialise each an,t to unity.

2. Set Mt( f ) = ∑N
n=1 an,t Sn( f ).

3. Update each an,t using the update rule (4)
4. Evaluate cost function 2 and repeat steps 2 to 4 until the value

of the cost function converges.
In our experiments with three sources and a five-band spectral

representation, the algorithm took approximately 20-30 iterations to
converge.

2.3 Onset detection

Onset detection of the instrument n is done from the corresponding
time-varying gain an,t with a procedure motivated by the one pro-
posed by Klapuri [8]. Only the time-varying gain is used instead of
several sub-band amplitude envelope signals used in the reference.
This simplification can be done since the spectrum associated with
each gain is fixed, causing all sub-band amplitude envelopes to be of
identical form. The algorithm is motivated by the human auditory
system, which is sensitive for relative changes in signal level.

The block diagram of the onset detection procedure is illus-
trated in Figure 1. First, the gain is normalised to range [0,1]
to obtain a better control of subsequent steps of the onset de-
tection procedure. The normalised gain ãn,t is compressed with
ân,t = log(1 + Jãn,t), where J is a fixed compression factor. The
algorithm is not sensitive for the exact value of J; a value of 100
was found to be suitable. The compressed gain is differentiated
with a′n,t = ân,t − ân,t−1.

The difference signal a′n,t contains low-amplitude ripple, which
is reduced by low-pass filtering. The system is not sensitive to
the exact filter characteristics; in our implementation a fourth order
Butterworth filter with cut-off frequency 0.25π1 was used. Finally,
the filtered signal is subjected to peak picking. Peaks in the signal
represent perceptually salient onsets. Thresholding is used to pick

1sampling rate being 167 Hz



only the most prominent peaks. The threshold value can be different
for each instrument.

The thresholds needed in the onset detection are estimated auto-
matically from training material with the following procedure. The
training signals are separated with the proposed method, and onset
are located. By comparing the located onsets to the reference on-
sets, the threshold value is chosen so that the number of undetected
onsets and extraneous detections is minimised. The threshold is
calculated for each drum instrument independently.

3. EVALUATION

The performance of the proposed transcription method was evalu-
ated and compared to two other systems using acoustic signals. We
used a four-fold cross-validation setup for acoustic material from 4
recording sets, so that three sets were used for training and one set
for testing at a time.

3.1 Acoustic material

The simulation database consists of acoustic drum sequences and
individual drum samples. Three different drum kits and three dif-
ferent recording locations were used. One of the kits was recorded
in two different locations, resulting to total of four recording sets:

1. an entry level kit recorded in a medium sized room,
2. a studio grade kit recorded in a medium sized room,
3. a heavy metal kit recorded in an acoustically damped hall, and
4. an entry level kit recorded in an anechoic chamber.

The acoustic information was recorded using close micro-
phones for bass drums and snare drums, and overhead microphones
for hi-hats. Recorded signals were mixed to yield two mix-downs:
an unprocessed one, and a “production-grade” processed one where
multiband compression, equalisation, and reverberation were used.
The reference onsets were acquired by using piezo triggers on bass
drums and snare drums. The hi-hats were annotated by hand. The
temporal accuracy of the annotated onsets was estimated to be better
than 10 ms.

The drum sequences in the evaluation database are fairly sim-
ple, consisting only of bass drums, snare drums and hi-hats. Dif-
ferent playing styles are not discriminated, e.g., open, closed and
pedal hi-hats are treated as equal. The sequences used were 8-beat,
16-beat, stomp, shuffle and triole, resulting in total of 20 signals.
The sequences do not contain only several repetitions of the same
pattern, but the players were encouraged to make some variations
while playing. Only 15-second excerpts of the sequences were used
in the evaluation.

In addition to the sequences, individual drum hits were recorded
with 20 repetitions of each. These were used to obtain the spectra
Sn( f ), as explained in Section 2.1.

3.2 Performance metrics

For each drum instrument, the performance was measured by com-
paring the transcribed onsets with the reference onsets. A tran-
scribed onset was judged to be correct if it deviated less than 30 ms
from a reference onset. The transcribed and reference onsets were
matched using the following procedure. At first, the algorithm cal-
culates a V ×L matrix Z of absolute time differences between all
transcribed and reference events Zv,l = |(tv− tl)| ,v = 1 . . .V, l =
1 . . .L, where V is the number of transcribed events and L is the
number of events in reference data. Then the events v and l hav-
ing the smallest time difference are paired and removed from the
distance matrix. This pairing is continued until all remaining time
differences are larger than 30 ms or either event set runs out of
available events. The b remaining unmatched transcribed events
are insertions and the c remaining unmatched reference events are
deletions leading to instrument hit rate of Rh = 1−(b+c)/L. Also,
precision rate Rp = (V −b)/V and recall rate Rr = (L−c)/L were
calculated. Precision rate is the ratio of correct detections to all de-
tections, and recall rate is the ratio of correct detections to number

unprocessed B S H avg

Rp % 99 93 92 94
SVM Rr % 99 93 86 89

Rh % 98 86 77 87

Rp % 91 77 80 82
PSA Rr % 95 91 70 78

Rh % 86 70 46 67

Rp % 100 100 98 99
NSF Rr% 100 94 96 96

Rh % 100 93 94 96

processed B S H avg

Rp % 99 100 95 97
SVM Rr % 99 93 91 93

Rh % 98 93 86 92

Rp % 77 83 80 80
PSA Rr % 92 84 73 78

Rh % 71 67 51 63

Rp % 98 100 96 97
NSF Rr % 98 94 96 96

Rh % 95 94 93 94

Table 1: Results for the unprocessed (upper table) and “production-
grade” processed (lower table) test signals. B denotes bass drums, S
snare drums, H hi-hats, and avg the average of B, S and H. SVM is
the method described in [4], PSA the method described in [3], and
NSF the proposed method.

of events in the reference annotation. The overall hit rate was calcu-
lated as the mean of individual instrument hit rates. The presented
performance measures are calculated over the four cross validation
iterations.

3.3 Comparisons to other systems

Two other transcription systems were used for comparison with
similar evaluation setup. The systems by Gillet et al. [4] and
FitzGerald et al. [3] were tested. The method by Gillet et al. ini-
tially detects all sound event onsets from the signal, then extracts a
set of features from the locations of the detected onsets, and finally
uses an SVM classifier for recognising the events. The presence of
each drum instrument in the event is detected with a binary classi-
fier, and no sequence modeling is used. The classifiers were trained
with the acoustic sequences in the training set. The algorithm im-
plementation was based on the information given in the reference,
and the SVM implementation by Joachims was used [7].

In PSA, initially, the spectral basis vectors are calculated from
the individual drum hits in the training set. Then, the corresponding
time-varying gains are estimated with a matrix inverse and inde-
pendent component analysis. Finally, the sound onsets are detected
from the estimated time-varying gains. The implementation of the
original authors was used.

3.4 Results and discussion

The performance evaluation results are presented in Table 1. The
proposed method performed better in total than both comparison
methods with unprocessed and processed drum signals, though the
difference is smaller with processed signals. This is most likely due
to the fact that when handling the processed signals, the features
used by the SVM method were trained with processed signals, while
the spectral models used by the PSA and the proposed method were
trained with individual unprocessed hits in both scenarios, because
there were no processed individual hits available.

Some preliminary experiments were made to utilise the pro-



posed method also for more complex signals, i.e., signals contain-
ing also other drums or melodic instruments. It was noted that the
performance of the proposed system degrades if the analysed signal
does not fit the model, i.e., other interfering sounds are present in
addition to the modelled instruments. Similar performance degra-
dation was noted also with the two reference systems. It is possible
that the SVM method may be able to handle more complex input
signals, as it’s operation does not rely on direct assumptions on the
structure of the signal. This problem of method generalisation re-
mains as a subject of further development.

4. CONCLUSIONS

In this paper, we have presented a method for drum transcription.
It uses pre-calculated spectra and non-negativity constraints for the
gains of the spectra for separating different instruments. The pro-
posed method has been evaluated with simulations and the perfor-
mance of the presented method has been compared with two refer-
ence methods. The proposed method performed better than the two
reference methods in simulations with polyphonic drum sequences.
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ABSTRACT

Automatic drum transcription enables handling symbolic
data instead of plain acoustic information in music informa-
tion retrieval applications. Usually the input to the transcrip-
tion system is single-channel audio, and as a result the pro-
posed solutions are designed for this kind of input. How-
ever, in studio environment the multichannel recording of
the drums is often available. This paper proposes an exten-
sion to a non-negative matrix factorization drum transcrip-
tion method to handle multichannel data. The method cre-
ates spectral templates for all target drums from all available
channels, and in transcription estimates time-varying gains
for each of them so that the sum approximates the recorded
signal. Sound event onsets are detected from the estimated
gains. The system is evaluated with multichannel data from
a publicly available data set, and compared with other meth-
ods. The results suggest that the use of multiple channels
instead of a single-channel mix improves the transcription
result.

1. INTRODUCTION

Drum transcription provides a method to transition from
acoustic signal to a symbolic representation of the drum
sound content. Drum transcription means the process of
detecting the occurrences of drum sound events in a musi-
cal performance and recognizing the instruments used. The
input performance is usually a single-channel or a stereo
recording. Several methods for solving the transcription
from material containing only drum hits or from polyphonic
music have been proposed in literature, see [5] for a review.
The methods are often divided into two categories: event-
based and source separation -based methods. The method
in the first category locate sound events in the input signal
and then recognize the content. In the source separation ap-
proaches, the individual target drums are considered to be the
sound sources that are separated from the mixture signal, and
the sound event onsets are searched from the separated drum
signals. The method proposed in this paper belongs to the
separation-based approaches. Other recent drum transcrip-
tion methods include using spectrogram template matching
and adaptation [14], using support vector machine classifiers
to recognize the sound event content [7], and using continu-
ous hidden Markov models to perform the signal segmenta-
tion and classification simultaneously [11].

The input signal is represented as a magnitude spectro-
gram X with F rows corresponding to frequencies and T

This work was supported by the Academy of Finland, project no.
5213462 (Finnish Centre of Excellence program 2006 - 2011).

columns corresponding to frames. In this representation, the
mixture signal can be considered to be a sum of the spectro-
grams of the N source signals

X =
N

∑
n=1

Xn + ε , (1)

where Xn is the spectrogram of the nth source, and ε rep-
resents the approximation error. Each of the sources Xn is
considered to be a product of two basis vectors

Xn = snaT
n . (2)

With this approximation and omitting the approximation er-
ror term, (1) can be rewritten as a matrix product

X = SA, (3)

where the component matrices S and A are defined as

S = [s1,s2, · · · ,sN ] (4)

and
A = [a1,a2, · · · ,aN ]T . (5)

Several approaches have been proposed for solving the
decomposition of X into the components S and A. One of the
first was independent subspace analysis (ISA) [1]. ISA was
proposed to solve the problem of applying independent com-
ponent analysis on a single-channel signal by representing
the signal as a spectrogram and considering each frequency
band as a channel signal. In this context, each vector sn can
be considered as a frequency basis function and an the corre-
sponding time basis function.

ISA performs the separation without any prior knowledge
of the sources despite that in many cases some information is
available. In [4] prior subspace analysis (PSA) was proposed
to utilize prior knowledge of the sources by calculating spec-
tral templates sn for each target drum in advance and then cal-
culating the corresponding time-varying gains an. The sound
events are then detected from the temporal basis functions.

Another way to perform the decomposition of (3) is to
use non-negative matrix factorization (NMF) [13], which as-
sumes that every element in the matrices X, A, and S are
non-negative. This non-negativity constraint fits the magni-
tude spectrogram representation as it has only non-negative
values. Similar to the idea of PSA, use of spectral templates
with NMF for drum transcription was proposed in [12]. This
paper extends that work.

When a drum kit is recorded in a studio environment,
usually each membranophone (drums with membranes, e.g.,
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kick drum, snare drum, tom-toms) has at least one close mi-
crophone and all the cymbals are recorded with two or more
overhead microphones. The knowledge of the content and
timing of each hit in the recorded signals would enable more
flexible editing of the recordings. Since these multichannel
signals are available, the transcription is done using them in-
stead of the monophonic or stereophonic mix-down available
in the later stages of record production.

The rest of this paper is organized as follows. Section 2
describes the use of NMF for drum transcription starting
from the single-channel method and then extending it for
multichannel data. Section 3 details the evaluations of the
system performance, including the material used, the perfor-
mance metrics, and the evaluation results. Finally, Section 4
provides the conclusions of the paper.

2. DRUM TRANSCRIPTION USING
NON-NEGATIVE MATRIX FACTORIZATION

The factorization of non-negative matrix X to two non-
negative matrices S and A can be done using the Lee and
Seung algorithm [10] which minimizes the Kullback-Leibler
divergence -like distance measure

D(X||SA) = ∑
f ,t

[X] f ,t log
[X] f ,t

[SA] f ,t
− [X] f ,t +[SA] f ,t (6)

between the input X and the approximation SA. The matrices
S and A are initialized with non-negative random values and
then iteratively updated with the multiplicative rules

A← A.∗ ST (X./(SA))

ST 1
(7)

and

S← S.∗ (X./(SA))AT

1AT
. (8)

In the equations above, 1 is a all-one matrix of size F × T .
Element wise multiplication and division operations are rep-
resented by .∗ and ./ after [8]. For a tutorial-like overview of
other NMF algorithms and the relationship of NMF with its
generalization non-negative tensor factorization (NTF), refer
to [2]. Using NTF for sound source separation is demon-
strated, e.g., in [3].

2.1 Single Channel Input Data

The use of NMF and templates in drum transcription was
proposed in [12]. The spectral basis functions (or templates)
sn are calculated from signals containing only the target
drum. This signal is factorized into one source and the re-
sulting S containing only one column is assumed to represent
the main characteristics of the target drum, and it is taken as
the spectral template for that drum. If several training signals
are available for one drum, the spectral template is calculated
separately for each of them and then averaged. The templates
of all target drums are combined with (4) to create the spec-
tral template matrix S.

The time-varying gains are obtained from the spectro-
gram of the input signal by applying only the update for-
mula (7) with the spectral templates until the result has con-
verged. The detection of the drum hits from the resulting
time-varying gains an is done by applying a psychoacous-
tically motivated onset detection on the gain curves. The

TRAINING DATA INPUT DATA

STFTSTFTSTFTSTFT

STACKING STACKING

NMF: X̃n = s̃naT
n

NMF: X̃ = S̃A

COMBINE s̃n’s
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X1X1 XCXC

S̃ = [s̃1, · · · , s̃N ]

X̃
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







X1
X2
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XC


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


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TRANSCRIPTION

Figure 1: Functional overview of the proposed method. It
calculates the spectral template s̃n over all channels from sig-
nals containing only the target drum. The process is repeated
for all target drums, and the resulting templates are combined
to create the spectral template matrix S̃. The templates are
used to estimate the time-varying gains of the target drums
played in the multichannel input. Finally, the sound event
onsets are detected from the gains.

process consists of µ-law compression, low-pass filtering,
differentiation, half-wave rectification, detecting peaks, and
thresholding the located peaks. The optimal threshold value
is determined for each target drum using a set of training
signals by minimizing the sum of extraneous and missed de-
tections on them. The onset detection method is motivated
by [9].

The single-channel NMF method has proven to perform
well when the input data match the model well, i.e., there
are only target drums in the mixture [12]. Additional drums
and other sound sources caused the performance to degrade
quickly. Furthermore, if the target drums overlap consider-
ably in the frequency domain, the factorization may produce
an undesired result.

2.2 Multichannel Input Data

We propose extending the single-channel method so that the
factorized spectrogram is calculated not only from a single-
channel mixture, but from the multiple microphone signals
available in the studio environment. The spectrograms of C
individual channels Xc, c ∈ 1 . . .C are stacked to form the
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matrix to be factorized

X̃ =









X1
X2
...

XC









. (9)

Now the factorization (3) is extended to

X̃ = S̃A, (10)

where the spectral templates are similarly stacked into

S̃ =









S1
S2
...

SC









=









s1,1,s1,2, · · · ,s1,N

s2,1,s2,2, · · · ,s2,N
... · · · . . .

...
sC,1,sC,2, · · · ,sC,N









= [s̃1, s̃2, · · · , s̃N ] .

(11)
In the matrix above, sc,n is the spectral template of nth source
in the microphone channel c. The main motivation for this
stacking is that it allows to separate drums that have similar
spectral content, e.g., tom-toms, if their intensity in different
microphone channels differs. A functional overview of the
proposed method is presented in Figure 1.

The training and use of the model is similar to the one of
the single-channel method with small exceptions. The main
difference is that the template s̃n has to be calculated over
all channels at once instead of constructing it by stacking the
templates from individual channels. This is required to en-
sure that the relative level differences between the channels
would be correct in the resulting template. The use of the
template in the factorization and the determination of the on-
set instants is similar to the single-channel case.

3. EVALUATIONS

The performance of the proposed method was tested using
a data set of multichannel drum recordings with manually
made annotations [6]. The performance is compared with
two other methods.

3.1 Acoustic Material

The material used was from the public audio subset of
“ENST drums” database [6]. The database contains record-
ings for three different drummers and drum kits. Each
drummer has a different number of instruments and a dif-
ferent microphone setup. The material consists of individ-
ual drum hits, traditional short drum sequences, and drum
tracks played along accompaniment that are provided sepa-
rately from the drum audio. These “minus one” tracks are
further divided into tracks with acoustic and with MIDI ac-
companiment. For all of the material, the database contains
individual microphone signals (7 or 8, depending on the kit),
a “dry” mix-down with only level adjustments, and a “wet”
mix-down with compressor and other effects. The evalua-
tions use the individual drum hits for template calculation,
and the “minus one” tracks for testing. In total, there are 64
“minus one” tracks in the data set with duration ranging from
30 s to 75 s and mean duration of 55 s.

3.2 Evaluation Process

The target drum set in the evaluations consists of bass drum
(BD), snare drum (SD), and hi-hat (HH). Other drums in the

tracks are not attempted to be transcribed. The target drum
set is limited in this way since the three drums for the main
rhythmic background on a large body of the pop/rock songs,
while the other drums provide mainly accentuations. The in-
put to the system consists of the close microphone signals
and contains only drums sounds. The evaluations are done
using leave-one-out cross-validation scheme on each of the
three drum kits separately, and the presented results are cal-
culated over all cross-validation folds. The cross-validation
has to be made for each drummer subset separately because
the method relies on the channel setup to remain identical
across training and testing phases.

The spectrogram signal representation uses the frequency
resolution of 24 Bark bands, and the analysis window length
is 24 ms with 75% overlap.

3.3 Performance Metrics

The hits in the obtained result and in the ground truth are
matched. Two hits were accepted as a match if they differ
less than 50 ms in their onset times. Recall rate RR is the ratio
of correct hits to the hits in the ground truth, precision rate RP

the ratio of correct hits to the hits in the result, and F-measure
is the harmonic mean of these F = 2RRRP/(RR +RP).

3.4 Comparison to Other Systems

The performance of the proposed system is compared to
other methods. First, the proposed multichannel version
is compared with the single-channel NMF transcription
method [12]. The single-channel data used in the experi-
ments are the “dry-mix” versions. This comparison allows
to determine if the use of multiple channels provides any ad-
ditional information that the method can use compared to the
mix-down.

Secondly, a naive multichannel transcription method is
implemented. It assumes that each close microphone chan-
nel contains mostly the sound of that drum. The transcrip-
tion can then be made by detecting sound event onsets on the
channel signal. The onset detection is made with the method
proposed in [9], and the detection threshold is determined us-
ing training data in a manner similar to the proposed method.
The main weakness of this naive approach is that it relies on
every target drum to have a close microphone.

Finally, a second single-channel comparison method is
the one proposed in [7] attempting to enhance the drum
sound content when there is also accompaniment involved.
Even though the system was designed to transcribe drums
with accompaniment, the original publication also provides
evaluation results in the case when the accompaniment is not
present. The evaluations in the original publication use the
same data set and evaluation metric as this paper. These re-
sults are gathered in Table 2. When comparing the result, it
should be remembered that the results presented in [7] were
obtained using a cross-validation scheme differing from the
one we are using, and used only single-channel input.

3.5 Results and Discussion

The evaluation results are presented in Tables 1-3. Table 3
presents the detailed results for the three different drum kit
subsets for all of the “minus one” tracks. The results in Ta-
ble 1 show that the naive approach works surprisingly well
on the multichannel recordings. However, the multichan-
nel approach performs even better. Both the single-channel
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BD SD HH Total

1-channel [12]
RR 93.7% 51.4% 77.1% 74.0%
RP 95.2% 80.0% 67.8% 78.5%
F 94.4% 62.6% 72.1% 76.2%

onsets
RR 85.7% 54.4% 83.5% 75.3%
RP 85.5% 76.8% 76.7% 79.4%
F 85.6% 63.6% 80.0% 77.3%

m-channel
RR 95.9% 77.8% 87.9% 87.1%
RP 93.5% 77.5% 78.7% 82.5%
F 94.7% 77.6% 83.0% 84.7%

Table 1: Evaluation results for the proposed method (m-
channel), the single-channel NMF (1-channel), and the naive
method (onsets), on the “minus one” tracks of the ENST pub-
lic dataset.

and naive multichannel method have a relatively low recall
rate on snare drum. We assume that this may be caused by
the “ghost hits”, which are very light hits producing more
full-bodied rhythmic feel. The lightness of these hits causes
difficulties in setting the onset detection threshold. The dif-
ference in the recall and precision rates for hi-hat may be
partially caused by the presence of the other cymbals in the
tracks: since they do not belong to the target set and their
spectral properties overlap with hi-hat, their presence causes
some extra hits to be detected. More detailed inspection on
the material revealed that a large body of the hi-hat insertions
were caused by the cow bell instrument played in latin tracks
in the place of hi-hat.

Based on the total F-measure of each individual tar-
get piece, the performance difference between the single-
channel NMF and naive onset detection based method is not
statistically significant. However, the overall performance in-
crease obtained with the multichannel NMF method over the
comparison methods is statistically significant with the level
p > 99%.

When the evaluations are done on the subset of “mi-
nus one” tracks played on a real accompaniment, the per-
formance of both single-channel and multichannel NMF de-
crease, as can be seen in Table 2. Only the bass drum perfor-
mance remains high. Comparing to the reference method [7],
the proposed system is more accurate on bass drum, slightly
more accurate on snare drum, and hi-hat performance is ap-
proximately even. Some of the performance degradation may
be caused by the small amount of training data (only nine
tracks for each drummer).

The per-drummer results in Table 3 show that there are
some performance difference between the three subsets. The
main improvement of the proposed method is visible in the
snare drum results, where both recall and precision rates are
greatly improved.

4. CONCLUSION

This paper has presented an extension of an NMF based drum
transcription method to multichannel data. The multichannel
data are available from the recording setup in a studio en-
vironment. The proposed method creates spectral templates
for each target drum to each input channel, and uses NMF to
recover the time-varying gains for the drums. Finally, onsets
are searched from the recovered gains. The proposed sys-
tem has been evaluated on multichannel data and compared
to other methods in the task of transcribing bass drum, snare

BD SD HH

reference [7]
RR 70.0% 64.2% 86.5%
RP 79.8% 71.0% 73.6%
F 74.6% 67.4% 79.5%

1-channel [12]
RR 94.1% 47.9% 70.6%
RP 95.1% 71.0% 63.4%
F 94.6% 57.2% 66.8%

m-channel
RR 96.0% 72.0% 84.0%
RP 93.6% 74.3% 75.5%
F 95.0% 73.0% 79.4%

Table 2: Evaluation results for the proposed method, the
single-channel NMF, and the reference method, on the “mi-
nus one” tracks excluding the ones recorded with MIDI ac-
companiment (the results for the reference are from [7]).

drum, and hi-hat. The results show that the use of multiple
channels increases the system performance over the single-
channel method.
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Abstract

This paper proposes a method for transcribing drums
from polyphonic music using a network of connected
hidden Markov models (HMMs). The task is to detect
the temporal locations of unpitched percussive sounds
(such as bass drum or hi-hat) and recognise the instru-
ments played. Contrary to many earlier methods, a sep-
arate sound event segmentation is not done, but con-
nected HMMs are used to perform the segmentation and
recognition jointly. Two ways of using HMMs are stud-
ied: modelling combinations of the target drums, and a
detector-like modelling of each target drum.

Acoustic feature parametrisation is done with mel-
frequency cepstral coefficients and their first order tem-
poral derivatives. The effect of lowering the feature
dimensionality with principal component analysis and
linear discriminant analysis is evaluated. Because the
acoustic properties of drum sounds may vary between
the training and target signals, unsupervised acoustic
model parameter adaptation with maximum likelihood
linear regression is evaluated. The performance of the
proposed method is evaluated on a publicly available
data set containing signals with and without accompa-
niment (non-drum instruments) and compared with two
reference methods. The results suggest that the tran-
scription is possible using connected HMMs, and that
using detector-like models for each target drum pro-
vides a better performance than modelling drum com-
binations.

Keywords: hidden Markov model, maximum likeli-
hood linear regression, mel-frequency cepstral coeffi-
cient, linear discriminant analysis
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1 Introduction

This paper applies connected hidden Markov models
(HMMs) to the transcription of drums from polyphonic
musical audio. For brevity, the word “drum” is here
used to refer to all the unpitched percussions met in
Western pop/rock music, such as bass drum, snare
drum, and cymbals. The word “transcription” is used
to refer to the process of locating drum sound onset
instants and recognising the drums played. The anal-
ysis result enables several applications, such as using
the transcription to assist beat tracking [11], drum track
modification in the audio [30], reusing the drum pat-
terns from existing audio, or musical studies on the
played patterns.

Several methods have been proposed in the litera-
ture to solve the drum transcription problem. Follow-
ing the categorisation made in [5] and [10], majority
of the methods can be viewed to be either segment and

classify or separate and detect approaches. The meth-
ods in the first category operate by segmenting the in-
put audio into meaningful events, and then attempt to
recognise the content of the segments. The segmenta-
tion can be done by detecting candidate sound onsets
or by creating an isochronous temporal grid coinciding
with most of the onsets. After the segmentation a set of
features is extracted from each segment, and a classifier
is employed to recognise the contents. The classifica-
tion method varies from a naive Bayes classifier with
Gaussian mixture models (GMMs) [19] to support vec-
tor machines (SVMs) [24, 10] and decision trees [21].

The methods in the second category aim at segregat-
ing each target drum into a separate stream and to detect
sound onsets within the streams. The separation can be
done with unsupervised methods like sparse coding [26]
or independent subspace analysis (ISA) [25], but these
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require recognising the instruments from the resulting
streams. The recognition step can be avoided by utilis-
ing prior knowledge of the target drums in the form of
templates, and applying a supervised source separation
method. Combining ISA with drum templates produces
a method called prior subspace analysis (PSA) [4]. PSA
represents the templates as magnitude spectrograms and
estimates the gains of each template over time. The pos-
sible negative values in the gains do not have a physical
interpretation and require a heuristic post-processing.
This problem was solved using non-negative matrix fac-
torisation (NMF) restricting the component spectra and
gains to be non-negative. This approach was shown to
perform well when the target signal matches the model
(signals containing only target drums) [18].

Some methods cannot be assigned to either of the cat-
egories above. These include template matching and

adaptation methods operating with time-domain sig-
nals [33], or with a spectrogram representation [31].

The main weakness with the “segment and classify”
methods is the segmentation. The classification phase
is not able to recover any events missed in the seg-
mentation without an explicit error correction scheme,
e.g., [29]. If a temporal grid is used instead of onset
detection, most of the events will be found, but the ex-
pressivity lying in the small temporal deviations from
the grid is lost, and problems with the grid generation
will be propagated to subsequent analysis stages.

To avoid making any decisions in the segmentation,
this paper proposes to use a network of connected
HMMs in the transcription in order to locate sound
onsets and recognise the contents jointly. The target
classes for recognition can be either combinations of
drums or detectors for each drum. In the first approach,
the recognition dictionary consists of combinations of
target drums with one model to serve as the background
model when no combination is played, and the task is to
cover the input signal with these models. In the detector
approach, each individual target drum is associated with
two models: a “sound” model and a “silence” model,
and the input signal is covered with these two models
for each target drum independently from the others.

In addition to the HMM baseline system, the use of
model adaptation with maximum likelihood linear re-
gression (MLLR) will be evaluated. MLLR adapts the
acoustic models from training to better match the spe-
cific input.

The rest of this article is organised as follows: Sec-
tion 2 describes the proposed HMM-based transcrip-
tion method, Section 3 details the evaluation setup

and presents the obtained results, and finally Section 4
presents the conclusions of the paper. Parts of this work
have been published earlier in [16] and [17].

2 Proposed method

Figure 1 shows an overview of the proposed method.
The input audio is subjected to sinusoids-plus-residual
modelling to suppress the effect of non-drum instru-
ments by using only the residual. Then the signal is sub-
divided into short frames from which a set of features is
extracted. The features serve as observations in HMMs
that have been constructed in the training phase. The
trained models are adapted with unsupervised maxi-
mum likelihood linear regression [12] to match the tran-
scribed signal more closely. Finally, the transcription is
done by searching an optimal path through the HMMs
with Viterbi algorithm. The steps are described in more
detail in the following.

2.1 Feature extraction and transforma-

tion

It has been noted, e.g., in [8] and [31], that suppres-
sion of tonal spectral components improves the ac-
curacy of drum transcription. This is no surprise,
as the common drums in pop/rock drum kit contain
a notable stochastic component and relatively little
tonal energy. Especially the idiophones (e.g., cymbals)
produce mostly noise-like signal, while the membra-
nophones (skinned drums) may contain also tonal com-
ponents [6]. The harmonic suppression is here done
with simple sinusoids-plus-residual modelling [15, 22].
The signal is subdivided into 92.9 ms frames, the spec-
trum is calculated with discrete Fourier transform, and
30 sinusoids with the largest magnitude are selected by
locating the 30 largest local maxima in the magnitude
spectrum. The sinusoids are then synthesised and the
resulting signal is subtracted from the original signal.
The residual serves as the input to the following anal-
ysis stages. Even though the processing may remove
some of the tonal components of the membranophones,
the remaining ones and the stochastic components are
enough for the recognition. Preliminary experiments
also suggest that the exact number of removed compo-
nents is not important, even doubling the number to 60
caused only an insignificant drop in the performance.

The feature extraction calculates 13 mel-frequency
cepstral coefficients (MFCCs) in 46.4 ms frames with
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Figure 1: A block diagram of the proposed HMM transcription method including acoustic model adaptation.

75% overlap [1]. In addition to the MFCCs their first
order temporal derivatives are estimated. The zeroth co-
efficient which is often discarded is also used. MFCCs
have proven to work well in a variety of acoustic sig-
nal content analysis tasks including instrument recogni-
tion [2]. In addition to the MFCCs and their temporal
derivatives, other spectral features, such as band energy
ratios, spectral kurtosis, skewness, flatness, and slope
used, e.g., in [24] were considered for the feature set.
However, preliminary experiments suggested that their
inclusion reduces the overall performance slightly and
they are not used in the presented results. The reason
for this degradation is an open question to be addressed
in the future work, but is assumed that the features do
not contain enough additional information compared to
the original set to compensate the increased modelling
requirements.

The resulting 26-dimensional feature vectors are nor-
malised to have zero mean and unity variance in each
feature dimension over the training data. Then the
feature matrix is subjected to dimensionality reduc-
tion. Though unsupervised transformation with prin-
cipal component analysis (PCA) has been successfully
used in some earlier publications, e.g., [23], it did not
perform well in our experiments. It is assumed that this
is because PCA attempts only to describe the variance
of the data without class information, and it may be dis-
tracted by the amount of noise present in the data.

The feature transformation used here is calculated
with linear discriminant analysis (LDA). LDA is
a class-aware transformation attempting to minimise
intra-class scatter while maximising inter-class separa-
tion. If there are N different classes, LDA produces a
transformation to N −1 feature dimensions.

2.2 HMM topologies

Two different ways to utilise connected HMMs for
drum transcription are considered: drum sound com-
bination modelling and detector models for each target
drum. In the first case, each of the 2M combinations of
M target drums is modelled with a separate HMM. In
the latter case, each target drum has two separate mod-
els: a “sound” model and a “silence” model. In both
approaches the recognition aims to find a sequence of
the models providing the optimal description of the in-
put signal. Fig. 2 illustrates the decoding with combi-
nation modelling, while Fig. 3 illustrates the decoding
with drumwise detectors.

The main motivation for the combination modelling
is that in popular music multiple drums are often hit
simultaneously. However, the main weakness is that
as the number of target drums increases, the number
of combinations to be modelled also increases rapidly.
Since only the few most frequent combinations cover
most of the occurrences, as illustrated in Fig. 4, there is
very little training data for the more rare combinations.
Furthermore, it may be difficult to determine whether or
not some softer sound is present in a combination (e.g.,
when kick and snare drums are played, the presence of
hi-hat may be difficult to detect from the acoustic infor-
mation) and a wrong combination may be recognised.

With detector models, the training data can be
utilised more efficiently than with combination models,
because all combinations containing the target drum can
be used to train the model. Another difference in the
training phase is that each drum has a separate silence
(or background) model.

As will be shown in Sec. 3, the detector topol-
ogy generally outperforms the combination modelling
which was found to have problems with overfitting the
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Figure 3: Illustration of the basic idea of drum transcription with HMM-based drum detectors. Each target drum
is associated with two models, “sound” and “silence”, and the decoding is done for each drum separately.

limited amount of training data. This was indicated
by the following observations: performance degrada-
tion with increasing the number of HMM training it-
erations and acoustic adaptation, and slight improve-
ment in the performance with simpler models and re-
duced feature dimensions. Because of this, the results
on acoustic model adaptation and feature transforma-
tions is presented only for the detector topology (simi-
lar choice has been done, e.g., in [10]). For the sake of
comparison, however, results are reported also for the
combination modelling baseline.

The sound models consist of a four-state left-to-right
HMM where a transition is allowed to the state itself
and to the following state. The observation likelihoods
are modelled with single Gaussian distributions. The si-
lence model is a single-state HMM with a 5-component
GMM for the observation likelihoods. This topology
was chosen because the background sound does not
have a clear sequential form. The number of states and
GMM components were empirically determined.

The models are trained with expectation maximisa-
tion algorithm [20] using segmented training examples.
The segments are extracted after annotated event onsets
using a maximum duration of 10 frames. If there is an-
other onset closer than the set limit, the segment is trun-
cated accordingly. In detector modelling, the training
instances for the “sound” model are generated from the
segments containing the target drum, and the remaining
frames are used to train the “silence” model. In combi-
nation modelling, the training instances for each com-
bination are collected from the data, and the remaining
frames are used to train the background model.

2.3 Acoustic adaptation

Unsupervised acoustic adaptation with maximum like-
lihood linear regression (MLLR) [12] has been success-
fully used to adapt the HMM observation density pa-
rameters, e.g., in adapting speaker independent mod-
els to speaker dependent models in speech recogni-
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Figure 4: Relative occurrence frequencies of various
drum combinations in “ENST drums” [9] data set. Dif-
ferent drums are denoted with BD (bass drum), CY
(all cymbals), HH (all hi-hats), SD (snare drum), and
TT (all tom-toms). Two drum hits were defined to be
simultaneous if their annotated onset times differ less
than 10 ms. Only the 16 most frequent combinations
are shown.

tion [12], language adaptation from Spanish to Valen-
cian [13], or to utilise a recognition database trained for
phone speech to recognise speech in car conditions [3].
The motivation for using MLLR here is that it is as-
sumed that the acoustic properties of the target signal
always differ from those of the training data, and the
match between the model and the observations can be
improved with adaptation. The adaptation is done for
each target signal independently to provide models that
fit the specific signal better. The adaptation is evaluated
only for the detector topology, because for drum combi-
nations, the adaptation was not successful, most likely
due to the limited amount of observations.

In single variable MLLR for the mean parameter, a
transformation matrix

W =











w1,1 w1,2 0 . . . 0
w2,1 0 w2,3 . . . 0

...
. . .

...
wn,1 0 . . . 0 wn,n+1











(1)

is used to apply a linear transformation to the GMM
mean vector µ so that the likelihood of the adaptation
data is maximised. The mean vector µ with the length n

is transformed by

µ′ = W[ω,µT]T, (2)

where the transformation matrix has the dimensions of

n×(n+1), and ω = 1 is a bias parameter. The non-zero
elements of W can be organised into a vector

ŵ = [w1,1, . . . ,wn,1,w1,2, . . . ,wn,n+1]
T. (3)

The value of the vector can be calculated by

ŵ =

[

S

∑
s=1

T

∑
t=1

γs(t)D
T

s C−1
s Ds

]−1 [

S

∑
s=1

T

∑
t=1

γs(t)D
T

s C−1
s o(t)

]

,

(4)
where t is frame index, o(t) is the observation vector
from frame t, s is an index of GMM components in the
HMM, Cs is the covariance matrix of GMM component
s, γs(t) the occupation probability of sth component in
frame t (calculated, e.g., with the forward-backward al-
gorithm), and matrix Ds is defined as a concatenation of
two diagonal matrices

Ds = [Iω,diag(µs)], (5)

where µs is the mean vector of the sth component and
I is a n×n identity matrix [12]. In addition to the sin-
gle variable mean transformation, also full matrix mean
transformation [12] and variance transformation [7]
were tested. In the evaluations, the single variable adap-
tation performed better than the full matrix mean trans-
formation, and therefore the results are presented only
for it. Variance transformation reduced performance in
all cases.

The adaptation is done so that the signal is first anal-
ysed with the original models. Then it is segmented
to examples of either class (“sound” / “silence”) based
on the recognition result, and the segments are used to
adapt the corresponding models. The adaptation can be
repeated using the models from the previous adaptation
iteration for segmentation. It was found in the evalua-
tions that applying the adaptation repeatedly for three
times produced the best result even though the obtained
improvement after the first adaptation was usually very
small. Further increment of the number of adaptation
iterations from this started to degrade the results.

2.4 Recognition

In the recognition phase, the (adapted) HMM models
are combined into a larger compound model, see Figs. 2
and 3. This is done by concatenating the state transition
matrices of the individual HMMs and incorporating the
inter-model transition probabilities in the same matrix.
The transition probabilities between the models are es-
timated from the same material that is used for training
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the acoustic models, and the bigram probabilities are
smoothed with Witten-Bell smoothing [28]. The com-
pound model is then used to decode the sequence with
Viterbi algorithm. Another alternative would be to use
token passing algorithm [32], but since the model sat-
isfies the first order Markov assumption (only bigrams
are used), Viterbi is still a viable alternative.

3 Results

The performance of the proposed method is evaluated
using the publicly available data set “ENST drums” [9].
The data set allows adjusting the accompaniment (ev-
erything else but the drums) level in relation to the
drum signal, and two different levels are used in the
evaluations: a balanced mix and a drums-only signal.
The performance of the proposed method is compared
with two reference systems: a “segment and classify”
method by Tanghe et al. [24], and a supervised “sepa-
rate and detect” method using non-negative matrix fac-
torisation [18].

3.1 Acoustic data

The data set “ENST drums” contains multichannel
recordings of three drummers playing with different
drum kits. In addition to the original multichannel
recordings, also two downmixes are provided: “dry”
with minimal effects, mainly having only the levels
of different drums balanced, and “wet” resembling
the drum tracks on commercial recordings, containing
some effects and compression. The material in the data
set ranges from individual hits to stereotypical phrases,
and finally to longer tracks played along with an accom-
paniment. These “minus one” tracks played on accom-
paniment have the synchronised accompaniment avail-
able as a separate signal allowing to create polyphonic
signals with custom mixing levels. The ground truth
for the data set contains the onset times for the different
drums, and was provided with the data set.

The “minus one” tracks are used as the evaluation
data. They are naturally split into three subsets based on
the player and kit, each having approximately the same
number of tracks (two with 21 tracks and one with 22).
The lengths of the tracks range from 30 s to 75 s with
mean duration of 55 s. The mixing ratios of drums and
accompaniment used in the evaluations are drums-only
and a “balanced” mix. The former is used to obtain a
baseline result for the system with no accompaniment.
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Figure 5: Occurrence frequencies of different drums
in “ENST drums” data set. The instruments are de-
noted by: BD (bass drum), CR (all crash cymbals), CY
(other cymbals), HH (open and closed hi-hat), RC (all
ride cymbals), SD (snare drum), TT (all tom-toms), and
OT (other unpitched percussion instruments, e.g., cow
bell).

The latter, corresponding to applying scaling factors of
2/3 for the drum signal and 1/3 for the accompaniment,
is used then to evaluate the system performance in real-
istic conditions met in polyphonic music.1

3.2 Evaluation setup

Evaluations are run using a three-fold cross-validation
scheme. Data from two drummers are used to train
the system and the data from the third are used for
testing, and the division is repeated three times. This
setup guarantees that the acoustic models have not seen
the test data and their generalisation capability will be
tested. In fact, the sounds of the corresponding drums
in different kits may differ considerably (for example,
depending on the tension of the skin, the use of muf-
fling in case of kick drum, or the instrument used to hit
the drum that can be a mallet, a stick, rods, or brushes)
and using only two examples of a certain drum category
to recognise a third one is a difficult problem. Hence,
in real applications the training should be done with as
diverse data as possible.

The target drums in the evaluations are bass drum
(BD), snare drum (SD), and hi-hat (HH). The target set
is limited to these three for two main reasons. First,
they are found practically in every track in the evalua-
tion data and they cover a large portion of all the drum
sound events, as can be seen from Fig. 5. Secondly, and
more importantly, these three instruments convey the

1The mixing levels are based on personal communication
with O. Gillet, and result into an average of -1.25 dB drums-to-
accompaniment ratio over the whole data set.
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main rhythmic feel of most of the popular music songs,
and occur in a relatively similar way in all the kits.

In the evaluation of the transcription result, the found
target drum onset locations are compared with the lo-
cations given in the ground truth annotation. The hits
are matched to the closest hit in the other set so that
each hit has at most one hit associated to it. A tran-
scribed onset is accepted as correct if the absolute time
difference to the ground truth onset is less than 30 ms.2

When the number of events is G in the ground truth
and E in the transcription result, and the number of
missed ground truth events and inserted events are m

and i respectively, the transcription performance can be
described with precision rate

P = (E − i)/E (6)

and recall rate
R = (G−m)/G. (7)

These two metrics can be further summarised by their
harmonic mean, F-measure

F = (2PR)/(P+R). (8)

3.3 Reference methods

The system performance is compared with two earlier
methods: a “segment and classify” method by Tanghe et
al. [24], and a “separate and detect” method by Paulus
and Virtanen [18]. The former, referred to as SVM in
the results, was designed for transcribing drums from
polyphonic music by detecting sound onsets and then
classifying the sounds with binary SVMs for each tar-
get drum. An implementation of the original author
is used [14]. The latter, referred to as NMF-PSA, was
designed for transcribing drums from a signal without
accompaniment. The method uses spectral templates
for each target drum and estimates their time-varying
gains using NMF. Onsets are detected from the recov-
ered gains. Also here the original implementation is
used. The models for the SVM method are not trained
specifically for the data used, but the generic models
provided are used instead. The spectral templates for
NMF-PSA are calculated from the individual drum hits
in the data set used here. In the original publication the
mid-level representation used spectral resolution of five
bands. Here they are replaced with 24 Bark bands for
improved frequency resolution.

2When comparing the results obtained with the same data set
in [10], it should be noted that there the allowed deviation was 50 ms.

Table 1: Evaluation results for the tested methods us-
ing the balanced drums and accompaniment mixture as
input.

Method Metric BD SD HH Total
P(%) 84.7 65.3 84.9 80.0

HMM R(%) 77.4 44.9 78.5 68.0
F(%) 80.9 53.2 81.6 73.5

P(%) 80.2 66.3 84.7 79.0
HMM+MLLR R(%) 81.5 45.3 82.6 70.9

F(%) 80.8 53.9 83.6 74.7

P(%) 54.9 38.8 73.0 55.0
HMM comb R(%) 66.4 47.0 58.7 57.4

F(%) 60.1 42.5 65.1 56.1

P(%) 69.9 57.0 58.2 62.0
NMF-PSA [18] R(%) 57.9 16.7 53.5 43.6

F(%) 63.4 25.9 55.8 51.2

P(%) 80.9 65.9 47.1 54.3
SVM [24] R(%) 38.4 14.2 69.5 43.8

F(%) 51.1 23.4 56.1 48.5

3.4 Results

The evaluation results are given in Tables 1 and 2. The
former contains the evaluation results in the case of
the “balanced” mixture as the input, while the latter
contains the results for signals without accompaniment.
The methods are referred to as

• HMM: The proposed HMM method with detectors
for each target drum without acoustic adaptation.

• HMM+MLLR: The proposed detector-like HMM
method including the acoustic model adaptation
with MLLR.

• HMM comb: The proposed HMM method with
drum combinations without acoustic adaptation.

• NMF-PSA: A “separate and detect” method using
NMF for the source separation, proposed in [18].

• SVM: A “segment and classify” method proposed
in [24] using SVMs for detecting the presence of
each target drum in the located segments.

The results show that the proposed method performs
best among the evaluated methods. In addition, it can
be seen that the acoustic adaptation slightly improves
the recognition result. All the evaluated methods seem
to have problems in transcribing the snare drum (SD),
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Table 2: Evaluation results for the tested methods using
signals without any accompaniment as input.

Method Metric BD SD HH Total
P(%) 95.7 68.7 82.7 82.5

HMM R(%) 88.1 57.7 80.9 75.9
F(%) 91.8 62.7 81.8 79.1

P(%) 94.1 75.0 83.8 84.8
HMM+MLLR R(%) 92.1 56.7 84.9 78.4

F(%) 93.1 64.6 84.4 81.5

P(%) 71.5 41.3 63.8 57.5
HMM comb R(%) 74.2 54.3 55.3 60.4

F(%) 72.8 46.9 59.3 58.9

P(%) 85.0 75.6 57.1 68.5
NMF-PSA [18] R(%) 80.1 38.1 67.7 62.2

F(%) 82.5 50.7 61.9 65.2

P(%) 95.4 62.9 61.1 68.2
SVM [24] R(%) 54.0 37.9 72.3 56.6

F(%) 69.0 47.3 66.2 61.9

even without the presence of accompaniment. One rea-
son for this is that the snare drum is often played in
more diverse ways than, e.g., the bass drum. Examples
of these include producing the excitation with sticks or
brushes, or playing with and without the snare belt, or
by producing barely audible “ghost hits”.

When analysing the results of “segment and classify”
methods it is possible to distinguish between errors in
segmentation and classification. However, since the
proposed method aims to perform these tasks jointly,
acting as a specialised onset detection method for each
target drum, this distinction cannot be made.

An earlier evaluation with the same data set was pre-
sented in [10, Table II]. The table section “Accompa-
niment +0 dB” in there corresponds to the results pre-
sented in Table 1 and section “Accompaniment −∞ dB”
corresponds to the results in Table 2. In both cases,
the proposed method clearly outperforms the earlier
method in bass drum and hi-hat transcription accuracy.
However, the performance of the proposed method on
snare drum is slightly worse.

The improvement obtained using the acoustic model
adaptation is relatively small. Measuring the statistical
significance with two-tailed unequal variance Welch’s
t-test [27] on the F-measures for individual test sig-
nals produces p-value of approximately 0.64 for the bal-
anced mix test data and 0.18 for the data without ac-
companiment suggesting that the difference in the re-
sults is not statistically significant. However, the adap-

Table 3: Effect of feature transformation on overall F-
measure (%) of detector HMMs without acoustic model
adaptation.

none PCA 90% LDA
Plain drums 63.6 66.0 79.1

Balanced mix 59.6 60.9 73.5

tation seems to provide a better balance on precision
and recall rates. The performance differences between
the proposed detector-like HMMs and the other meth-
ods are clearly in favour of the proposed method.

Table 3 provides the evaluation results with different
feature transformation methods while using detector-
like HMMs without acoustic adaptation. The results
show that PCA has a very small effect on the overall
performance while LDA provides a considerable im-
provement.

4 Conclusions

This paper has studied and evaluated different ways of
using connected HMMs for transcribing drums from
polyphonic music. The proposed detector-type ap-
proach is relatively simple with only two models for
each target drum: a “sound” and a “silence” model.
In addition, modelling of drum combinations instead
of detectors for individual drums was investigated, but
found not to work very well. It is likely that the prob-
lems with the combination models are caused by over-
fitting the training data. The acoustic front-end extracts
mel-frequency cepstral coefficients (MFCCs) and their
first order derivatives to be used as the acoustic fea-
ture. Comparison of feature transformations suggests
that LDA provides a considerable performance increase
with the proposed method. Acoustic model adaptation
with MLLR is tested, but the obtained improvement is
relatively small. The proposed method produces a rel-
atively good transcription of bass drum and hi-hat, but
snare drum recognition has some problems that need to
be addressed in future work. The main finding is that
it is not necessary to have a separate segmentation step
in a drum transcriber, but the segmentation and recog-
nition can be performed jointly with an HMM even in
the presence of accompaniment and with bad signal-to-
noise ratios.
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ABSTRACT

The structure of a musical piece can be described with seg-
ments having a certain time range and a label. Segments
having the same label are considered as occurrences of a
certain structural part. Here, a system for finding struc-
tural descriptions is presented. The problem is formulated
in terms of a cost function for structural descriptions. A
method for creating multiple candidate descriptions from
acoustic input signal is presented, and an efficient algorithm
is presented to find the optimal description with regard to
the cost function from the candidate set. The analysis sys-
tem is evaluated with simulations on a database of 50 pop-
ular music pieces.

Categories and Subject Descriptors

H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing—Signal analysis, synthesis, and pro-

cessing ; H.3.1 [Information Storage and Retrieval]: Con-
tent Analysis and Indexing—Abstracting methods

General Terms

Algorithms, Theory

Keywords

music structure, structure analysis, segmentation, cost func-
tion, search algorithm, structure comparison

1. INTRODUCTION
Many musical pieces, especially in the popular music genre,

consist of distinguishable parts that may repeat. The struc-
ture can be, e.g., “intro, verse, chorus, verse, chorus, cho-
rus”. Structure analysis aims to determine this kind of a
description for a musical piece. Depending on the method
applied, the result may consist of the temporal locations the
parts and arbitrary labels assigned to them (e.g., “A, B, C,
B, C, C”), whereas some systems also try to label the parts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
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Copyright 2006 ACM 1­59593­501­0/06/0010 ...$5.00.

meaningfully. The information about the temporal locations
of these parts and their labels form the structural description

of the piece.
Automatic analysis of the structure has been studied mainly

for the application of creating a meaningful summary of a
musical piece. One of the first works operating on acous-
tic signals was by Logan and Chu, describing an agglom-
erative clustering and hidden Markov model (HMM) based
approaches for key phrase generation [19]. They used mel-
frequency cepstral coefficients (MFCCs) from short (26 ms),
overlapping frames. The clustering method grouped the
frames together iteratively until a level of stability had been
reached. In the HMM method they trained an ergodic HMM
with only few states, hoping that each state would represent
a musical part, and used the Viterbi decoded state sequence
as the description of the musical structure. The HMM ap-
proach was taken further by Aucouturier and Sandler us-
ing spectral envelope as the feature [2]. It was noted in
both these studies that when using such short frames, the
HMM states did not model musically meaningful parts, as
was hoped. Abdallah et al increased the frame length con-
siderably and the number of states up to 80 [1]. After acquir-
ing the state sequence, each frame was provided with some
knowledge about the surrounding context by calculating a
state histogram in a 15 frame window. The histograms were
then used in clustering the frames by optimising a cost func-
tion with simulated annealing. Rhodes et al added a term
to control the duration of stay in a certain cluster [23], while
Levy et al refined the clustering method to a context-aware
variant of fuzzy C-means [18].

Another popular starting point of the analysis is to calcu-
late frame-by-frame similarities over the whole signal, con-
structing a self-similarity matrix. Foote proposed to use the
similarity matrix for visualising music [9]. It was noted that
the parts of music having similar timbral characteristics cre-
ated visible areas in the similarity matrix. The borders of
these areas were sought and used in segmenting the piece
in [10]. In [11] Foote and Cooper used a spectral clustering
method to group similar segments.

When the used feature describes the tonal (pitch) content
of the signal instead of general timbre, e.g., chroma instead
of MFCCs, repetitions generate off-diagonal stripes to the
similarity matrix instead of rectangular areas of high simi-
larity. Such stripes reveal similar sequential structures, e.g.,
melody lines or chord progressions, instead of just denot-
ing parts having similar timbral characteristics, or sounding
the same. The two main approaches (HMM-based “state”
method and “sequence” method relying on stripes in the



similarity matrix) were compared by Peeters [22]. He noted
that as the sequence approach requires a part to occur at
least twice to be found, the HMM approach would be more
robust analysis method. Still, the stripes have been used in
structure analysis by several authors. Bartsch and Wakefield
extracted chroma from beat-synchronised frames and used
the most prominent off-diagonal stripe to define a thumbnail
for the piece [3]. Lu et al proposed a distance metric con-
sidering the harmonic content of sounds, and used 2D mor-
phological operations (erosion and dilation) to enhance the
stripes [20]. In popular music pieces, the clearest repeated
part is often the chorus section. Goto aimed at detecting
it using chroma, and presented a method for handling the
musical key modulation sometimes taking place in the last
in the last refrain of the piece [12].

Music tends to show repetition and similarities on differ-
ent levels, starting from consecutive bars to larger parts like
chorus and verse. Some authors have tried to take this into
account and proposed methods operating on several tem-
poral levels. Jehan constructed several hierarchically re-
lated similarity matrices [16]. Shiu et al extracted chroma
from beat-synchronised frames and then used dynamic time
warping (DTW) to calculate a similarity matrix between all
the measures of the piece [24]. The higher level musical
structure was then modelled with a manually parametrised
HMM. Dannenberg and Hu gathered the shorter repeated
parts and gradually combined them to create longer, more
meaningful, parts in [8]. Later, Dannenberg used the stripes
in similarity matrix to find similar musical sections, and then
utilised this information to aid a beat tracker [7].

Chai proposed to take the context into account by match-
ing two windows of frame level features with DTW. Sliding
the other window while keeping the other fixed provided a
method to calculate the similarity on different lags and to
determine the lag of maximum similarity. Gathering this in-
formation in a matrix formed stripes of prominent lags, like
the stripes in a similarity matrix. The longer stripes were
then interpreted information about the repeats of structural
parts [6].

Maddage et al proposed a method for analysing a musical
piece combining different sources of information. They used
beat-synchronised pitch class profile as the feature and de-
tected chords with pre-trained HMMs. Using assumptions
of the lengths of the repeated parts, fixed length segments
were matched to get a measure of similarity. Finally heuris-
tic rules, claimed to apply on English-language pop songs,
were used to deduce the high-level structure of the piece. [21]

Like in some of the earlier publications, we are interested
in the structure defined by parts that are repeated. In other
words, the proposed analysis method is not interested, nor
able, to find musical parts that occur only once during the
piece. These remain as unexplained segments in between
the repeating parts and in principle they can be labelled,
but no substructure is imposed on them. This limits the
information that can be extracted from music, but as men-
tioned, e.g., in [9, 7], musical pieces usually have a structure
relying to some extent on repetitions of different parts.

This paper focuses on estimating the musical structure
from the result of low-level signal analysis front-end. For-
mulation of the problem is given in Section 2.1. Then we
propose a parametric cost function for evaluating the fitness
of an description. Depending on the parameter values it al-
lows emphasising different properties: the complexity of the

A B A B A A

A B A A B A A B A B

A B B A

Figure 1: A simple example of three different struc-
tural descriptions for the same piece. All three are
valid from the point of view of detecting repetitions.

description, amount of the piece left unexplained, and con-
sistency of the found parts. The parameters provide a way
of circumventing the ambiguity of the structural description
by allowing controlling the desired properties of the result.
In Section 2.5, we propose a computationally efficient algo-
rithm for searching the structural description that minimises
the cost function by solving the computationally expensive
combinatorial problem.

The structural descriptions found by the system are eval-
uated using a database of 50 musical pieces with manually
annotated structural information. The evaluation procedure
and results are presented in Section 3.

As stated, e.g., in [5], the level of structural description
may be different depending on the algorithm, person in ques-
tion, etc. An example of the level differences on the descrip-
tions is illustrated in Figure 1. The description on the top
is the most detailed and gives the largest amount of struc-
tural information. However, that level of detail is not always
needed, so the description on middle or on bottom might be
adequate. Even though they do not contain so fine details,
the coarse structure of the piece is more readily visible. The
proposed analysis algorithm discards all hierarchical infor-
mation. All operations changing the hierarchical level, i.e.,
combining parts always occurring in conjunction or splitting
longer segments, is left for an optional post-processing stage.

2. PROPOSED METHOD
A block diagram of the proposed system can be seen in

Figure 2. The front-end signal analysis consists of meth-
ods that have been utilised earlier and found to be working
relatively well (musical meter analysis [17], chroma extrac-
tion [12] with multi-octave modifications, beat synchronised
feature extraction [3], measure-level similarity matrix [24],
signal segment border generation from timbral novelty [10],
and segment matching with DTW [5]).

The front-end analysis provides features and initial set of
candidate section boundaries (see Section 2.3) for the latter
stages. The proposed method then creates longer segments
from the blocks, and finds the optimal description of the
piece with non-overlapping repeated parts in respect to the
cost function defined in Section 2.1.

2.1 Defining a “Good” Structural Description
The musical piece to be described is subdivided into blocks

b1, b2, . . . , bN , for example, at the times of bar lines. Each
block is described uniquely by its start and end times, bj =
(τj , tj), where τj is the start time and tj is the end time.
A segment sk is a part of the piece consisting of one or
more consecutive blocks, sk = bi, bi+1, . . . , bj , i.e., an oc-
currence of a structural part. A segment group gi is a set
of non-overlapping segments, and represents the multiple
occurrences of one structural part. These concepts are illus-
trated in Figure 3.
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Figure 2: A block diagram of the whole system.

A segment group is characterised by properties termed
within-group dissimilarity di, and coverage ci. The first one
describes how much the segments in a group differ from each
other, and is detailed in Section 2.4. The coverage of a group
ci describes how much of the whole piece it covers,

ci =

P

sk∈gi

P

bj∈sk
tj − τj

PN

j=1
tj − τj

. (1)

All segments groups form a set of segment group candidates

G = {g1, g2, . . . , gM}. An explanation E of a piece is a sub-
set of the group candidates, E ⊂ G, such that the segments
of the included groups do not overlap in time. If some part
of the piece is not covered by the explanation E, it remains
unexplained.

Given an explanation E of the structure of the piece, its
fitness or cost can be calculated. For this purpose, we pro-
pose a cost function consisting of three terms as follows:

C = dissimilarity + α unexplained + β complexity, (2)

where α is a weighting factor for the cost due to unexplained
blocks in the piece, and β is a weighting factor for the com-
plexity (number of structural parts gi) of the explanation.
The first term penalises groups that have segments differ-
ing from each other, i.e., a group should consist only of the
occurrences of a certain part. The second term defines the
cost for the unexplained parts of the piece: the larger the ex-
plained proportion is, the smaller the cost will be. The last
term defines the cost of the complexity of the explanation.
The smaller the number of groups in an explanation |E|, the
better. The effect of the weight parameters is illustrated in
Figure 4, which contains the annotated structure of a piece
and analysis results with three different parameter values.

a segment

AA BB

group of B’s

unexplained part a block

Figure 3: A piece is divided into blocks. Consecutive
blocks form segments. Segments with same label
create groups. Some part of the piece may be left
unexplained.

The cost (2) is evaluated as

C(E) =
X

gi∈E

dici + α(1−
X

gi∈E

ci) + β log(1 + |E|)

= α +
X

gi∈E

ci(di − α) + β log(1 + |E|). (3)

Structure analysis can now be viewed as an optimisation
task to minimise the cost (3), and an algorithm for this
purpose is presented in Section 2.5. It operates on segment
groups and does not depend on how the groups are formed,
there are several ways how the piece can be divided into
blocks bj , how the blocks are combined into segments sk, and
how the dissimilarities di of segment groups are calculated.
Before describing the optimisation method, we present the
way we used to perform these tasks.

2.2 Front­End Signal Analysis
As noted, e.g., in [24, 5, 4], the result of musical structure

analysis may improve if the low-level analysis is done in
synchrony with the metrical structure of the piece. The
proposed system initially estimates the time-varying period
and phase of the metrical levels: beat and musical measure.
The estimation is done with the method presented in [17],
utilising a bank of comb filter resonators and a probabilistic
model to determine the periods and phases. The periods
are here halved to minimise the problems due to possible pi-
phase errors in the estimated pulses, which cause the pulses
to be shifted by half a period from the correct locations.
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Figure 4: An illustration of the effect of the cost
function parameter values. The top panel is the
ground truth annotation of the structure of the
piece. The lower panels contain example analysis
results with varying values of the parameters α and
β. The second panel shows the result with “reason-
able” parameter values. Increasing the complexity
weight β leads to the result in the third panel, and
by decreasing the weight of unexplained parts, the
result of the bottom panel was obtained.



The acoustic signal is then divided into frames accord-
ing to the beat pulse, i.e., a frame is taken between two
beat occurrences. A 36-dimensional chroma vector is ex-
tracted from each frame. Normally, the chroma vector is
12-dimensional, corresponding to the 12 pitch classes on the
Western musical scale and describing the amount of energy
present in all the frequency bands corresponding to occur-
rences of the pitch classes, ignoring the absolute height.

Here, we extract the chroma feature from three frequency
ranges (63.5− 254 Hz, 254− 1020 Hz, and 1.02− 4.07 kHz)
using the chroma calculation method from [12] in each range
separately. The results are concatenated into a feature vec-
tor. The use of three separate frequency regions gives more
information about the tonal contents of the signal. This is
roughly similar to [20], where the chroma was extracted from
a range of three octaves and the pitch class equivalences were
not summed together, resulting in a 36-dimensional feature
vector. Principal component analysis is applied to reduce
the feature vector dimensionality and only the 15 largest
components are retained.

In addition to the chroma, 13 MFCCs are calculated with
the same frames as the chroma values. The zeroth coefficient
which is often discarded, is also retained. For each measure,
the mean and variance of the MFCCs from the beat frames
within it are calculated. The mean and variance values are
concatenated to yield a 26-dimensional feature vector, and
the statistics vectors are normalised to zero mean and unity
variance over the whole piece.

2.3 Raw Segmentation
After extracting the features from the signal, a rough seg-

mentation is employed to create a candidate set of the lo-
cations where a structural part may start or end. These
segment borders can be defined in several ways. The sim-
plest alternative would be not to define them at all, but
to allow a segment to start and stop anywhere. As noted
in [8], the main problem with this is that the computational
complexity becomes very high at the latter stages. If there
are N different locations where the part borders may lie,
there exists O(N4) pairs of non-overlapping segments be-
tween them.

A data-adaptive method for determining the lengths and
locations of segments utilising their recurrence information
was described in [5]. Here, we chose to use a simple method
relying on musical texture changes [10]. It has been noted
that often different musical parts in a piece have clearly dif-
ferent timbral properties, and the method utilises this ob-
servation. A self-similarity matrix S is calculated from the
measure-wise MFCC statistics. The similarity between fea-
ture vectors mi and mj from measures i and j, respectively,
is defined to be

σ(mi,mj) = 0.5 + 0.5
< mi,mj >

‖mi ‖‖mj ‖
, (4)

which stems from cosine distance measure. The elements in
the matrix are [S]i,j = σ(mi,mj).

A novelty vector is calculated from the similarity matrix
by correlating a Gaussian taper checkerboard kernel matrix
along the main diagonal of the similarity matrix (see [10]
for details). Effectively it operates as a 2D border detection
method, resulting into peaks in the novelty vector wherever
the texture changes considerably. The border locations are
assigned to the locations of the largest peaks. The exact
number is not critical, as the locations do not define the final
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Figure 5: Pairwise distance calculation.

structural segmentation of the piece. However, it should be
large enough to make sure that the real segment borders are
contained within them, and still small enough not to make
the subsequent matching computationally too expensive.

2.4 Segment Matching
To enable evaluating the cost function (3), the within-

group dissimilarity di must be defined. Initially, all possible
non-overlapping segment pairs are generated, so that the
segments in a pair may start and end at any of the border
locations, as long as they do not overlap each other. After
that, the distance between the segments in a pair is calcu-
lated by utilising a two-level dynamic time warping, moti-
vated by the multi-scale processing in [15] and the measure-
level similarity matrix in [24]. The distance calculations are
done using the reduced-dimensionality chroma vectors.

First, a measure-level distance matrix D is calculated with
a method similar to the one described in [24]. The element
[D]i,j denotes the distance between the measures i and j in
the piece. For each measure, the chroma frames contained
within its range are used. The frames of two measures are
matched with DTW. It allows small adjustments to the tem-
poral alignment of the frames, enabling the matching even
if the metrical estimation has had problems and the number
of frames differs between the matched measures. At the fea-
ture vector level, the used distance measure is cosine, i.e.,
distance between vectors vi and vj is 1− σ(vi,vj).

The pairwise distance δ(k, l) between the segments sk and
sl is calculated by finding the cheapest path through the
sub-matrix D̃ of D defined by the borders of the matched
segments, as illustrated in Figure 5. The path can be found
using dynamic programming. The pairwise distance δ(k, l)
is defined to be the total cost of the optimal path, normalised
with the length of the diagonal of the sub-matrix.

Since all occurrences of a part should be approximately
of the same length, we prune all pairs with length ratio
outside the range r = [ 5

6
, 6

5
], resulting to pruning of a large

quantity of the pairs. The within-group dissimilarity di of
the group gi is then defined to be the average of all the
pairwise distances in the group

di =

P

k,sk∈gi

P

l,sl∈gi,l6=k δ(k, l)
P

k,sk∈gi

P

l,sl∈gi,l6=k
1

. (5)

The group candidate set G can now be constructed itera-
tively with the following steps:

1. Initialise the group set G with all the possible segment
pairs after pruning pairs with length ratio outside r.



2. Create new groups by extending the groups that were
added in the previous iteration with all non-overlapping
segments. I.e., for each group, as many new groups are
generated as there are non-overlapping segments. If
the ratio of the largest and smallest pairwise distance
between the segments in a group is outside r, delete
the group.

3. Calculate new within-group dissimilarities di for the
added groups using (5).

4. Repeat from Step 2, until no more items can be added
or some maximum group size is reached.

Now the optimal explanation can be found by creating
all such subsets of G that are valid explanations E, and
evaluating the cost function for them. However, this is com-
putationally very expensive.

2.5 Structure Search Algorithm
An efficient search algorithm can be implemented by con-

structing and evaluating the explanations incrementally af-
ter some data reorganisation. The group candidates in G
are sorted into ascending order based on the within-group
dissimilarities di. Initialise global variables
Cbest ← α, and
Ebest ← {∅}, initialise iteration base with
E ← {∅},
l← 1, and
Cold ← α, and call the function Cutting-Search with the
initialised parameters.

1: function Cutting-Search(E, l, Cold)
2: for i← l, M do
3: if gi ∩ gj = {∅},∀gj ∈ E then
4: Enew ← E ∪ gi

5: Cnew ← Cold + ci(di − α) + β log |E|+2

|E|+1

6: if Cnew < Cbest then
7: Cbest ← Cnew

8: Ebest ← Enew

9: end if
10: Climit ← Cnew + (1 −

P

j,gj∈Enew
cj)(di − α) +

β log |E|+3

|E|+2

11: if Climit < Cbest then
12: CuttingSearch(Enew, i + 1, Cnew)
13: end if
14: end if
15: end for
16: return Cbest, Ebest

17: end function

The loop upper limit M is the number of group candidates
in the set G. Here gi refers to the member i of the list of
group candidates G constructed above, and |E| denotes the
number of groups in the explanation E.

The algorithm would evaluate all possible combinations of
the candidate groups by extending the existing explanation
with the recursive call on line 12, but the size of the search
space is reduced. The reduction is done by estimating the
lower bound, Climit, of the cost that can be obtained by
extending this explanation (line 10). If the obtainable cost
is worse than the minimum cost found so far, there is no
use of extending the search in this direction. Hence, the
algorithm finds the globally optimal combination of groups

Table 1: Statistics about the musical structures of
the pieces in the used database.

data set parts occurrences length
MUSIC 4.2 3.4 19.2s
RWC-Pop 4.3 2.4 21.4s
The Beatles 3.7 2.8 13.2s
whole db 4.1 3.1 18.9s

gi in respect to the cost function (3).1 This explanation is
returned in Ebest.

3. EVALUATION
The performance of the system was evaluated in simula-

tions analysing the structure of a set popular music pieces
and the structural explanations given by the algorithm were
compared with a manually annotated reference structures.

3.1 Material
To enable evaluating the analysis result of the algorithm,

a database of structural annotations for 50 musical pieces
was collected. The used pieces were from three different
sources: 34 popular music pieces from the MUSIC database,
described in [14], 10 pieces from the RWC Popular Music
database [13], and 6 pieces performed by The Beatles.2

The structure annotations were done manually, without
any automatic tools. From each piece, the clear structural
elements were annotated, i.e., some temporal locations of
the piece may be left unannotated, as they did not belong
into any clear structural part. An annotation consists of
a list of the occurrences of structural parts, each with a
start and a stop time and a name. The main focus was
on parts that occurred more than once during the piece.
Still, if there was some clear parts that could be named
(e.g., intro, bridge, solo), they were annotated too. Also, if
some part could be interpreted to be an occurrence of some
other label, these alternative labels were annotated. E.g.,
if the solo part was very similar to the main verse part,
but still different enough, it was annotated to be solo, but
with the alternative label of verse. This was done because
the labelling is not always unambiguous even for a human
listener, let alone to a computer. By defining the alternative
labels, more structural interpretations were allowed. The
pieces in the database contain in total 642 annotated part
occurrences, and 31 of these occurrences have an alternative
label definition. As the system is capable of recognising only
the parts that occur at least twice, the parts occurring only
once were removed from the reference before evaluation.

Some statistics about the structural annotations of the in-
dividual parts and the whole database are presented in Ta-
ble 1. The column parts tells the average number of unique
labels in each piece on average, the column occurrences how
many time each label occurs in a piece on average, and the
column length the average length of a part occurrence in a
piece. The statistics have been calculated from all annotated
parts, without discarding the ones occurring only once.

1For a 5 min piece, with reasonable values for α and β,
the optimisation algorithm finds the solution in a matter of
seconds, when run on a 1.7 GHz Pentium 4 PC.
2The used pieces are listed at http://www.cs.tut.fi/sgn/
arg/paulus/structure/dataset.html.
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Figure 6: Ratio of found segment borders with dif-
ferent accuracy requirements. The error bars spec-
ify the standard deviation over all test pieces.

The actual evaluations were done with a 3-fold cross-
validation scheme. In each fold, the values for the parame-
ters α and β were trained with a grid search for the 2/3 of
the material, and the determined values were used in eval-
uations for the remaining 1/3 of the material. The division
of the available pieces to the three subsets was done ran-
domly from each data source, i.e., it was taken care that the
pieces from each source were divided approximately evenly
to each subset. The presented results are calculated over all
the folds.

3.2 Segmentation Accuracy
Since the performance of the border candidate generation

affects the performance of the rest of the proposed system,
it was tested separately. The border candidates were gen-
erated by using a convolution kernel of the length 12 s in
novelty vector calculation, and choosing at most 50 largest
peaks.3 Each annotated segment border was matched with
the closest found border if no other annotated border had
been coupled with it yet and their time difference was smaller
than the allowed deviation. The matching was performed
with several different allowed deviation values and the ratio
of found segment borders was calculated. The result is illus-
trated in Figure 6, where the line is the mean ratio of found
segment borders and the error bars illustrate the standard
deviation over the whole test sets.

3.3 Comparison of Structures
Given the explanation Ebest for the structure of the piece

by the algorithm and the reference structure annotation
Eref , the task is to compare the similarity of the two. As
noted in [5] and illustrated by Figure 1, the structure of mu-
sical pieces is often hierarchical, at least in Western popular
music. The annotated reference structure and the explana-
tion given by the algorithm may be on a different level of
the hierarchy, making a direct comparison impossible. Also,
the labelling of the structural parts is not determined by the
algorithm: it only assigns unique labels to the parts. Still,
it would be desired that if the reference explanation and
the one given by the algorithm describe the same structure
in some level of the hierarchy, the similarity is recognised.
An extreme case is illustrated in the top panel of Figure 7,
the explanations describe different fine structure, but still
they both have the same structure on the highest level of
hierarchy, and hence they should be accepted as a match.

3The used maximum number of peaks was determined em-
pirically to be a reasonable tradeoff between the segmen-
tation accuracy and them computational complexity of the
further steps in the algorithm.
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Figure 7: An example of how the fine structure of
two descriptions differ, but the proposed evaluation
method will judge the two similar.

To our knowledge, the level ambiguity has been addressed
only by Chai [5]. She proposed to use a roll-up process in
the evaluations to find a common level for comparison. In
roll-up, if some part is split into finer structural description
in either reference annotation or analysis result, the repeti-
tion of the finer structure are replaced with occurrences of
the longer part. However, the proposed roll-up process does
not yield a desired result in some cases, e.g., the one illus-
trated in top panel of Figure 7. Here, we extend the method
presented therein.

The first problem is the temporal alignment of the ref-
erence and proposed structures: because the segmentation
method described in Section 2.3 may not always find the
same borders for parts as those assigned in reference anno-
tations, or the borders lie at different levels of the hierarchy,
it is required to create a common time base for both struc-
tural representations. This can be done by concatenating all
the start and end times of all segments in both the reference
and the analysis structures, sorting the times into ascending
order, and removing possible duplicates. The main advan-
tage of using the common time base is that the descriptions
may be compared as sequences of characters.

The structural descriptions must now be represented us-
ing the generated time base. This is done by splitting the
original segments, separately in both reference and analysis
result, from the common temporal borders with the follow-
ing steps:

1. Take the occurrences of a structural part that has not
yet been handled.

2. Divide the occurrences according to the common time
base. The resulting shorter sections are referred to as
subparts.

3. Go through the subparts and assign them with new
labels: (a) If a subpart occurs at the same location
within more than one of the unsplit part occurrences
with the same duration, all these occurrences with a
same label. (b) If some subpart occurs without any
repetition, assign it with its own label.

This operation is illustrated in the top part of Figure 7. The
two structural descriptions with different segment borders in
the top of the figure are split with common borders to result
the descriptions in the middle of the figure.

The next step is to rise on the structural hierarchy with
a procedure called the roll-up. It is illustrated in the lower



Table 2: Evaluation results for each data subset and
for the whole database. The results are calculated
over the cross-validation folds.

segm. data R P F
MUSIC 72.3% 74.9% 72.9%

perfect RWC-Pop 80.9% 88.1% 84.2%
The Beatles 95.8% 99.8% 97.7%
whole db 76.8% 80.6% 78.1%
MUSIC 62.2% 68.5% 63.6%

novelty RWC-Pop 73.3% 85.3% 78.2%
The Beatles 59.0% 81.5% 67.6%
whole db 64.0% 73.4% 67.0%

part of Figure 7. In the roll-up, if similar sequence of seg-
ments occurs in both descriptions, ignoring the labels, the
sequence is replaced in both descriptions with a part on a
higher hierarchical level. In the illustrated example, the se-
quence “A1, A2, B, C1, C2” in the split reference occurs at
the same location as the sequence “E, F1, F2, G, G” in the
split analysis result, and hence the sequences may be rolled
up in hierarchy to result to the lowest two descriptions.

After the roll-up, the structural descriptions should be on
the same level of hierarchy and the actual evaluation can be
done. The mapping between the label sets of the reference
and analysis result is done so that each label from other set
can be associated with one or no label in the other set. Each
mapping is evaluated according to two measures: recall rate
R and precision rate P . Recall rate describes how large tem-
poral portion of the parts annotated in the reference are also
explained by the analysis result. Precision rate describes
how much of the analysis result is correct. From these two
metrics, the harmonic F-measure is calculated to give one
value describing the performance by F = 2RP/(R + P ).

3.4 Results
The overall evaluation results are presented in Table 2.

The column segm. describes the method used in the seg-
ment border candidate determination, the value novelty de-
notes that the segmentation was generated with the audio
novelty method described in Section 2.3, and the value per-

fect that the segment borders candidates were taken from
the reference annotation. This was done to allow evaluating
the effect of the border candidate generation method. The
evaluation measures are presented for each data subset and
for the whole database. The results for each song in the
database are illustrated in Figure 8.

It can be observed that the performance on the MU-
SIC data set is considerably lower than with other subsets.
When inspecting the reason for this, it was noted that the
analysis had failed completely on some pieces. The reason
for which similar failures were not encountered in the other
two data sets is probably due to the musical diversity of the
pieces in MUSIC. This leads to the conclusion that it may
not be possible to find such values for the parameters α and
β that they would perform equally well with all pieces. It
can also be seen that the used segment border candidate
generation method needs attention in future work.

Some typical results are illustrated in Figures 9-11. The
figures contain the annotated structure in top panel and
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Figure 8: System performance on different pieces of
the test database. The dots (·) are the performance
using the novelty based border candidate genera-
tion, the crosses (×) are the performance with sim-
ulated perfect segmentation, and the solid line illus-
trates F-measure value 0.75 for a reference point.

the analysis result in the lower panel. The analysis results
were obtained using the system generated border location
candidates and fixed parameter values found in the cross-
validation runs.

4. CONCLUSION
The problem of structural analysis of musical pieces can

be formulated in terms of a parametric cost function which
allows varying the costs assigned to different aspects of the
resulting description. The computational load incurred by
the search for the description that minimises the cost is neg-
ligible compared to that of the signal-processing front-end.
This allows to create an analysis application in which the
user may control the cost function parameters interactively.
An example of a such application is illustrated in Figure 12.
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Abstract. This paper describes a method for labelling structural parts of a mu-
sical piece. Existing methods for the analysis of piece structure often name the
parts with musically meaningless tags, e.g., “p1”, “p2”, “p3”. Given a sequence
of these tags as an input, the proposed system assigns musically more meaningful
labels to these; e.g., given the input “p1, p2, p3, p2, p3” the system might produce
“intro, verse, chorus, verse, chorus”. The label assignment is chosen by scoring
the resulting label sequences with Markov models. Both traditional and variable-
order Markov models are evaluated for the sequence modelling. Search over the
label permutations is done with N-best variant of token passing algorithm. The
proposed method is evaluated with leave-one-out cross-validations on two large
manually annotated data sets of popular music. The results show that Markov
models perform well in the desired task.

1 Introduction

Western popular music pieces often follow a sectional form in which the piece is con-
structed from shorter units. These units, or musical parts, may have distinct roles on
the structure of the piece, and they can be named based on this role, for example, as
“chorus” or “verse”. Some of the parts may have several occurrences during the piece
(e.g., “chorus”) while some may occur only once (e.g., “intro”).

To date, several methods have been proposed to perform automatic analysis of the
structure of a musical piece from audio input, see [1] or [2] for a review. Majority
of the methods do not assign musically meaningful labels to the structural parts they
locate. Instead, they just provide information about the order, possible repetitions, and
temporal boundaries of the found parts. There also exist a few methods that utilise
musical models in the analysis, and the resulting structure descriptions have musically
meaningful labels attached to the found parts [3,4].

The musical piece structure can be used, for example, in a music player user in-
terface allowing the user to navigate within the piece based on musical parts [5]. The
results of a user study with a music player having such a navigation ability suggest that
the parts should be labelled meaningfully. The additional information of knowing which
of the parts is for instance “chorus” and which is “solo” was judged to be valuable [6].

The proposed method does not perform the musical structure analysis from audio,
but only labels structural descriptions and should be considered as an add-on or an
extension to existing structure analysis systems. So, the problem to be solved here is
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p1,p2,p3,p2,p3,p4
SYSTEM

intro, verse, chorus, verse...

p1,p2,p2,p3,p2,p2 verse, chorus, chorus, solo....

Fig. 1. Basic idea of the system. The system assigns meaningful labels to arbitrary tags
based on a musical model. The mapping from tags to labels is determined separately
for each input.

how to assign musically more meaningful part labels when given a sequence of tags

describing the structure of a musical piece. The operation is illustrated in Figure 1. As
an example, the structure of the piece “Help!” by The Beatles is “intro, verse, refrain,
verse, refrain, verse, refrain, outro”, as given in [7]. A typical structure analysis system
might produce “p1,p2,p3,p2,p3,p2,p3,p4” as the result, which then would be the input
to the proposed system. If the system operation was successful, the output would be the
assignment: “p1→ intro, p2→ verse, p3→ refrain, p4→ outro”.

It is often said more or less seriously that popular music pieces tend to be of the same
form, such as “intro, verse, chorus, verse, chorus, solo, chorus”.1 The proposed method
aims to utilise this stereotypical property by modelling the sequential dependencies
between part labels (occurrences of musical parts) with Markov chains, and searching
the label assignment that maximises the probability of the resulting label sequence.
Evaluation show that the sequential dependencies of musical parts are so informative
that they can be used in the labelling.

The rest of the paper is structured as following: Sect. 2 describes the proposed
method. The labelling performance of the method is evaluated in Sect. 3. Sect. 4 gives
the conclusions of the paper.

2 Proposed Method

The input to the system is a sequence of tags R1:K ≡ R1,R2, . . . ,RK , and the problem is
to assign a musical label to each of the unique tags so that no two tags are assigned the
same label. This assignment is defined as an injective mapping function f : T → L from
input set T of tags to the output set L of musically meaningful labels, as illustrated in
Figure 2. The mapping function transforms the input tag sequence R1:K into a sequence
of labels f (R1:K) = S1:K .

The proposed methods assumes that the musical parts depend sequentially on each
other in the form of a Markov chain and that it is possible to predict the next musical
part given a finite history of the preceding parts. This predictability is used to score
different mapping alternatives and the best mapping is then given as the output of the
system.

1 Though statistics from two data sets of popular music pieces show that the structures of the
pieces are more heterogeneous than was initially expected, see Sect. 3.1.
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T Lp1

p2

p3

f

intro

verse

chorus

bridge

solo

Fig. 2. An example of the mapping function f : T → L. All tags in T are mapped to one
label in L, but some labels in L may remain unused.

2.1 Markov Models

Markov models assume that the probability of a continuation Si for sequence S1:(i−1)

depends only on a finite history of the sequence S(i−(N−1)):(i−1) instead of the full his-
tory, i.e., p(Si|S1:(i−1)) = p(Si|S(i−(N−1)):(i−1)), where (N−1) is the length of the used
history. This is also referred as the order of the resulting Markov model and gives rise
to the alternative name of N-grams. Based on the Markov assumption, the overall prob-
ability of a sequence S1:K is obtained by

p(S1:K) =
K

∏
k=1

p(Sk|S(k−(N−1)):(k−1)) . (1)

In the beginning of the sequence where there is not enough history available, it is pos-
sible to use a lower order model or pad the sequence from the beginning with a special
symbol. [8]

The total N-gram probability of (1) is used to score different mapping functions by
evaluating it for the output sequences after the mapping f (R1:K) = S1:K . The target is to
find the mapping function fOPT that maximises the total probability

fOPT = argmax
f
{p( f (R1:K))}, f : T → L injective . (2)

2.2 Optimisation Algorithm

The maximisation problem is solved by using M-best2 variant of token passing (TP)
algorithm, more frequently used in speech recognition [9]. The main principle of TP
is that tokens t are propagated time synchronously between the states of the model.
Each token knows the path it has travelled and accumulates the total probability over it.
Based on the path probabilities, the M tokens with the highest probabilities are selected
for propagation in each state, they are replicated and passed to all connected states. The
token path probabilities are updated based on the transition probabilities between the
states.

2 Better known as the N-best token passing. The name is adjusted to avoid possible confusion
with N-grams.



4 Jouni Paulus and Anssi Klapuri

The state space of TP is formed from the possible labels in L, and the paths of
the tokens encode different mapping functions. The optimisation of (2) can be done by
searching the most probable path through the states (labels) defining the state transition
probabilities with

p
(

fk(Rk) = li|R1:(k−1), fk−1
)

=

{

0, if DME

p(li| fk−1(R1:(k−1))), otherwise
, (3)

where DME denotes the predicate “different mapping exists”, which is used to guarantee
that the mapping function is injective, and it is defined by

DME = ∃ j : (R j = Rk ∧ fk−1(R j) 6= li)∨ (R j 6= Rk ∧ fk−1(R j) = li) , j ∈ [1,k−1] . (4)

In the equations above, p( fk(Rk) = li|R1:k, fk−1) denotes the probability of a token to
transition to the state corresponding to label li after it has travelled the path fk−1(R1:(k−1)).
The N-gram probability for label li when the preceding context is fk−1(R1:(k−1)), is
denoted as p(li| fk−1(R1:(k−1))). As the mapping is generated gradually, fk is used to
denote the mapping after handling the sequence R1:k.

Pseudocode of the algorithm is given in Algorithm 1. It searches a mapping function
f : T → L from tags in input sequence to the possible label set. For each label l ∈ L, the
probability π0(l) of that label to be the first label in the sequence and the probability the
label the be the last πE(l) are defined. In the middle of the sequence, the probability of
the continuation given the preceding context is obtained from (3).

As the mapping depends on decisions done within the whole preceding history,
the Markov assumption is violated and the search cannot be done with more efficient
methods guaranteeing a globally optimal solution. This sub-optimality hinders also the
traditional TP, since it might be that the optimal labelling may not be the best one ear-
lier in the sequence, and is therefore pruned during the search. The M-best variant of
TP alleviates this problem by propagating M best tokens instead of only the best one.
If all tokens were propagated, the method would find the globally optimal solution, but
at a high computational cost. With a suitable number of tokens, a good result can be
found with considerably less computation than with an exhaustive search. An exhaus-
tive search was tested, but due to the large search space, it proved to be very inefficient.
However, it was used to verify the operations of TP with a subset of the data. In that
subset, the TP showed to find the same result as the exhaustive search in almost all the
cases when storing 100 tokens at each state.

2.3 Modelling Issues

The main problem with N-gram models is the amount of training material needed for
estimating the transition probabilities: the amount increases rapidly as a function of the
number of possible states and the length of used history (given A possible states and
history length of N, there exist AN probabilities to be estimated). It may happen that
not all of the sequences of the required length occur in the training data. This situation
can be handled by back-off (using shorter context at those cases), or by smoothing
(assigning a small amount of the total probability mass to the events not encountered in
the training material).
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Algorithm 1: Search label mapping f : T → L

Input sequence R1:K .
Label space L. Associated with each label l ∈ L, there are input buffer Il and output buffer
Ol .
Tokens t with probability value t.p and label mapping function t. f .
for l ∈ L do // initialisation

Insert t to Il and assign t.p← π0(l)

for k← 1 to K do

for l ∈ L do

Ol ← Il // propagate to output
Clear Il

for l ∈ L do // transition source
for t ∈ Ol do

for l̃ ∈ L do // transition target
t̃← t // copy token
if ∃ j : R j = Rk, j ∈ [1,k−1] then

if t̃. f (Rk) = l̃ then

t̃.p← t̃.p× p(t̃. f (Rk)|t̃. f (R1:(k−1))) // N-gram probability

else
t̃.p← 0

else

if ∀ j : t̃. f (R j) 6= l̃, j ∈ [1,k−1] then

Set t̃. f (Rk)← l̃

t̃.p← t̃.p× p(t̃. f (Rk)|t̃. f (R1:(k−1)))

else
t̃.p← 0

Insert t̃ to Il̃

for l ∈ L do
Retain M best tokens in Il

for l ∈ L do
Ol ← Il

for t ∈ Ol do
t.p← t.p×πE(l)

Select token t̂ with the largest t.p
return t̂. f

In some cases, it is possible that increasing the length of the context does not pro-
vide any information compared to the shorter history. Variable-order Markov models
(VMMs) have been proposed to replace traditional N-grams. Instead of using a fixed
history, VMMs try to deduce the length of the usable context from the data. If increas-
ing the length of the context does not improve the prediction, then only the shorter
context is used. VMMs can be used to calculate the total probability of the sequence in
the same manner as in (1), but using a variable context length instead of fixed N. [10]



6 Jouni Paulus and Anssi Klapuri

3 Evaluations

Performance of the labelling method was evaluated in simulations using structural de-
scriptions from real music pieces.

3.1 Data

The method was evaluated on two separate data sets. The first, TUTstructure07, was col-
lected at Tampere University of Technology. The database contains a total of 557 pieces
sampling the popular music genre from 1980’s to present day.3 The musical structure of
each piece was manually annotated. The annotation consists of temporal segmentation
of the piece into musical parts and naming each of the parts with musically meaningful
labels. The annotations were done by two research assistants with some musical back-
ground. The second data set, UPF Beatles, consists of 174 songs by The Beatles. The
original piece structures were annotated by musicologist Alan W. Pollack [7], and the
segmentation time stamps were added at Universitat Pompeu Fabra (UPF)4.

Though many of the forms are thought to be often occurring or stereotypical for
music from pop/rock genre, the statistics from the data sets do not support this fully.
In TUTstructure07, the label sequences vary a lot. The three most frequently occurring
structures are

– “intro”, “verse”, “chorus”, “verse”, “chorus”, “C”, “chorus”, “outro”
– “intro”, “A”, “A”, “B”, “A”, “solo”, “B”, “A”, “outro”
– “intro”, “verse”, “chorus”, “verse”, “chorus”, “chorus”, “outro”,

each occurring four times in the data set. 524 (94%) of the label sequences are unique.
With UPF Beatles, there is a clearer top, but still there is a large body of sequences

occurring only once in the data set. The most frequent label sequence is

– “intro”, “verse”, “verse”, “bridge”, “verse”, “bridge”, “verse”, “outro”,

occurring seventeen times in the data set. 135 (78%) of the label sequences are unique.

3.2 Training the Models

Transition probabilities for the models were trained using the data sets. Each label se-
quence representing the structure of a piece was augmented with special labels “BEG”
in the beginning, and “END” in the end. After the augmentation, the total number of
occurrences of each label in the data set was counted. Because there exists a large num-
ber of unique labels, some of which occur only once in the whole data set, the size
of the label alphabet was reduced by using only the labels that cover 90% of all oc-
currences. The remaining labels were replaced with an artificial label “MISC”. The
zero-probability problem was addressed by using Witten-Bell discounting (Method C
in [11]), except for the VMMs.

3 List of the pieces is available at
<http://www.cs.tut.fi/sgn/arg/paulus/TUTstructure07_files.html>.

4 <http://www.iua.upf.edu/%7Eperfe/annotations/sections/license.html>

<http://www.cs.tut.fi/sgn/arg/paulus/TUTstructure07_files.html>
<http://www.iua.upf.edu/%7Eperfe/annotations/sections/license.html>
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In the original data sets, there were 82 and 52 unique labels (without the augmen-
tation labels “BEG”, “END”, and “MISC”) in the data set of TUTstructure07 and UPF
Beatles, respectively. After augmentation and set reduction the label set sizes were 15
and 10. On the average, there were 6.0 unique labels and 12.1 label occurrences (mu-
sical parts) in a piece in TUTstructure07. The same statistics for UPF Beatles were 4.6
and 8.6. This suggests that the pieces in TUTstructure07 were more complex or they
have been annotated on a finer level.

3.3 Simulation Setup

In simulations, the structural annotations from the data base were taken. The original
label sequences (with the “MISC” substitution) was taken as the ground truth, while the
input to the labelling algorithm was generated by replacing the labels with letters.

To avoid overlap in train and test sets whilst utilising as much of the data as possi-
ble, simulations were run using leave-one-out cross-validation scheme. In each cross-
validation iteration one of the pieces in the data set was left as the test case while the
Markov models were trained using all the other pieces. This way the model never saw
the piece it was trying to label.

With conventional N-grams, the length of the Markov chain was varied from 1 to
5, i.e., from using just prior probabilities for the labels to utilising context of length 4.
With VMMs, several different algorithms were tested, including: decomposed context
tree weighting (DCTW), prediction by partial matching - method C, and a variant of
Lempel-Ziv prediction algorithm. The implementations for these were provided by [12].
It was noted that DCTW worked the best of these three, and the result are presented only
for it. The maximum context length for VMMs was set to 5. Also the maximum context
lengths of 3 and 10 were tested, but the former deteriorated the results and the latter
produced practically identical results with the chosen parameter value.

3.4 Evaluation Metrics

When evaluating the labelling result, confusion matrix C for the labels is calculated. The
result of the best mapping function applied to the input sequence f (R1:K) and the ground
truth sequence S1:K are compared. At each label occurrence Si, i∈ [1,K], the value in the
element [Si, f (Ri)] of the confusion matrix is increased by one. This applies weighting
for the more frequently occurring labels. The confusion matrix is calculated over all
cross-validation iterations. The average hit rate for a target label was calculated as a
ratio of correct assignments (main diagonal of confusion matrix) to total occurrences of
the label (sum along rows of the confusion matrix).

3.5 Results

The effect of varying the context length in N-grams is shown in Tables 1 and 2 for TUT-
structure07 and UPF Beatles, respectively. In addition to the different N-gram lengths,
the tables contain also the result for the best VMM (DCTW with maximum memory
length of 5). The tables contain the percentage of correct assignments for each label
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Table 1. Performance comparison on TUTstructure07 with traditional Markov models
of different order. The best VMM result is given for comparison. The given values are
the average hit rates in percents. The row average is the total average of correct part
labels. The best result on each row is typeset with bold.

label N=1 N=2 N=3 N=4 N=5 VMM

chorus 68.1 76.3 80.8 76.6 74.9 78.5
verse 42.3 62.4 64.4 64.9 66.0 66.0

bridge 17.7 38.6 45.6 47.4 44.4 43.7
intro 27.6 97.6 98.2 97.8 97.8 96.4

pre-verse 4.2 40.7 46.3 43.3 41.7 43.3
outro 13.9 98.3 98.6 97.8 92.1 98.3

c 0.0 38.0 42.1 47.4 54.8 49.3
theme 0.0 0.0 2.7 4.4 3.3 3.3

solo 0.0 4.4 7.2 16.0 18.2 14.9
chorus_a 0.0 0.0 7.5 15.7 11.2 3.0

a 0.0 0.0 32.5 31.7 27.0 29.4
chorus_b 0.0 0.9 5.3 12.4 7.1 2.7

MISC 12.6 29.5 38.3 37.1 40.3 38.3

average 30.9 55.6 60.3 59.9 59.5 59.8

used. The total average of correct hits (“average”) is calculated without the augmenta-
tion labels “BEG” and “END”.5

Based on the results in Tables 1 and 2, it can be seen that increasing the order
of traditional Markov model from unigrams to bigrams produce a large increase in
the performance. The performance continues to increase when the context length is
increased, but more slowly. With TUTstructure07, the performance peak is at N = 3,
whereas with UPF Beatles, the maximum with traditional N-grams can be obtained with
N = 4. It was also noted that with TUTstructure07 the use of VMM did not improve the
result. However, there is a small performance increase with VMMs in UPF Beatles.

Even though the use of VMM did not improve the result with TUTstructure07,
there was one clear advantage with them: it was possible to use longer context in the
models. With traditional N-grams, the transition probabilities will become very sparse
even with bigrams. The large blocks of zero provide no information whatsoever and
only consume memory. With VMMs, the context length is adjusted according to the
available information.

From the results, it is notable that “chorus” can be labelled from the input over
80% accuracy, and “verse” almost at 65% accuracy in TUTstructure07. In UPF Beatles
“verse” could be labelled with 87% accuracy and “refrain” with 71% accuracy.

5 For an interested reader, the confusion matrices are given in a document available at <http://
www.cs.tut.fi/sgn/arg/paulus/CMMR08_confMats.pdf>.

<http://www.cs.tut.fi/sgn/arg/paulus/CMMR08_confMats.pdf>
<http://www.cs.tut.fi/sgn/arg/paulus/CMMR08_confMats.pdf>
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Table 2. Performance comparison on UPF Beatles with traditional Markov models of
different order. The best VMM result is given for comparison. For description of the
data, see the Table 1.

label N=1 N=2 N=3 N=4 N=5 VMM

verse 72.4 79.9 86.7 85.7 83.7 87.5

refrain 30.1 32.1 62.2 66.3 68.7 70.7

bridge 36.7 40.7 78.0 74.0 74.0 70.6
intro 0.0 93.2 88.9 92.0 93.8 93.2
outro 0.0 99.3 99.3 97.2 93.0 97.9

verses 0.0 16.1 48.2 50.0 44.6 44.6
versea 0.0 5.9 7.8 17.6 21.6 5.9
MISC 0.0 15.9 22.3 25.5 23.6 22.3

average 33.5 58.9 72.1 72.8 72.1 73.0

3.6 Discussion

It should be noted that the proposed system performs the labelling purely based on
a model of sequential dependencies of musical parts. Incorporating some acoustic in-
formation might improve the result somewhat (e.g., energetic repeated part might be
“chorus”). Also, the knowledge of the high-level musical content, such as the lyrics,
instrumentation or chord progressions, could provide valuable information for the la-
belling. However, the extraction of these from the acoustic input is still a challenging
task, as well as creating a usable model for them. In addition, when discussing the
principles used when assigning the ground truth labels with the annotators, the main
cue was the location of the part in the “musical language model”. Incorporating these
other information sources in addition to the sequence model should be considered in
the future work.

The difference in performance between the two data sets remains partly an open
question. The main reason may be that the label sequences in TUTstructure07 are more
diverse, as could be seen from the statistics presented in Sec. 3.1 (94% of sequences in
TUTstructure are unique, compared to 78% in UPF Beatles). We tested the hypothesis
that is was due to the smaller label set (10 vs. 15) by using only as many of the most
frequent labels as were used with UPF Beatles. As a slight surprise, the performance
on the remaining set was even worse compared label-wise to the larger set. The average
result, however, increased slightly because the most rarely occurring (and most often
mis-labelled) labels were omitted.

4 Conclusion

This paper has proposed a method for assigning musically meaningful labels to the
parts found by music structure analysis systems. The method models the sequential
dependencies between musical parts with Markov models and uses the models to score
different label assignments. The paper has proposed applying M-best token passing
algorithm to the label assignment search to be able to perform the assignment without
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having to test all possible permutations. The proposed method has been evaluated with
leave-one-out cross-validations on two data sets of popular music pieces. The evaluation
results suggest that the models for the sequential dependencies of musical parts are
so informative even at low context lengths that they can be used alone for labelling.
The obtained labelling performance was reasonable, even though the used model was
relatively simple.
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Music Structure Analysis Using a Probabilistic
Fitness Measure and a Greedy Search Algorithm

Jouni Paulus, Student Member, IEEE, and Anssi Klapuri, Member, IEEE

Abstract—This paper proposes a method for recovering the sec-
tional form of a musical piece from an acoustic signal. The descrip-
tion of form consists of a segmentation of the piece into musical
parts, grouping of the segments representing the same part, and as-
signing musically meaningful labels, such as “chorus” or “verse,”
to the groups. The method uses a fitness function for the descrip-
tions to select the one with the highest match with the acoustic
properties of the input piece. Different aspects of the input signal
are described with three acoustic features: mel-frequency cepstral
coefficients, chroma, and rhythmogram. The features are used to
estimate the probability that two segments in the description are
repeats of each other, and the probabilities are used to determine
the total fitness of the description. Creating the candidate descrip-
tions is a combinatorial problem and a novel greedy algorithm con-
structing descriptions gradually is proposed to solve it. The group
labeling utilizes a musicological model consisting of N-grams. The
proposed method is evaluated on three data sets of musical pieces
with manually annotated ground truth. The evaluations show that
the proposed method is able to recover the structural description
more accurately than the state-of-the-art reference method.

Index Terms—Acoustic signal analysis, algorithms, modeling,
music, search methods.

I. INTRODUCTION

H UMAN perception of music relies on the organization
of individual sounds into more complex entities. These

constructs occur at several time scales from individual notes
forming melodic phrases to relatively long sections, often re-
peated with slight variations to strengthen the perception of mu-
sical organization. This paper describes a method for the au-
tomatic analysis of the musical structure from audio input, re-
stricting the time scale to musical sections (or, parts), such as
intro, verse, and chorus.

Information of the structure of a musical piece enables sev-
eral novel applications, e.g., easier navigation within a piece in
music players [1], piece restructuring (or mash-up of several
pieces) [2], academic research of forms used in different mu-
sical styles, audio coding [3], searching for different versions of
the same song [4], [5], or selecting a representative clip of the
piece (i.e., music thumbnailing) [6]. A music structure analysis
system provides relatively high-level information about the an-
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alyzed signal, on a level that is easily understood by an average
music listener.

A. Background

Several systems have been proposed for music structure anal-
ysis, ranging from attempts to find some repeating part to be
used as a thumbnail, to systems producing a structural descrip-
tion covering the entire piece. The employed methods vary also.
In the following, a brief overview of some of the earlier methods
is provided.

To reduce the amount of data and to focus on the desired prop-
erties of the signal, features are extracted from it. The feature ex-
traction is done in fixed-length frames or in frames synchronized
to the musical beat. The main motivation for using beat-synchro-
nized frames is that they provide a tempo-invariant time base for
the rest of the analysis.

The employed features are often designed to mimic some as-
pects that have been found to be important for a human listener
analyzing the musical structure, including changes in timbre or
rhythm, indicating change of musical parts, and repetitions, es-
pecially melodic ones, as suggested in [7]. In the following, the
feature vector in frame , is denoted by , and

is the number of frames in the signal.
A useful mid-level representation employed in many struc-

ture analysis methods is a self-distance (or self-simi-
larity) matrix . The element of the matrix denotes the
distance (or similarity) of the frames and . The self-distance
matrix (SDM) is a generalization of the recurrence plot [8] in
which the element values are binary (similar or different). In
music structure analysis, the use of SDM was first proposed in
[9] where it was used for music visualization. The patterns in the
SDM are not only useful for visualization but also important in
many analysis methods.

In [10], structure analysis methods are categorized into state
and sequence-based systems. State-based methods consider the
piece as a succession of states, while sequence-based methods
assume that the piece contains repeated sequences of musical
events. Fig. 1 presents an idealized view of the patterns formed
in the SDM. The state representation methods basically aim to
locate blocks of low distance on the main diagonal, while the
sequence-based methods aim to locate off-diagonal stripes (a
stripe representing low distance of two sequences). The blocks
are formed when the used feature remains somewhat similar
during an occurrence of a musical part, and the stripes are
formed when there are sequences that are repeated later in the
piece.

The locations of the block borders on the main diagonal
can be searched from the SDM for segmentation [11]–[13], or

1558-7916/$25.00 © 2009 IEEE
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Fig. 1. Example of the structures formed in the self-distance matrix. Darker
pixel value denotes lower distance. Time proceeds from left to right and from
top to bottom. The example piece consists of five sections, where two parts, A
and B, occur as indicated.

blocks themselves can be searched by dynamic programming
[14], [15] for segmentation and recurrence analysis.

Some methods utilize the block-like information less explic-
itly by directly handling the feature vectors with agglomera-
tive clustering [16], or by clustering them with hidden Markov
models [17], [18]. The temporal fragmentation resulting from
the use of the vector quantization models has been attempted to
be reduced by pre-training the model [19], or by imposing du-
ration modeling explicitly [20]–[22].

Because of the assumption of repetition, the sequence
methods are not able to describe the entire song, but the parts
that are not repeated remain undiscovered. This is not always
a weakness, as some methods aim to find the chorus or a rep-
resentative thumbnail of the piece utilizing the formed stripes.
The stripes can be located from the SDM after enhancing them
by filtering the matrix [23], [24], or by heuristic rules [25].

In addition to locating only one repeating part, some sequence
methods attempt to provide a description of all repeated parts of
the piece. By locating all of the repetitions, it is possible to pro-
vide a more extensive description of the structure of the piece
[1], [26]. Finding a description of the whole piece can be ob-
tained by combining shorter segments with agglomerative clus-
tering [27], refining the segment iteratively [28], selecting re-
peated segments in a greedy manner [29], or by transitive de-
duction of segments found utilizing iterative search [30].

The authors of [31] propose to combine vector quantization
of framewise features and string matching on the formed se-
quences to locate repeating parts. Aiming to find a path through
the SDM so that the main diagonal is used as little as possible,
thus utilizing the off-main diagonal stripes with ad hoc rules for
piece structures has been attempted in [32]. Heuristic rules to
force the piece structure to be one of the few stereotypical ones
were presented in [33]. Formulating the properties of a typical
or “good” musical piece structure mathematically, and utilizing
this formulation to locate a description of the repeated parts has
been attempted in [13], [34]. The method proposed in this paper
can be seen as an extension of this kind of approach to provide
a description of the structure of the whole piece.

B. Proposed Approach

The main novelty of the proposed method is that it relies on a
probabilistic fitness measure in analyzing the structure of music
pieces. A structure description consists of a segmentation of the
piece to occurrences of musical parts, and of grouping of seg-
ments that are repeats of each other. The acoustic information of

each pair of segments in the description is used to determine the
probability that the two segments are repeats of each other. The
probabilities are then used to calculate the total fitness of the
description. A greedy algorithm is proposed for solving the re-
sulting search problem of finding the structure that maximizes
the fitness measured. Furthermore, the resulting description is
labeled with musically meaningful part labels. To the authors’
knowledge, this is the first time that the labeling can be for ar-
bitrary music pieces.

The proposed method utilizes three acoustic features de-
scribing different aspects of the piece. Self-distance matrices
are calculated from all the three features, and using the infor-
mation embedded in the SDM, the system performs a search to
create a segmentation and a segment clustering that maximize
the fitness over the whole piece. The “blocks” and the “stripes”
in multiple SDMs are used.

The rest of the paper is organized as follows. Section II details
the proposed method. Then experimental results are described
in Section III. Finally, Section IV concludes the paper. Parts of
this work have been published earlier in [35]–[37].

II. PROPOSED METHOD

The proposed analysis method relies on a fitness function for
descriptions of musical structures. This function can be used
to compare different descriptions of the same piece and deter-
mine how plausible they are from the perspective of the acoustic
signal. In addition to the fitness function, a search method for
generating a maximally fit description is presented.

A. Fitness Measure

From the point of view of acoustic properties, a good descrip-
tion of musical structure has much in common with defining a
good clustering of data points: the intra-cluster similarity should
be maximized while minimizing the inter-cluster similarity. In
terms of musical structure: the segments assigned to a group
(forming the set of all occurrences of a musical part) should be
similar to each other while the segments from different groups
should be maximally dissimilar. Compared to basic clustering,
individual frames of the musical piece cannot be handled as in-
dividual data points in clustering, because it would fragment the
result temporally, as noted in [21]. Instead, the frames are forced
to form sequences.

All the possible segments of a piece are denoted by set . A
subset of this consisting of segments that
do not overlap and cover the whole piece defines one possible
segmentation of the piece. The group of segment is returned
by a group assignment function ; if , the seg-
ments belong to the same group and are occurrences of the same
musical part. A description of the structure of the piece is a
combination of a segmentation and grouping of the segments

.
When a segmentation and the acoustic data is given, it is

possible to compare all pairs of segments and , and to deter-
mine a probability that the segments belong
to the same group. Because the segments can be of different
lengths, a weighting factor is determined for each
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segment pair in addition to the probability. The overall fitness
of the description is defined as

(1)

where

if
if

(2)

Here, the value of the weighting factor is defined as

(3)

where denotes the length of segment in frames. This
causes the sum of all weighting factors to equal the number of
elements in the SDM.

Having defined the fitness measure, the structure analysis
problem now becomes a task of finding the description
that maximizes the fitness function given the acoustic data

(4)

Equation (1) defines the fitness of structural descriptions
using relatively abstract terms. To apply the fitness measure,
candidate descriptions should be constructed for evaluation and
the probabilities in (1) and (2) should be calculated from the
acoustic input. The rest of this paper describes how these tasks
can be accomplished using a system whose block diagram is
illustrated in Fig. 2. The system extracts acoustic features using
beat-synchronized frame blocking. Separate SDMs are calcu-
lated for each feature, to be used as a mid-level representation.
Using the information in the SDMs, a large amount of candidate
segments is created and all non-overlapping segment pairs are
compared. The comparison produces the pairwise probabilities

and the weights that are used to
evaluate the fitness measure (1). A greedy search algorithm
is employed to create description candidates gradually and to
evaluate their fitness. The resulting descriptions are labeled
using musically meaningful labels, such as verse and chorus.
The best description found is then returned. These steps are
described in the rest of this section.

B. Feature Extraction

The use of three features is proposed, all of them with two
different time scales to provide the necessary information for
further analysis. The use of multiple features is motivated by
the results of [7], which suggest that change in timbre and in
rhythm are important cues for detecting structural boundaries.
The use of multiple time scales has been proposed, e.g., in [4]
and [38].

The feature extraction starts by estimating the locations of
rhythmic beats in the audio using the method from [39]. It was
noted that the system may do -phase errors in the estimation.
The effect of these errors is alleviated by inserting extraneous

Fig. 2. Overview of the proposed method. See the text for description.

beats between each two beats, effectively halving the pulse pe-
riod.

Like in several earlier publications, mel-frequency cepstral
coefficients (MFCCs) are used to describe the timbral content
of the signal. The rhythmic content is described with rhythmo-
gram proposed in [14]. The third feature, chroma, describes
the tonal content. The MFCCs and chroma are calculated in
92.9-ms frames with 50% frame overlap, while rhythmogram
uses frames up to several seconds in length with the hop of
46.4 ms. After the calculation, each feature is averaged over the
beat frames to produce a set of beat-synchronized features.

The MFCCs are calculated using 42-band filter bank, omit-
ting the high-pass pre-emphasis filter sometimes used as a pre-
processing. The log-energies of the bands are discrete cosine
transformed (DCT) to reduce the correlation between bands and
to perform energy compaction. After the DCT step, the lowest
coefficient is discarded and 12 following coefficients are used
as the feature vector.

The chroma is calculated using the method proposed in [40].
First, the saliences for different fundamental frequencies in the
range 80–640 Hz are calculated. The linear frequency scale
is transformed into a musical one by selecting the maximum
salience value in each frequency range corresponding to a
semitone. The semitone number for frequency is given in
MIDI note numbers by

(5)

where is the MIDI note number for the reference
frequency , and denotes rounding to the nearest
integer. Finally, the octave equivalence classes are summed
over the whole pitch range to produce a 12-dimensional chroma
vector. This method is used instead of directly mapping fre-
quency bins after discrete Fourier transform (as done, e.g., in
[1], [23]), because in the experiments the salience estimation
front-end proved to focus more on the energy of tonal sounds
and reduce some of the undesired noise caused by atonal
sounds, such as drums.

For both MFCC and chroma, the feature sequences are tem-
porally filtered with a Hanning window weighted median filter.
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The purpose of the filtering is to focus the feature on the desired
time-scale. The shorter filter length is used to smooth short-time
deviations for enhancing the stripes on the SDM. The longer
window length is intended to focus on longer time-scale simi-
larities, enhancing the block formation on the SDMs.

The rhythmogram calculation utilizes the onset accentuation
signal produced in the beat detection phase. The original method
[14] used a perceptual spectral flux front-end to produce a signal
sensitive to sound onsets. In the proposed method, this is re-
placed by summing the four accentuation signals to produce one
onset accentuation signal. The rhythmogram is the autocorrela-
tion function values of the accentuation signal calculated in suc-
cessive windows after the global mean has been removed from
it. The window length is determined by the target time-scale,
and the autocorrelation values between the lags 0 and a max-
imum of 2 s are stored.

The time-scale focus parameters (the median filter window
lengths for MFCCs and chroma, and the autocorrelation window
length for rhythmogram) were selected with a method described
in Section II-E. After the temporal filtering the features are nor-
malized to zero mean and unity variance over the piece.

C. Self-Distance Matrix Calculation

From each feature and time-scale alternative, a self-distance
matrix is calculated. Each element of the matrix defines
the distance between the corresponding frames and calcu-
lated with cosine distance measure

(6)

where is the feature vector in frame , denotes vector dot
product, and is vector norm.

In many popular music pieces, musical modulation of the
key in the last chorus section is used as an effect. This causes
problems with the chroma feature as the energies shift to dif-
ferent pitch classes, effectively causing a circular rotation of the
chroma vector.1 To alleviate this problem, it has been proposed
to apply chroma vector rotations and calculate several SDMs
instead of only one testing all modulations and using the min-
imum distances [1], [41]. Modulation inversion both on frame
and segment pairs were tested, but they did not have a signifi-
cant effect on the overall performance and the presented results
are calculated without them.

D. Segment Border Candidate Generation

Having the SDMs, the system generates a set of segment
border candidates that are points in the piece on which a seg-
ment may start or end. If a segment is allowed to begin or end at
any location, the number of possible segmentations and struc-
tural descriptions increases exponentially as a function of the
border candidate locations. The combinatorial explosion is re-
duced by generating a smaller set of border candidates. Not all
of the candidates have to be used in the final segmentation, but
the points used in the segmentation have to be from this set.

1Naturally the modulation affects also MFCCs, but the effect is considerably
smaller.

Fig. 3. Example of a Gaussian weighted detection kernel with � � �� and
� � ���.

In the proposed method, the border candidates are generated
using the novelty calculation proposed in [11]. A detec-
tion kernel matrix is correlated along the main diagonal of the
SDM. The correlation values are collected to a novelty vector .
Peaks in this vector, corresponding to corners in the SDM, are
detected using median-based dynamic thresholding and used as
the border candidates. The novelty vector is calculated from all
six SDMs, three acoustic features and two time-scale parame-
ters, and then summed. For one SDM the novelty is calculated
as

(7)
The matrix is padded with zeros in non-positive indices and
indices larger than the size of the matrix.

The kernel matrix has a 2 2 checkerboard-like structure

where the following symmetries hold:

(8)

Matrix is an matrix with ones on the main anti-
diagonal and zeros elsewhere. It reverses the order of matrix
columns when applied from right and the order of matrix rows
when applied from left.

In the simplest approach, the values in are all , but as
suggested in [11], the kernel matrix values are weighted by ra-
dial Gaussian function giving less weight to the values far from
the center of the kernel

(9)

where the radius is defined by

(10)

and the width parameter value and kernel width
were noted to perform well in the evaluations. The

resulting kernel is illustrated in Fig. 3. In the experiments, the
30 largest peaks in the novelty vector and the signal end points
were used as the set of segment border candidates.
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Fig. 4. Illustration of generating the segments.

Fig. 5. Submatrix ��� of SDM ��� used in the calculation of the distances
between the segments � and � .

E. Segment Pair Distance Measures

After the set of border candidates has been generated, all seg-
ments between all pairs of border candidates are created. These
segments form the set , from which the segmentation in the
final description is a subset of. This is illustrated in Fig. 4, where
ten possible segments are generated from five border candidates.

For each segment pair and feature, two distances are calcu-
lated: a stripe distance and a block distance. The stripe distance
measures the dissimilarity of the feature sequences of the two
segments, whereas the block distance measures the average dis-
similarity of all frame pairs of the two segments. Two distance
measures are used because it is assumed that they provide com-
plementary information.

The main difference and motivation of using these two dis-
tance measures are illustrated in Fig. 1 which contains a stereo-
typical SDM of a simple piece with the structure “A, B, A, B, B.”
If only stripe distance was used, it would be difficult to locate
the border between “A” and “B” without any additional logic,
because “A” is always followed by “B.” Similarly, if only block
distance was used, the border between the second and third “B”
would be missed without any addition logic.

The compared segments and define a submatrix
of distance matrix . The contents of this submatrix are used
to determine the acoustic match of the segments. The submatrix
and the distance measures are illustrated in Fig. 5.

The block distance is calculated as the average of
the distances in the submatrix

(11)

Fig. 6. Effect of the time-scale parameter on segment pair distances calculated
over all pieces in the TUTstructure07 data set. For MFCC and chroma feature the
parameter � is the median filtering window length. For rhythmogram the varied
parameter � is the autocorrelation length. The lines denote the average distance
values for segments from the same group � � and from a different group ���.
The error bars around the marker denote the standard deviation of the distances.
The chosen parameter values are marked with underlining.

The stripe distance is calculated by finding the path
with the minimum cost through the submatrix and nor-
malizing the value by the minimum possible path length

(12)

where elements of the partial path cost matrix are defined
recursively by

(13)

with the initialization . Note that the path tran-
sitions do not have any associated cost.

The effect of the time-scale parameter on the resulting dis-
tance values was evaluated using a manually annotated data set
of popular music pieces that will be described in Section III-A.
The median filtering window length was varied with MFCC
and chroma features, and the autocorrelation window length

was varied for rhythmogram. The values of distances for
segments from the same groups and from different groups were
calculated with both of the proposed distance measures. The
effect of the time-scale parameter is illustrated in Fig. 6. The
final parameter values used in the evaluations were determined
from this data by assuming the distance values to be distributed
as Gaussians and selecting the parameter value minimizing
the overlapping mass of the distributions. The used parameter
values are indicated in the figure.

F. Probability Mapping

Once the distance of two segments has been calculated based
on the used features and distance measures, the obtained dis-
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tance values are transformed to probabilities to enable evalu-
ating the overall fitness measure (1). In the following, both block
and stripe distance of a segment pair are denoted with
to simplify the notation and because the processing is similar to
both. The probability that two segments and belong to the
same group is determined from the distance between
the segments using a sigmoidal mapping function from distance
to probability. The mapping function is given by

(14)

where is the distance measured from the acoustic data.
The sigmoid parameters and are determined using the Lev-
enberg–Marquardt algorithm for two-class logistic regression
[42]. The data for the fit is obtained from the manual ground
truth annotations.

The probabilities obtained for all of the six distance values
(three acoustic features and two distance measures) are com-
bined with weighted geometric mean

(15)

where is a variable distinguishing the six probability values,
and is the weight of the corresponding feature and distance
combination. In the experiments, binary weights were tested and
the presented results are obtained using all but rhythmogram
stripe probability with equal weights. For more details on the
feature combinations, see [36].

It is possible to impose heuristic restrictions on the segments
by adjusting the pairwise probabilities manually after the dif-
ferent information sources have been combined. Here, a length
restriction was applied prohibiting larger than 50% differences
in segment lengths within a group.

G. Solution for the Optimization Problem

The optimization problem (4) is a combinatorial problem. It
can be formulated as a path search in a directed acyclic graph
(DAG) where each node represents a possible segment in the
piece with a specific group assignment, and there is an arc be-
tween two nodes only if the segment of the target node is di-
rectly following the segment of the source node. This process is
illustrated by the graph in Fig. 7 which is constructed from the
segments in Fig. 4 after allowing the use of two groups.

The way the total fitness (1) is defined to evaluate all segment
pairs in the description causes the arc costs to depend on the
whole earlier path, i.e., the transition from a node to a following
one has as many different costs as there are possible routes from
the start to the source node. This prohibits the use of many ef-
ficient search algorithms as problem cannot be partitioned into
smaller subproblems.

Considering the applications of the structure analysis system,
it would be desirable that the search would be able to produce
some solution relatively quickly, to improve it when given more
time, and to return the globally optimal result at some point.
If the search for the global optimum takes too long, it should
be possible to stop the search and use the result found at that

Fig. 7. Example DAG generated by the segments in Fig. 4 after allowing only
two groups: A and B.

Fig. 8. Pseudo-code description of the proposed bubble token passing search
algorithm.

point. A novel algorithm named Bubble token passing (BTP)
is proposed to fulfil these requirements. BTP is inspired by the
token passing algorithm [43] often used in continuous speech
recognition. In the algorithm, the search state is stored using
tokens tracking the traveled path and recording the associated
fitness. In the following, the term node is changed to state to
better conform the token passing terminology.

A pseudocode description of the algorithm is given in Fig. 8.
The search is initiated by augmenting the formed DAG with start
and end states and inserting one token to the start state. After
this, the algorithm main loop is executed until the solution con-
verges, some maximum iteration limit is reached, or there are no
more tokens in the system. At each iteration, each state selects
the best tokens and propagates them to the following states
(loop on line 4 of Fig. 8). When a token is inserted to a state, the
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Fig. 9. Labeling process searches for an injective mapping � from a set of
segment groups � to musically meaningful labels �.

state is added to the traveled path and the fitness value is updated
with (16). After all states have finished the propagation, the ar-
rived tokens are merged to a list of tokens, the list is sorted, and
only fittest are retained, the rest are removed (loop starting on
line 16). After this the main iteration loop starts again.

The tokens arriving to the end state describe the found de-
scriptions. The first solutions will be found relatively quickly,
and as the iterations proceed, more tokens will “bubble” through
the system to the final state. Since the tokens are propagated in
best-first order and only some of the best tokens are stored to
following iterations, the search is greedy, but the parameters
and control the greediness and the scope of the search. The
number of stored tokens controls the overall greediness: the
smaller the value, the fewer of the less fit partial paths are con-
sidered for continuation and more probable it will be to miss the
global optimum. An exhaustive search can be accomplished by
storing all tokens. The number of propagated tokens controls
the computational complexity of each main loop iteration: the
more tokens are propagated from each state, the more rapidly the
total number of tokens in the system increases and the more fit-
ness updates have to be calculated at each iteration. The values
used in the experiments proved to be a
reasonable tradeoff between the exhaustivity and computational
cost of the search, and the search converged often after 30–40
iterations.

When a token is inserted to a state corresponding to segment
with the group set to , the associated path fitness is up-

dated with

(16)

where is a subset of after adding the th segment to it, and
starting from .

The fitness of the whole description can be obtained by
summing these terms over the whole piece

(17)

It is trivial to verify that this is equal to (1).

H. Musical Part Labelling

The description found by solving the optimization problem
(4) consists of a segmentation of the piece and a grouping of
the segments. Especially if the analysis result is presented for
a human, the knowledge of musically meaningful labels on
the segments would be appreciated, as suggested by a user
study [44]. To date, none of the structure analysis systems,
with the exception of the system proposed in [33], provides

musically meaningful labels to the groups in the analysis result.
The method in [33] utilized rigid forms where the analyzed
piece was fitted to, and the forms contained also the part label
information.

The method proposed here models sequences of musical parts
with N-grams utilizing the th order Markov assumption
stating that the probability of label given the preceding labels

depends only on the history of length

(18)

The N-gram probabilities are trained using a set of musical part
label sequences that are formed by inspecting the manually an-
notated structures of a large set of musical pieces. The parts are
ordered based on their starting time, and the part labels are set
in the corresponding order to produce a training sequence. The
N-gram models are then used to find an injective mapping
from the groups in the analysis result to the musical labels

(19)

This process is illustrated also in Fig. 9.
When labeling the analysis result, the label assignment max-

imizing the resulting cumulative N-gram probability over the
description

(20)

is searched. An algorithm for the post-process labeling a found
structural description was presented and evaluated in [35].

Another way to perform the labeling is to integrate the la-
beling model to the overall fitness function. In this case, the fit-
ness does not only assess the segmentation of the piece and the
grouping of the segments, but also the labeling of the groups.
The difference to (1) is that now the order in which the segments
are evaluated matters, and the segment set needs to be ordered
by the starting times of the segments . The
description can be transformed into a label sequence by ap-
plying the mapping function by

(21)

The N-gram probabilities have to be evaluated already during
the search which is accomplished by modifying the fitness mea-
sure (1) to

(22)

where is the relative weight given for the labeling model, and

(23)

The subscript in is added to denote the integrated “labeling
model.” In effect, the additional term is the average part label
transition log-likelihood multiplied by the weighting factors of
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the segment pairs. The labeling model likelihoods are normal-
ized with the number of transitions. This is done to ensure that
explanations with different number of parts would give an equal
weight for the labeling model.

Now the fitness function can be considered to be constructed
of two terms: the acoustic information term on the top row of
(22) and the musicological term on the bottom row. The op-
timization of this fitness function can be done using the same
bubble token passing algorithm after modifying the token fit-
ness update formula (16) to include the N-gram term. In fact,
the same search algorithm can be used to perform the postpro-
cess labeling, too. In that case, the acoustic matching terms have
to be modified to enforce the grouping sequence.

III. RESULTS

The proposed analysis system was evaluated with simula-
tions using three manually annotated data sets of popular music
pieces. Several different evaluation metrics were used to provide
different points of view for the system performance.

A. Data

Three data sets were used in the evaluations TUTstructure07,
UPF Beatles, and RWC Pop. The first consists of 557 pieces
aimed to provide a representative sample of radio-play pieces.
Approximately half of the pieces are from pop/rock genres and
the rest sample other popular genres, such as hip hop, country,
electronic, blues, jazz, and schlager.2 The data set was compiled
and annotated at Tampere University of Technology, and the an-
notation was done by two research assistants with some musical
background. A notable characteristics of the data set is that it
contains pieces from broad range of musical styles with differ-
ring timbral, melodic, and structural properties.

The second used data set consists of 174 songs by The Bea-
tles. The original piece forms were analyzed and annotated by
musicologist Alan W. Pollack [45], and the segmentation time
stamps were added at Universitat Pompeu Fabra (UPF).3 Some
minor corrections to the data were made at Tampere University
of Technology, and the corrected annotations along with a doc-
umentation of the modifications are available.4 Major character-
istic of this data set is that all the pieces are from the same band,
with less variation in musical style and timbral characteristics
than in the other data sets.

The audio data in the third data set consists of the 100 pieces
of the Real World Computing Popular Music Database [46],
[47]. All of the pieces were originally produced for the data-
base; a majority of the pieces (80%) represent 1990’s Japanese
chart music, while the rest resemble the typical 1980s American
chart hits.

All data sets contain the structure annotated for the whole
piece. Each structural segment is described by its start and end
times, and a label provided to it. Segments with the same label
are considered to belong to the same group.

2A full list of pieces is available at http://www.cs.tut.fi/sgn/arg/
paulus/TUT structure07_files.html

3http://www.iua.upf.edu/%7Eperfe/annotations/sections/license.html
4http://www.cs.tut.fi/sgn/arg/paulus/structure.html#beatles_data

B. Reference System

The performance of the proposed system is compared with a
reference system [22] aimed for the same task. As the low-level
feature it uses the MPEG-7 AudioSpectrumProjection [48] from
600 ms frames with 200-ms hop. The frames are clustered by
training a 40-state hidden Markov model on them and then de-
coding with the same data. The resulting state sequence is trans-
formed to another representation by calculating sliding state
histograms from seven consecutive frames. The histograms are
then clustered using temporal constraints. The used implemen-
tation was from the “QM Vamp Plugin” package version 1.5.5

The implementation allows the user to select the feature used,
the maximum number of different segment types, and minimum
length of the segment. A grid search over the parameter space
was done to optimize the parameters, and the presented results
were obtained using the “hybrid” features, maximum of six seg-
ment types, and minimum segment length of 8 s. These param-
eter values provided the best general performance, and when
tested with the same 30-song Beatles data set6 as in the original
publication they produced F-measure of 60.7% compared to the
60.4% reported in [22].

C. Experimental Setup

Because the proposed method needs training of some pa-
rameters, the evaluations were run using a tenfold cross-vali-
dation scheme with random fold assignment. At each cross-val-
idation fold, 90% of the pieces are used to calculate the N-gram
models for part label sequences and to train the distance-to-
probability mapping functions, while the remaining 10% are
used for testing. The presented results are averaged over all
folds. As the reference method [22] does not need training, the
evaluations were run for the whole data at once, and different
parameter values were tested in a grid search manner.

To allow determining the possible bottlenecks of the proposed
system, several evaluation schemes were employed:

• Full analysis. The system is given only the audio; it has
to generate the candidate border locations, determine seg-
mentation, grouping, and group labeling. Referred with full
in the result tables.

• Segmentation and labeling, extraneous borders. The
system generates border candidates by itself, but the
border locations from the annotations are included in the
candidate set by replacing the closest generated candidate
with the one taken from annotations. Referred with salted
in the results.

• Grouping and labeling. The system is given the correct seg-
mentation, but it has to determine the grouping of the seg-
ments and labeling of the groups. Referred with segs in the
tables.

• Labeling only. The correct segmentation and grouping is
given to the system. It only has to assign each group with
an appropriate musical label. This is referred with labeling
in the result tables.

5http://www.elec.qmul.ac.uk/digitalmusic/downloads/index.html#qm-
vamp-plugins

6http://www.elec.qmul.ac.uk/digitalmusic/downloads/#segment
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TABLE I
EVALUATION RESULTS ON TUTSTRUCTURE07 (%)

TABLE II
EVALUATION RESULTS ON UPF BEATLES (%)

TABLE III
EVALUATION RESULTS ON RWC POP (%)

Two different labeling schemes were tested. First, the labeling
was done as a postprocessing step. This is denoted by post-LM
in the result tables. As an alternative the labeling was integrated
in the fitness function using (22). The results obtained with this
are referred with w/LM in the result tables.

The label set used in all of the tasks is determined from the
whole data set prior the cross-validation folds. All part occur-
rences of all the pieces were inspected and the labels covering
90% of all occurrences were used as the label set. The remaining
labels were assigned an artificial “MISC” label.

The proposed system was implemented in Matlab with
routines for the feature extraction, the segment matching, and
the search algorithm. When run on a 1.86-GHz Intel Core2-
based PC, the average analysis time of a piece with the post-
processing labeling corresponds approximately to the duration
of the piece.

D. Evaluation Metrics

Three different metrics are used in the evaluations: frame
pairwise grouping F-measure (also precision and recall rates
from which the F-measure is calculated are reported), condi-
tional entropy based measure for over- and under-segmentation,
and total portion of frames labeled correctly.

The first measure is also used in [22]. It considers all frame
pairs both in the ground truth annotations and in the analysis
result. If both frames in a pair have the same group assignment,
the pair belongs to the set in the case on ground truth and to

in the case of analysis result. The pairwise precision rate is
defined as

(24)

the pairwise recall rate as

(25)

and the pairwise F-measure as their harmonic mean

(26)

In the equations above denotes the cardinality of the set. The
pairwise clustering measure is simple, yet effective and seems
to provide values that agree quite well with the subjective per-
formance.

The second evaluation measure considers the conditional en-
tropy of the frame sequences labeled with the group information
given the other sequence (ground truth versus result). The orig-
inal entropy-based evaluation measure was proposed in [49], but
it was further modified by adding normalization terms to allow
more intuitive interpretation of the obtained numerical values in
[50]. The resulting evaluation measures are over-segmentation
score and under-segmentation score . Due to their com-
plexity the formal definitions of and are omitted here,
see [50] instead.

The third evaluation metric is the strictest: it evaluates the
absolute analysis performance with musical labels. This is done
by comparing the label assigned to each frame in the result and
in the ground truth annotations. The evaluation measure is the
proportion of correctly recovered frame labels.

E. Annotation Reliability Check

It has been noted in earlier studies, e.g., in [7], that the percep-
tion of structure in music varies from person to person; there-
fore, a small experiment was conducted to obtain an estimate
of the theoretically achievable accuracy level. A subset of 30
pieces in the TUTstructure07 data set was analyzed by both an-
notators independently. Then one set of annotations was consid-
ered as the ground truth while the other was evaluated against it.
Despite the small size of the data set, this provides an approxi-
mation of the level of “human-like performance.”

F. Evaluation Results

Tables I–III show the main evaluation results on the different
data sets. When comparing the results of tasks with different
segmentation levels, the results suggest that the segment border
candidate generation is a crucial step for the overall perfor-
mance. If there are too many extraneous candidate locations,
as the case is in “salted” case, the performance drops. The dif-
ference between “salted” and “full” is surprisingly small, sug-
gesting that the border candidate generation is able to recover
the candidate locations relatively accurately.

The performance increase from the reference system is sta-
tistically significant in the data sets of TUTstruc-
ture07 and RWC Pop, but not in UPF Beatles. The performance
difference between postprocessing labeling and integrated la-
beling is not significant when evaluated with pairwise F-mea-
sure or with over- and under-segmentation measures. Based on
the labeling measure, the improvement with integrated labeling
in TUTstructure07 and UPF Beatles data sets is statistically sig-
nificant, whereas in RWC Pop it is not.
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TABLE IV
SEGMENT BOUNDARY RETRIEVAL PERFORMANCE (%)

TABLE V
SEGMENTATION STATISTICS ON THE USED DATA SETS

Table IV presents the segment boundary retrieval results for
both systems on all data sets. A boundary in the result is judged
as a hit if it is within 3 s from the annotated border as suggested
in [22] and [28].

More direct analysis of the annotated structures and the
obtained results is provided in Table V. The table provides
the average number of segments in the pieces in the data sets,
the average number of groups, and the average duration of a
segment. The reference system groups the generated segments
using fewer groups than was annotated, while the proposed
system uses extraneous groups. Similar under-grouping be-
havior of the proposed system can be seen in the statistics for
UPF Beatles. Both systems under-segment the result in RWC
Pop. This may be partly because the structures in the data have
more and shorter segments.

A detailed analysis on the labeling performance is given in
Tables VI–VIII. The values describe for each ground truth label
the average amount of its duration that was correctly recovered
in the result, e.g., value 50% denotes that, on the average, half
of the frames with that label were assigned the same label in the
result. The tables present the result on all data sets in percents
for the labeling only task and for the full analysis with integrated
labeling model. The labels are ordered in descending order by
their occurrences, the most frequently occurring on top.

G. Discussion

When comparing the results of different data sets, the differ-
ences in the material become visible. The performance of the
proposed method measured with the F-measure quite similar in
all data sets, but the recall and precision rates differ greatly: in
TUTstructure07 the two are close to each other, in UPF Bea-
tles the method over-segments the result, and in RWC Pop the
result is under-segmented. As the operational parameters were
selected based on the TUTstructure07 data, this suggests that
some parameter selection should be done for differing material.

Some of the earlier methods tend to over-segment the re-
sult and the segment duration had to be assigned in the method

TABLE VI
PER LABEL RECOVERY ON TUTSTRUCTURE07 (%)

TABLE VII
PER LABEL RECOVERY ON UPF BEATLES (%)

TABLE VIII
PER LABEL RECOVERY ON RWC POP (%)

“manually,” e.g., the reference method [22]. From this point of
view it is encouraging to note how the proposed method is able
to locate approximately correct length segments even though
there is no explicit information given of the appropriate seg-
ment length. However, the segment length accuracy differences
between the data sets suggest that some additional informa-
tion should be utilized to assist determining the correct segment
length.

It can be noted from Table I that the human baseline for the
performance given by the annotator cross-evaluation is surpris-
ingly low. Closer data analysis revealed that a majority of the
differences between the annotators was due to hierarchical level
differences. Some differences were also noted when a part oc-
currences contained variations: one annotator had used the same
label for all of the occurrences, while the other had created a
new group for the variations. It can be assumed that similar dif-
ferences would be encountered also with larger population ana-
lyzing same pieces.

IV. CONCLUSION

A system for automatic analysis of the sectional form of pop-
ular music pieces has been presented. The method creates sev-
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eral candidate descriptions of the structure and selects the best
by evaluating a fitness function on each of them. The resulting
optimization problem is solved with a novel controllably greedy
search algorithm. Finally, the segments are assigned with musi-
cally meaningful labels.

An important advantage of the proposed fitness measure
approach is that it distinguishes the definition of a good struc-
ture description from the actual search algorithm. In addition,
the fitness function can be defined on a high abstraction level,
without committing to specific acoustic features, for example.
The system was evaluated on three large data sets with manual
annotations and it outperformed a state-of-the-art reference
method. Furthermore, assigning musically meaningful labels
to the description is possible to some extent with a simple
sequence model.
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Appendix A
Dynamic Time Warping

Dynamic time warping (DTW) is a dynamic programming algorithm for time-aligning
two sequences, and it was used in speech recognition before HMMs gained success [Rab93].
The general idea is that there are two sequences X = x1,x2, . . . ,xNX and Y = y1,y2, . . . ,yNY

,
and a distance function d(xi,y j) to match two elements of the sequences. The prob-
lem is to determine the optimal alignment between the two sequences so that the total
mismatch between the aligned sequences is minimised. This optimisation is solved by
dividing the problem into smaller sub-problems that are solved optimally and then the
solution is extended at the larger level. The matching cost dDTW(i, j) of subsequences
up to indices i and j is defined recursively as

dDTW(i, j) = d(xi,y j)+min











C(1,1)+dDTW(i−1, j−1)

C(1,0)+dDTW(i−1, j)

C(0,1)+dDTW(i, j−1)

, (A.1)

where C(·, ·) is the transition cost for the local path step. The total cost of the optimal
alignment is returned by dDTW(NX,NY), and the actual alignment can be obtained
by storing the transition decisions and then backtracking the path to the beginning.
The given definition (A.1) with three possible path continuations is only one of the
many possible local path constraints, but perhaps the simplest to understand. The
same principle is behind the Viterbi algorithm used to decode HMMs: the matched
sequences are only changed to represent possible states and the observation sequence.
The local distance d(xi,y j) is replaced by the log-likelihood of the ith state to have
produced the jth observation, the transition cost is replace the the state transition log-
probabilities, and instead of minimising the function, it is maximised.
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Appendix B
Complexity Analysis of Structural
Descriptions

FOR B border candidates and keeping end points fixed, there are

(

B−2
b

)

possible

ways to select b borders to produce the segmentation. In total, there are

H(B) =
B−2

∑
b=0

(

B−2
b

)

= 2B−2 (B.1)

ways to segment the piece. The Stirling number of second kind states that given S =
b+1 segments, they can be distributed into G non-empty groups in

{

S

G

}

=
1

G!

G

∑
i=0

(−1)G−i

(

G

i

)

iS (B.2)

ways [Gol72, p. 824]. Therefore, having B border candidates, there are

C(B) =
B−2

∑
b=0

(

B−2
b

)

b+1

∑
G=1

{

b+1
G

}

(B.3)

possible segmentations and groupings of the segments.
Setting a value for the maximum number GMAX of different groups that can be

created, (B.3) is modified slightly to

C(B,GMAX) =
B−2

∑
b=0

(

B−2
b

)min(b+1,GMAX)

∑
G=1

{

b+1
G

}

. (B.4)

If the labelling is included in the fitness function (3.24) and the labels can be assigned
from a set of size J, there are

C(B,GMAX,J) =

B−2

∑
b=0

(

B−2
b

)min(b+1,GMAX)

∑
G=1

{

b+1
G

}

J!
max(0,J−G)!

(B.5)
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Figure B.1: Number of descriptions as a function of number of border candidates in the case
the labelling is integrated in the search (+) and in post-process labelling after only restricting
the maximum number of segment groups (�) when the number of possible labels is set to
J = 13.

different structural descriptions. If the maximum number of usable groups is deter-
mined from the number of possible labels, i.e., GMAX = J the above can be simplified
into

C(B,J,J)

=
B−2

∑
b=0

(

B−2
b

)min(b+1,J)

∑
G=1

{

b+1
G

}

J!
(J−G)!

. (B.6)

The search space size increase caused by the integrated labelling is illustrated in
Fig. B.1. The graphs represent the number of different descriptions as a function of
the border candidate count. The maximum number of groups GMAX was set to 13 to
correspond to the value used in the evaluation with TUTstructure07 data set. The line
marked with + is the number of descriptions if the labelling is integrated to the search,
and the line marked with � is the number of descriptions if the labelling is done as
post-processing. The computational load of the post-process labelling is negligible
compared to the description search and is omitted from the graphs.
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The time is gone.
The song is over.
Thought I’d something more to say.

Time, R. WATERS 1973




