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Abstract. This paper describes a method for labelling structural parts of a mu-

sical piece. Existing methods for the analysis of piece structure often name the

parts with musically meaningless tags, e.g., “p1”, “p2”, “p3”. Given a sequence

of these tags as an input, the proposed system assigns musically more meaningful

labels to these; e.g., given the input “p1, p2, p3, p2, p3” the system might produce

“intro, verse, chorus, verse, chorus”. The label assignment is chosen by scoring

the resulting label sequences with Markov models. Both traditional and variable-

order Markov models are evaluated for the sequence modelling. Search over the

label permutations is done with N-best variant of token passing algorithm. The

proposed method is evaluated with leave-one-out cross-validations on two large

manually annotated data sets of popular music. The results show that Markov

models perform well in the desired task.

1 Introduction

Western popular music pieces often follow a sectional form in which the piece is con-

structed from shorter units. These units, or musical parts, may have distinct roles on

the structure of the piece, and they can be named based on this role, for example, as

“chorus” or “verse”. Some of the parts may have several occurrences during the piece

(e.g., “chorus”) while some may occur only once (e.g., “intro”).

To date, several methods have been proposed to perform automatic analysis of the

structure of a musical piece from audio input, see [1] or [2] for a review. Majority

of the methods do not assign musically meaningful labels to the structural parts they

locate. Instead, they just provide information about the order, possible repetitions, and

temporal boundaries of the found parts. There also exist a few methods that utilise

musical models in the analysis, and the resulting structure descriptions have musically

meaningful labels attached to the found parts [3,4].

The musical piece structure can be used, for example, in a music player user in-

terface allowing the user to navigate within the piece based on musical parts [5]. The

results of a user study with a music player having such a navigation ability suggest that

the parts should be labelled meaningfully. The additional information of knowing which

of the parts is for instance “chorus” and which is “solo” was judged to be valuable [6].

The proposed method does not perform the musical structure analysis from audio,

but only labels structural descriptions and should be considered as an add-on or an

extension to existing structure analysis systems. So, the problem to be solved here is
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p1,p2,p3,p2,p3,p4

SYSTEM

intro, verse, chorus, verse...

p1,p2,p2,p3,p2,p2 verse, chorus, chorus, solo....

Fig. 1. Basic idea of the system. The system assigns meaningful labels to arbitrary tags

based on a musical model. The mapping from tags to labels is determined separately

for each input.

how to assign musically more meaningful part labels when given a sequence of tags

describing the structure of a musical piece. The operation is illustrated in Figure 1. As

an example, the structure of the piece “Help!” by The Beatles is “intro, verse, refrain,

verse, refrain, verse, refrain, outro”, as given in [7]. A typical structure analysis system

might produce “p1,p2,p3,p2,p3,p2,p3,p4” as the result, which then would be the input

to the proposed system. If the system operation was successful, the output would be the

assignment: “p1→ intro, p2→ verse, p3→ refrain, p4→ outro”.

It is often said more or less seriously that popular music pieces tend to be of the same

form, such as “intro, verse, chorus, verse, chorus, solo, chorus”.1 The proposed method

aims to utilise this stereotypical property by modelling the sequential dependencies

between part labels (occurrences of musical parts) with Markov chains, and searching

the label assignment that maximises the probability of the resulting label sequence.

Evaluation show that the sequential dependencies of musical parts are so informative

that they can be used in the labelling.

The rest of the paper is structured as following: Sect. 2 describes the proposed

method. The labelling performance of the method is evaluated in Sect. 3. Sect. 4 gives

the conclusions of the paper.

2 Proposed Method

The input to the system is a sequence of tags R1:K ≡ R1,R2, . . . ,RK , and the problem is

to assign a musical label to each of the unique tags so that no two tags are assigned the

same label. This assignment is defined as an injective mapping function f : T → L from

input set T of tags to the output set L of musically meaningful labels, as illustrated in

Figure 2. The mapping function transforms the input tag sequence R1:K into a sequence

of labels f (R1:K) = S1:K .

The proposed methods assumes that the musical parts depend sequentially on each

other in the form of a Markov chain and that it is possible to predict the next musical

part given a finite history of the preceding parts. This predictability is used to score

different mapping alternatives and the best mapping is then given as the output of the

system.

1 Though statistics from two data sets of popular music pieces show that the structures of the

pieces are more heterogeneous than was initially expected, see Sect. 3.1.
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Fig. 2. An example of the mapping function f : T → L. All tags in T are mapped to one

label in L, but some labels in L may remain unused.

2.1 Markov Models

Markov models assume that the probability of a continuation Si for sequence S1:(i−1)

depends only on a finite history of the sequence S(i−(N−1)):(i−1) instead of the full his-

tory, i.e., p(Si|S1:(i−1)) = p(Si|S(i−(N−1)):(i−1)), where (N−1) is the length of the used

history. This is also referred as the order of the resulting Markov model and gives rise

to the alternative name of N-grams. Based on the Markov assumption, the overall prob-

ability of a sequence S1:K is obtained by

p(S1:K) =
K

∏
k=1

p(Sk|S(k−(N−1)):(k−1)) . (1)

In the beginning of the sequence where there is not enough history available, it is pos-

sible to use a lower order model or pad the sequence from the beginning with a special

symbol. [8]

The total N-gram probability of (1) is used to score different mapping functions by

evaluating it for the output sequences after the mapping f (R1:K) = S1:K . The target is to

find the mapping function fOPT that maximises the total probability

fOPT = argmax
f

{p( f (R1:K))}, f : T → L injective . (2)

2.2 Optimisation Algorithm

The maximisation problem is solved by using M-best2 variant of token passing (TP)

algorithm, more frequently used in speech recognition [9]. The main principle of TP

is that tokens t are propagated time synchronously between the states of the model.

Each token knows the path it has travelled and accumulates the total probability over it.

Based on the path probabilities, the M tokens with the highest probabilities are selected

for propagation in each state, they are replicated and passed to all connected states. The

token path probabilities are updated based on the transition probabilities between the

states.

2 Better known as the N-best token passing. The name is adjusted to avoid possible confusion

with N-grams.
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The state space of TP is formed from the possible labels in L, and the paths of

the tokens encode different mapping functions. The optimisation of (2) can be done by

searching the most probable path through the states (labels) defining the state transition

probabilities with

p
(

fk(Rk) = li|R1:(k−1), fk−1

)

=

{

0, if DME

p(li| fk−1(R1:(k−1))), otherwise
, (3)

where DME denotes the predicate “different mapping exists”, which is used to guarantee

that the mapping function is injective, and it is defined by

DME = ∃ j : (R j = Rk ∧ fk−1(R j) 6= li)∨ (R j 6= Rk ∧ fk−1(R j) = li) , j ∈ [1,k−1] . (4)

In the equations above, p( fk(Rk) = li|R1:k, fk−1) denotes the probability of a token to

transition to the state corresponding to label li after it has travelled the path fk−1(R1:(k−1)).
The N-gram probability for label li when the preceding context is fk−1(R1:(k−1)), is

denoted as p(li| fk−1(R1:(k−1))). As the mapping is generated gradually, fk is used to

denote the mapping after handling the sequence R1:k.

Pseudocode of the algorithm is given in Algorithm 1. It searches a mapping function

f : T → L from tags in input sequence to the possible label set. For each label l ∈ L, the

probability π0(l) of that label to be the first label in the sequence and the probability the

label the be the last πE(l) are defined. In the middle of the sequence, the probability of

the continuation given the preceding context is obtained from (3).

As the mapping depends on decisions done within the whole preceding history,

the Markov assumption is violated and the search cannot be done with more efficient

methods guaranteeing a globally optimal solution. This sub-optimality hinders also the

traditional TP, since it might be that the optimal labelling may not be the best one ear-

lier in the sequence, and is therefore pruned during the search. The M-best variant of

TP alleviates this problem by propagating M best tokens instead of only the best one.

If all tokens were propagated, the method would find the globally optimal solution, but

at a high computational cost. With a suitable number of tokens, a good result can be

found with considerably less computation than with an exhaustive search. An exhaus-

tive search was tested, but due to the large search space, it proved to be very inefficient.

However, it was used to verify the operations of TP with a subset of the data. In that

subset, the TP showed to find the same result as the exhaustive search in almost all the

cases when storing 100 tokens at each state.

2.3 Modelling Issues

The main problem with N-gram models is the amount of training material needed for

estimating the transition probabilities: the amount increases rapidly as a function of the

number of possible states and the length of used history (given A possible states and

history length of N, there exist AN probabilities to be estimated). It may happen that

not all of the sequences of the required length occur in the training data. This situation

can be handled by back-off (using shorter context at those cases), or by smoothing

(assigning a small amount of the total probability mass to the events not encountered in

the training material).
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Algorithm 1: Search label mapping f : T → L

Input sequence R1:K .

Label space L. Associated with each label l ∈ L, there are input buffer Il and output buffer

Ol .

Tokens t with probability value t.p and label mapping function t. f .

for l ∈ L do // initialisation
Insert t to Il and assign t.p← π0(l)

for k← 1 to K do

for l ∈ L do

Ol ← Il // propagate to output

Clear Il

for l ∈ L do // transition source

for t ∈ Ol do

for l̃ ∈ L do // transition target

t̃← t // copy token

if ∃ j : R j = Rk, j ∈ [1,k−1] then

if t̃. f (Rk) = l̃ then

t̃.p← t̃.p× p(t̃. f (Rk)|t̃. f (R1:(k−1))) // N-gram probability

else
t̃.p← 0

else

if ∀ j : t̃. f (R j) 6= l̃, j ∈ [1,k−1] then

Set t̃. f (Rk)← l̃

t̃.p← t̃.p× p(t̃. f (Rk)|t̃. f (R1:(k−1)))

else
t̃.p← 0

Insert t̃ to Il̃

for l ∈ L do
Retain M best tokens in Il

for l ∈ L do
Ol ← Il

for t ∈ Ol do
t.p← t.p×πE(l)

Select token t̂ with the largest t.p

return t̂. f

In some cases, it is possible that increasing the length of the context does not pro-

vide any information compared to the shorter history. Variable-order Markov models

(VMMs) have been proposed to replace traditional N-grams. Instead of using a fixed

history, VMMs try to deduce the length of the usable context from the data. If increas-

ing the length of the context does not improve the prediction, then only the shorter

context is used. VMMs can be used to calculate the total probability of the sequence in

the same manner as in (1), but using a variable context length instead of fixed N. [10]
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3 Evaluations

Performance of the labelling method was evaluated in simulations using structural de-

scriptions from real music pieces.

3.1 Data

The method was evaluated on two separate data sets. The first, TUTstructure07, was col-

lected at Tampere University of Technology. The database contains a total of 557 pieces

sampling the popular music genre from 1980’s to present day.3 The musical structure of

each piece was manually annotated. The annotation consists of temporal segmentation

of the piece into musical parts and naming each of the parts with musically meaningful

labels. The annotations were done by two research assistants with some musical back-

ground. The second data set, UPF Beatles, consists of 174 songs by The Beatles. The

original piece structures were annotated by musicologist Alan W. Pollack [7], and the

segmentation time stamps were added at Universitat Pompeu Fabra (UPF)4.

Though many of the forms are thought to be often occurring or stereotypical for

music from pop/rock genre, the statistics from the data sets do not support this fully.

In TUTstructure07, the label sequences vary a lot. The three most frequently occurring

structures are

– “intro”, “verse”, “chorus”, “verse”, “chorus”, “C”, “chorus”, “outro”

– “intro”, “A”, “A”, “B”, “A”, “solo”, “B”, “A”, “outro”

– “intro”, “verse”, “chorus”, “verse”, “chorus”, “chorus”, “outro”,

each occurring four times in the data set. 524 (94%) of the label sequences are unique.

With UPF Beatles, there is a clearer top, but still there is a large body of sequences

occurring only once in the data set. The most frequent label sequence is

– “intro”, “verse”, “verse”, “bridge”, “verse”, “bridge”, “verse”, “outro”,

occurring seventeen times in the data set. 135 (78%) of the label sequences are unique.

3.2 Training the Models

Transition probabilities for the models were trained using the data sets. Each label se-

quence representing the structure of a piece was augmented with special labels “BEG”

in the beginning, and “END” in the end. After the augmentation, the total number of

occurrences of each label in the data set was counted. Because there exists a large num-

ber of unique labels, some of which occur only once in the whole data set, the size

of the label alphabet was reduced by using only the labels that cover 90% of all oc-

currences. The remaining labels were replaced with an artificial label “MISC”. The

zero-probability problem was addressed by using Witten-Bell discounting (Method C

in [11]), except for the VMMs.

3 List of the pieces is available at

<http://www.cs.tut.fi/sgn/arg/paulus/TUTstructure07_files.html>.
4 <http://www.iua.upf.edu/%7Eperfe/annotations/sections/license.html>

<http://www.cs.tut.fi/sgn/arg/paulus/TUTstructure07_files.html>
<http://www.iua.upf.edu/%7Eperfe/annotations/sections/license.html>
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In the original data sets, there were 82 and 52 unique labels (without the augmen-

tation labels “BEG”, “END”, and “MISC”) in the data set of TUTstructure07 and UPF

Beatles, respectively. After augmentation and set reduction the label set sizes were 15

and 10. On the average, there were 6.0 unique labels and 12.1 label occurrences (mu-

sical parts) in a piece in TUTstructure07. The same statistics for UPF Beatles were 4.6

and 8.6. This suggests that the pieces in TUTstructure07 were more complex or they

have been annotated on a finer level.

3.3 Simulation Setup

In simulations, the structural annotations from the data base were taken. The original

label sequences (with the “MISC” substitution) was taken as the ground truth, while the

input to the labelling algorithm was generated by replacing the labels with letters.

To avoid overlap in train and test sets whilst utilising as much of the data as possi-

ble, simulations were run using leave-one-out cross-validation scheme. In each cross-

validation iteration one of the pieces in the data set was left as the test case while the

Markov models were trained using all the other pieces. This way the model never saw

the piece it was trying to label.

With conventional N-grams, the length of the Markov chain was varied from 1 to

5, i.e., from using just prior probabilities for the labels to utilising context of length 4.

With VMMs, several different algorithms were tested, including: decomposed context

tree weighting (DCTW), prediction by partial matching - method C, and a variant of

Lempel-Ziv prediction algorithm. The implementations for these were provided by [12].

It was noted that DCTW worked the best of these three, and the result are presented only

for it. The maximum context length for VMMs was set to 5. Also the maximum context

lengths of 3 and 10 were tested, but the former deteriorated the results and the latter

produced practically identical results with the chosen parameter value.

3.4 Evaluation Metrics

When evaluating the labelling result, confusion matrix C for the labels is calculated. The

result of the best mapping function applied to the input sequence f (R1:K) and the ground

truth sequence S1:K are compared. At each label occurrence Si, i∈ [1,K], the value in the

element [Si, f (Ri)] of the confusion matrix is increased by one. This applies weighting

for the more frequently occurring labels. The confusion matrix is calculated over all

cross-validation iterations. The average hit rate for a target label was calculated as a

ratio of correct assignments (main diagonal of confusion matrix) to total occurrences of

the label (sum along rows of the confusion matrix).

3.5 Results

The effect of varying the context length in N-grams is shown in Tables 1 and 2 for TUT-

structure07 and UPF Beatles, respectively. In addition to the different N-gram lengths,

the tables contain also the result for the best VMM (DCTW with maximum memory

length of 5). The tables contain the percentage of correct assignments for each label



8 Jouni Paulus and Anssi Klapuri

Table 1. Performance comparison on TUTstructure07 with traditional Markov models

of different order. The best VMM result is given for comparison. The given values are

the average hit rates in percents. The row average is the total average of correct part

labels. The best result on each row is typeset with bold.

label N=1 N=2 N=3 N=4 N=5 VMM

chorus 68.1 76.3 80.8 76.6 74.9 78.5

verse 42.3 62.4 64.4 64.9 66.0 66.0

bridge 17.7 38.6 45.6 47.4 44.4 43.7

intro 27.6 97.6 98.2 97.8 97.8 96.4

pre-verse 4.2 40.7 46.3 43.3 41.7 43.3

outro 13.9 98.3 98.6 97.8 92.1 98.3

c 0.0 38.0 42.1 47.4 54.8 49.3

theme 0.0 0.0 2.7 4.4 3.3 3.3

solo 0.0 4.4 7.2 16.0 18.2 14.9

chorus_a 0.0 0.0 7.5 15.7 11.2 3.0

a 0.0 0.0 32.5 31.7 27.0 29.4

chorus_b 0.0 0.9 5.3 12.4 7.1 2.7

MISC 12.6 29.5 38.3 37.1 40.3 38.3

average 30.9 55.6 60.3 59.9 59.5 59.8

used. The total average of correct hits (“average”) is calculated without the augmenta-

tion labels “BEG” and “END”.5

Based on the results in Tables 1 and 2, it can be seen that increasing the order

of traditional Markov model from unigrams to bigrams produce a large increase in

the performance. The performance continues to increase when the context length is

increased, but more slowly. With TUTstructure07, the performance peak is at N = 3,

whereas with UPF Beatles, the maximum with traditional N-grams can be obtained with

N = 4. It was also noted that with TUTstructure07 the use of VMM did not improve the

result. However, there is a small performance increase with VMMs in UPF Beatles.

Even though the use of VMM did not improve the result with TUTstructure07,

there was one clear advantage with them: it was possible to use longer context in the

models. With traditional N-grams, the transition probabilities will become very sparse

even with bigrams. The large blocks of zero provide no information whatsoever and

only consume memory. With VMMs, the context length is adjusted according to the

available information.

From the results, it is notable that “chorus” can be labelled from the input over

80% accuracy, and “verse” almost at 65% accuracy in TUTstructure07. In UPF Beatles

“verse” could be labelled with 87% accuracy and “refrain” with 71% accuracy.

5 For an interested reader, the confusion matrices are given in a document available at <http://

www.cs.tut.fi/sgn/arg/paulus/CMMR08_confMats.pdf>.

<http://www.cs.tut.fi/sgn/arg/paulus/CMMR08_confMats.pdf>
<http://www.cs.tut.fi/sgn/arg/paulus/CMMR08_confMats.pdf>


Labelling the Structural Parts of a Music Piece with Markov Models 9

Table 2. Performance comparison on UPF Beatles with traditional Markov models of

different order. The best VMM result is given for comparison. For description of the

data, see the Table 1.

label N=1 N=2 N=3 N=4 N=5 VMM

verse 72.4 79.9 86.7 85.7 83.7 87.5

refrain 30.1 32.1 62.2 66.3 68.7 70.7

bridge 36.7 40.7 78.0 74.0 74.0 70.6

intro 0.0 93.2 88.9 92.0 93.8 93.2

outro 0.0 99.3 99.3 97.2 93.0 97.9

verses 0.0 16.1 48.2 50.0 44.6 44.6

versea 0.0 5.9 7.8 17.6 21.6 5.9

MISC 0.0 15.9 22.3 25.5 23.6 22.3

average 33.5 58.9 72.1 72.8 72.1 73.0

3.6 Discussion

It should be noted that the proposed system performs the labelling purely based on

a model of sequential dependencies of musical parts. Incorporating some acoustic in-

formation might improve the result somewhat (e.g., energetic repeated part might be

“chorus”). Also, the knowledge of the high-level musical content, such as the lyrics,

instrumentation or chord progressions, could provide valuable information for the la-

belling. However, the extraction of these from the acoustic input is still a challenging

task, as well as creating a usable model for them. In addition, when discussing the

principles used when assigning the ground truth labels with the annotators, the main

cue was the location of the part in the “musical language model”. Incorporating these

other information sources in addition to the sequence model should be considered in

the future work.

The difference in performance between the two data sets remains partly an open

question. The main reason may be that the label sequences in TUTstructure07 are more

diverse, as could be seen from the statistics presented in Sec. 3.1 (94% of sequences in

TUTstructure are unique, compared to 78% in UPF Beatles). We tested the hypothesis

that is was due to the smaller label set (10 vs. 15) by using only as many of the most

frequent labels as were used with UPF Beatles. As a slight surprise, the performance

on the remaining set was even worse compared label-wise to the larger set. The average

result, however, increased slightly because the most rarely occurring (and most often

mis-labelled) labels were omitted.

4 Conclusion

This paper has proposed a method for assigning musically meaningful labels to the

parts found by music structure analysis systems. The method models the sequential

dependencies between musical parts with Markov models and uses the models to score

different label assignments. The paper has proposed applying M-best token passing

algorithm to the label assignment search to be able to perform the assignment without
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having to test all possible permutations. The proposed method has been evaluated with

leave-one-out cross-validations on two data sets of popular music pieces. The evaluation

results suggest that the models for the sequential dependencies of musical parts are

so informative even at low context lengths that they can be used alone for labelling.

The obtained labelling performance was reasonable, even though the used model was

relatively simple.
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