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ABSTRACT
A system is described which measures the similarity of two arbi-

trary rhythmic patterns. The patterns are represented as acoustic

signals, and are not assumed to have been performed with similar

sound sets. Two novel methods are presented that constitute the

algorithmic core of the system. First, a probabilistic musical meter

estimation process is described, which segments a continuous

musical signal into patterns. As a side-product, the method outputs

tatum, tactus (beat), and measure lengths. A subsequent process

performs the actual similarity measurements. Acoustic features are

extracted which model the fluctuation of loudness and brightness

within the pattern, and dynamic time warping is then applied to

align the patterns to be compared. In simulations, the system

behaved consistently by assigning high similarity measures to sim-

ilar musical rhythms, even when performed using different sound

sets.

1.  INTRODUCTION
Music is composed, to an important degree, of patterns that
are repeated and transformed. Patterns occur in all of
music’s constituent elements, including melody, rhythm, har-
mony, and texture. —Rowe, [1, p.168]

Pattern induction and matching plays an important role in music

analysis and retrieval. Especially melodic fragment matching has

received much attention in recent years [1,2,3,4]. However, mea-

suring the similarity of rhythmic patterns has been almost a

neglected problem. Work on the computation analysis of musical

rhythms has concentrated almost entirely on beat detection and

time quantization (see [5,6] for recent examples). Measuring the

similarity of rhythmical patterns can be applied e.g. in musical

database searches and in music context analysis in general [7].

It is intriguing to ask what makes two rhythms similar or dissimilar

from a perceptual point of view. The problem has been addressed

by musicologists in experiments, where rhythmic patterns were

presented for human listeners for similarity judgments or for repro-

duction [8,9]. Obtained dimensions of dissimilarity have been

interpreted to be e.g. “meter”, “rapidity”, “uniformity–variation”,

“simplicity–complexity” etc. [8]. A problem with these findings is

that it is very difficult to encode and quantify them into a computer

model. In following, a more pragmatic approach is taken.

The aim of this paper is to propose a method for measuring the

similarity of two rhythmic patterns which are performed using

arbitrary drum/percussive sounds, and presented as two continuous

acoustic signals. A preliminary process estimates the musical

meter and flags pattern boundaries. This is followed by the actual

similarity measurements. No a priori knowledge of the rhythmic

pattern classes is involved in the comparison. Thus the method is

not confined to e.g. Western music.

The task described above can be decomposed into a number of

smaller requirements. First, two identical rhythmic patterns have to

be recognized as similar even when played with different sounds.

This has to do with the acoustic features used to describe the sig-

nal. Secondly, the patterns have to be aligned in time and tempo

differences have to be reconciled. The common approach using

hidden Markov models (HMMs) is not appropriate here, since only

one instance of both rhythms is given, i.e., we are not aiming to

recognize predetermined rhythm classes, but to compare two indi-

vidual data sets. Also, the duration model of conventional HMMs

is very loose, basically allowing only exponentially decaying dis-

tributions. For these reasons, dynamic time warping (DTW) was

employed. DTW allows a certain amount of flexibility in time

alignment, and it has been successfully used to handle a third sub-

problem of rhythmic pattern matching: musical variations. Similar-

ity measurements must be robust to inserting, deleting, and

substituting reasonable amounts of atomic elements.

Dynamic time warping is a dynamic programming algorithm that

is based on sequental decision process. It has been originally used

in template matching in speech and image pattern recognition since

1960’s. Later on it has been replaced by HMMs in speech recogni-

tion. Dynamic programming has been successfully used in match-

ing melodic patterns. Dannenberg used it for real-time

accompaniment of keyboard performances [2]. The approach was

further developed by Stammen and Pennycook [3]. More recent

systems have sought mechanisms for pattern induction from

repeated exposure, followed by pattern matching [1].

Overview of the system to be presented is shown in Figure 1. The

different modules, preprocessing, pattern segmenting, feature

extraction, and the DTW are now separately discussed.

2.  METHODS

2.1 Pre-processing
An optional preprocessing step in the system is preprocessing with

a sinusoidal model [11]. When analyzing percussive rhythms in

real-world musical signals, it is advantageous to suppress the other

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee pro-

vided that copies are not made or distributed for profit or commer-

cial advantage and that copies bear this notice and the full citation

on the first page.

(c) 2002 IRCAM – Centre Pompidou

 Figure 1. Overview of the system.
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(pitched) musical instruments prior to rhythm processing. Drum

sounds in Western music typically have a clear stochastic noise

component [10]. In addition, some drums have strong harmonic

vibration modes and they have to be tuned. In the case of tom toms,

for example, approximately half of the spectral energy is harmonic.

Nevertheless, these sounds are still recognizable based on the sto-

chastic component only.

A sinusoids plus noise spectrum model was used to extract the sto-

chastic parts of acoustic musical signals. The model, described in

[12], estimates the harmonic parts of the signal and subtracts them

in time domain to obtain a noise residual. Even though some non-

drum parts of signal end up to the noise residuals y1(k) and y2(k),

the level of drums in relation to other instruments is considerably

enhanced. The amount of non-drum sounds in the residual does not

complicate the distance measuring too much since we are not inter-

ested in individual events, but in the entire rhythmic sensation.

2.2 Pattern Segmenting
An essential step before similarity measurements is to segment the

continuous time domain signal into chunks that represent patterns.

A brute force matching of all possible patterns of all lengths would

be computationally too demanding.

Pattern segmenting is a part of a rather complicated musical meter

estimation process, which is more or less independent of the subse-

quent similarity measurements. Earlier algorithms for automatic

meter extraction have been developed e.g. by Brown and Temper-

ley [13,14]. The estimator proposed here has not been previously

published and is therefore now briefly introduced. The module

takes the acoustic musical signal without preprocessing as input,

and outputs the lengths of the tactus (beat) and the musical mea-

sure. The latter is interpreted as the rhythmic pattern length. Also,

pattern phase is estimated, in order to be able to list a vector of pat-

tern boundary candidates b1(p) and b2(p).

2.2.1 Mid-level Representation
A signal model is used which retains the metric percept of most

musical signals while significantly reducing the amount of parame-

ters needed to describe the signal. Only amplitude envelopes of the

signal at eight sub-bands are stored. The general idea that rhythmic

percept is preserved with this signal model has been earlier moti-

vated by Scheirer in [15].

First, a bank of sixth-order Butterworth filters is applied to divide

the input signal into eight non-overlapping bands. The lowest band

is obtained by lowpass filtering at 100 Hz cutoff, and the seven

higher bands are distributed uniformly on a logarithmic frequency

scale between 100 Hz and half the sampling rate. Magnitude

responses of the filters sum approximately to unity, and group

delays of the filters are compensated for.

At each subband, the signal is half-wave rectified, squared, and

decimated by factor 45 to 980 Hz sampling rate. Then a fourth-

order Butterworth lowpass filter with 20 Hz cutoff frequency is

applied to obtain the amplitude envelope of the signal at each fre-

quency channel. Finally, dynamic compression is applied to obtain

compressed amplitude envelopes vc(k) at channels c at time k:

, (1)

where zc(k) is the signal before compression and J=1000 is a con-

stant. The value of J is not critical, but merely determines the

dynamic range after compression and ensures that numerical prob-

lems do not arise. The amplitude of the original wideband input

signal x(k) is controlled by normalizing it to have zero mean and

unity standard deviation before any of the described processing

takes place.

2.2.2 Periodicity Detection
Envelope signals vc(k) at each frequency channel are subject to

periodicity analysis. For this purpose, we employ an algorithm

which has been originally proposed by de Cheveigné and Kawa-

hara for fundamental frequency estimation [16]. First, a difference

function is formed:

, (2)

where K=4900 is the size of the time frame. In the decimated sam-

pling rate, this corresponds to five seconds. The function is then

mean-normalized to obtain :

for τ=0 (3)

otherwise

This function is closely related to the inverse of the autocorrelation

function, but was found to behave much more nicely due to the

normalization. Minima of  indicate periods.

The bandwise functions  are then summarized over channels

(4)

where Ac is the inverse of the minimum value of over τ at

channel c. The value Ac correlates strongly with the strength of the

periodicity at channel c, and brings an important performance

improvement by implementing an adaptive weighting of different

frequency channels.

The function s(τ) serves as the source of information for musical

meter estimation. Figure 2 illustrates a typical instance of s(τ) for a

piece from soft rock genre (BeeGees: Alone). The actual beat and

pattern periods are indicated with vertical lines. Please note that

dips in s(τ) indicate periods.

2.2.3 Selecting Tatum, Tactus, and Measure Lengths
Musical meter is estimated at three levels: tatum, tactus (beat), and

the musical measure. The term tatum, or, time quantum, refers to

the shortest durational values in a musical composition that are still

more than incidentally encountered. The other durational values

(with few exceptions) are integer multiples of the tatum. Tactus is

perceptually the most prominent metrical level, also known as beat,
or the foot tapping rate. Musical measure is a still higher metrical

level, correlated with the harmonic change rate, and most impor-

tantly, can be used to define the rhythmic pattern length. All the

three levels are required to find the musical measure boundaries,

i.e., the patterns.

Selection of the tatum period is done in a straightforward manner.

We denote by S(f) the discrete Fourier transform of s(τ). Tatum is

determined according to the maximum of the function

in the range between 1.7 Hz and 20 Hz. Tatum period is the inverse

vc k( ) 1 Jzc k( )+[ ]ln=

dc' τ( ) vc k( ) vc k τ+( )–[ ] 2
k 1=
K∑=

dc τ( )

dc τ( ) 1=
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τ
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τ∑

---------------------------------=
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 Figure 2. A typical instance of the function s(τ). The actual
tactus and measure periods are indicated with vertical lines.
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of the frequency corresponding to the maximum value. The ratio-

nale behind weighting with is to implement a proper prefer-

ence towards higher frequencies. Otherwise e.g. the tactus or

measure period may be detected.

Tactus period is calculated in a probabilistic manner using three

probability distributions. The main likelihood function is obtained

from s(τ), it is, from the observation. The probability of a tactus

period τ given s(τ) is defined to be proportional to:

. (5)

The concept of proportionality has to be used, since the integral

over is not guaranteed to sum to unity. The above likeli-

hood is then multiplied by a priori probabilities measured from

actual data by several authors. As suggested by Parncutt [17], we

apply log-normal distribution for tactus periods, written

(6)

where the average tactus period µ was set to 600 ms and σ=0.25.

The third probability distribution governing beat period probabili-

ties comes from the tatum information. The conditional probability

distribution for tactus periods τ given tatum period τ0 is defined as

a mixture of Gaussian distributions, written

(7)

where σ0=0.3 and the weights for different multiples m of tatum,

. (8)

The exact weight values are not critical, but simply realize a ten-

dency towards binary or ternary subdivisions of the tactus. For

example, the tatum multiples m={1,2,4} have a weight 4/25, but

m=5 is assigned a weight 1/25 only. The overall likelihood of dif-

ferent tactus periods τ is then

, (9)

the maximum of which indicates the most likely tactus period.

Finally, the musical measure length which indicates the patterns, is

calculated in a manner analogous to tactus estimation. Likelihood

for different measure lengths τ given s(τ) is obtained directly from

Eq. (5). A priori probability distribution for measure lengths is cal-

culated from Eq. (6) by substituting τ=2.2 and σ=0.4. Finally, the

conditional probability of different measure lengths τ given the

estimated tactus period is calculated using Eq. (7), where tactus

period is substituted for τ0, and P(τ| τ0) gives the conditional prob-

ability. The three probabilities are combined according to Eq. (9).

For pattern extraction, we need, not only the pattern length, but

also its phase. This turned out to be even more difficult than finding

the pattern period. A simple yet satisfactory solution was to con-

struct a signal, where impulses are placed at pattern length distance

apart. This signal is then correlated with the compressed amplitude

envelope vc(k) at the lowest frequency channel, c=1. The highest

maximum in the resulting correlation function was used as a tem-

poral anchor for pattern beginning points.

2.3 Acoustic Features for Similarity Judgments
As shown in Fig. 1, the actual similarity measurement module gets

as input the two noise residual signals y1(k) and y2(k), and a list of

pattern boundaries. Because the pattern segmenting stage is not

guaranteed to be 100 % reliable, a couple of most probable pattern

lengths and phases are considered, one at a time, and two most

similar patterns are used to determine the similarity measure. How-

ever, in Simulations section the pattern segmentation and similarity

measurement stages are separately evaluated.

After we have isolated one pattern from both signals, acoustic fea-

ture extraction takes place in a series of consecutive 23 ms time

frames. There was no significant performance difference between

23 ms and 46 ms frame lengths, though. The frames are Hanning-

windowed and adjacent frames overlap 50 %.

2.3.1 Calculation of Features
The two most fundamental perceptual features of a individual

rhythmic events (in addition to their timing) are their perceived

loudness and brightness. Most musical rhythms, if not all, can be

identifiably played using only these two dimensions. In addition to

these two, an attempt was made to utilize the timbre information.

Loudness was modeled by calculating the mean square energy of

the signal in one frame, and then by taking a natural logarithm to

better correspond to the perceived loudness. More exactly,

, (10)

where K is the frame size and the value J=1000 is used for the

same practical purpose as in Eq. (1).

Spectral centroid has been found to corresponds to perceived

brightness of sounds. It is defined as the balancing point of the

spectral power distribution, and is typically calculated as the first

moment of the magnitude spectrum. As suggested by Eronen in

[18], a more robust feature is obtained by using a logarithmic fre-

quency scale. Spectral centroid is here calculated as follows. First,

the short-time power spectrum of the signal is calculated. Then a

vector U(b) is formed which contains the energies at sixth-octave

frequency bands b, however, limiting the minimum bandwidth to

one spectral line at the low frequencies. Spectral centroid is then

, (11)

where fc(b) is the center frequency of band b in Hertz, and B is the

number of bands in U(b). Finally, centroid values at the linear fre-

quency scale (Hz) are warped to a logarithmic scale simply by

using  as a feature.

Mel-frequency cepstral coefficients (MFCC) were extracted by ap-

plying the discrete cosine transform to the log-energy outputs of a

mel-scaling filterbank [20]. The filterbank was implemented by

calculating a discrete Fourier transform for the windowed wave-

form, and then simulating 40 triangular bandpass filters having

equal bandwidth on the mel-frequency scale [19]. The zeroth ceps-

tral coefficient is discarded, and a the next 15 coefficients are cate-

nated to the feature vectors.

2.3.2 Normalization of Feature Vectors
The above calculated features reflect the absolute “tone color” and

loudness in each individual time frame. As such, the features are

not appropriate for rhythmic similarity measurement without nor-

malization. Rhythmic events are perceived in their context and in

relation to each other. A sound may take the role of a “bass drum”

just because it is lower than the neighbouring events, not because

of its absolute timbre. This allows musicians to reproduce rhythms

with highly varying means, e.g. by tapping, scat-singing, or by

playing with drums. In following, we propose normalizations

f
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which transform the absolute feature values to a relative represen-

tation.

The energy feature L(n) over frames n=1,...,N is normalized by

subtracting the minimum value of L(n) over time, and scaling the

resulting curve to have a unity variance. This can be written

(12)

where L0 is the minimum value of L(n) over n and σL is the stan-

dard deviation of L(n).

The normalized loudness feature L’(n) is used to weight the other

features, in order that the tone color of soft or quiet segments

would not influence on the similarity judgments too much. The

weight vector λ(n) is equal to L’(n) divided by the sum over L’(n).

The normalization of the other features, spectral centroid and mel-

cepstrum coefficients, is performed as

, (13)

where is the standard deviation of λ(n)SC(n). The resulting

normalized features have zero mean and unity variance over time,

and have been weighted with λ(n).

Each individual feature over time has now been normalized to sim-

ilar mean and range, and can be later weighted in a controlled man-

ner in relation to other features. Also, the absolute tone color is

discarded, modeling only deviations up/down from the average

value. In this way, a tapped rhythm produces a feature vector which

is similar to that produced by playing drums.

The normalized feature vectors are collected to a matrix F(i,n)

which contains feature vectors over the time range of the pattern,

, (14)

where i is the index of each feature, and n is the frame index.

2.4 Dynamic Time Warping
Two feature vector sets F1(i,n) and F2(i,n) are matched using

dynamic time warping (DTW). The DTW matches the two data

sets by trying to find an optimal path through a matrix of points

representing all the possible time alignments between the feature

vector sets. The template feature vectors represent the row coordi-

nates and the unknown feature vectors represent the column coordi-

nates in the matrix. An example of a such matrix and the optimal

time alignment path is illustrated in Figure 3.

2.4.1 Local Path Constraints
The main idea of DTW is that it allows some amount of adaptabil-

ity when matching discrete data points of the two patterns. The

adaptability is achieved by allowing the path to vary the rate at

which it goes through the two patterns. The non-warping method

would always match feature vectors at the same indices from both

patterns. DTW for its behalf, allows the patterns to differ in length

and still it finds the best fit for them. Some kind of path constraint

is necessary, because it is not a good idea to allow the path to pro-

ceed randomly to a next point. Usually the set of possible next

points is limited by local path constraints so that the local time

warps become smaller.

The three different local path constraint types that were tried in this

implementation are shown in Figure 4. They were chosen from

among the eight different types presented in [19]. Type 1 local path

constraint allows such transitions that path proceeds precisely one

time frame only in template features or only one time frame in

unknown features or one in both at the same time. This constraint

is the most loose of all, because it allows the path even e.g. to pro-

ceed first horizontally through the matrix and then continue to the

end point with only vertical steps. Considering what this means in

terms of time warping, the path is quite inappropriate for template

matching, because it is very improbable situation that the first fea-

ture vector in template matches almost all of the unknown pattern

and all the rest of the template feature vectors are matched with just

the last one of the unknown pattern.

Type 3 allows only transitions which proceed in time frames both

in template feature vectors and in unknown feature vectors. This

type allows the matching to skip one feature vector either in tem-

plate or in unknown, but not in both at the same time.

The third local path constraint type used here is called Itakura, first

presented in [21]. Every transition proceeds in time frames in

unknown feature vectors. Transition does not have to proceed in

time frames in template feature vectors, but two consecutive hori-

zontal steps are forbidden. This way it is possible to avoid situation

where path gets stuck on a horizontal direction.

With type 3 and Itakura local path constraints it is implied to use

also global constraints to limit the area which we must go through

while searching for the optimal path. This is because the minimum

path slope is 0.5 and the maximum slope is 2. Taking this fact and

fixed start and end point of path in to consideration, the allowable

region on which the path can reside is a parallelogram. The aim of

the area reduction is simply to reduce the amount of possible paths

and therefore the amount of needed calculations. It is possible to

use similar global limitation with type 1 local path constraint, but it

is not directly implied by the local path constraint.

2.4.2 Path Length
The total length of the optimal time-warped path to a certain point

in the matrix is defined recursively by Eq. (15) below. The local

L' n( ) L n( ) L0–[ ] σ L⁄=

SC' n( ) λ n( )
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path constraint used in this equation is type 3. The formulas for the

other paths are analogous and can be found in [19]. The length of

the optimal path to point C(n,m) is defined so that it has the small-

est cumulative sum consisting of the feature vector difference cost

D(n,m) and the minimum of sum consisting of the path length to

the previous point and transition cost T from that point:

(15)

(16)

(17)

In Eq. (16), vector W denotes the feature weight vector which con-

trols how much a certain feature weighs in determing the similarity

of two feature vectors and I is the number of different features. The

transition cost T is here defined to be the Euclidean distance

between the start and end point of the transition. The absolute mag-

nitudes of the values in W determine the balance between the path

cost T and feature vector difference cost D(n,m).

The final similarity measure between two rhythmic patterns is

given by

. (18)

It is the theoretically shortest possible length divided by the cost of

the optimal path. This makes it possible to compare the similarity

measures of patterns of different lengths. With two identical pat-

terns the similarity measure is 1, and the more the patterns differ

the smaller the measure gets, gradually approaching to zero, but

never actually reaching it.

2.4.3 The Core DTW Algorithm
The algorithm sequentially goes through the whole globally

allowed area of the DTW matrix. For each point the optimal path

length reaching it is stored as well as the link to the optimal previ-

ous point. This leads to the situation that every time the algorithm

calculates the optimal path to a certain point, it already knows the

path length to all possible preceding points. From these it then

chooses the optimal one according to Eq. (15) and stores the result-

ing path length and preceding point information. This kind of steps

are continued until the final point (N,M) is reached and the total

path length is known. If it is not enough to know the length of the

path, but also the actual path, it can be backtracked using the prede-

cessor information stored in every point.

3.  SIMULATIONS

3.1 Meter Estimation and Pattern Segmenting
Table 1 shows the statistics of the database used to evaluate the

accuracy of the musical meter estimation and pattern segmenting

algorithm presented in Sec. 2.2. Acoustic music signals were

stored as single-channel, 44.1 kHz, 16-bit, pulse code modulated

data. Tactus (beat) and musical measure (i.e. pattern) positions

were manually annotated for one-minute long representative

excerpts selected from each piece. The annotations were made by

tapping along with the musical pieces, recording the tapping sig-

nal, and semiautomatically detecting the tapped time instants. Tac-

tus and measures were separately annotated in different runs.

Tactus could be more or less unambiguously judged for all the

pieces. However, measure boundaries could be reliably marked by

listening for a subset of the pieces only. Tatums were not annotated

at all.

In the simulations, the algorithm was given one 10-second excerpt

from the beginning of each annotated one-minute period. The esti-

mated tactus and measure periods were then compared to the man-

ually annotated value. The estimated tactus and measure periods

were defined to be correct, if the values deviated less than 10 %

from the correct one.

The tactus periods given by the proposed algorithm were correct

for 67 % of the 365 pieces. Most typical error was tactus period

doubling. Estimated musical measure lengths (i.e., the pattern

lengths) were correct for 77 % of the 141 pieces for which the mea-

sures was annotated, 17 % of the values were either half or double

the pattern lengths, and 6 % were unclassified errors. However, it

should be noted that the pieces for which the measure information

could be annotated represent metrically more clear cases. This at

least partly explains the performance difference between tactus and

measure length estimation.

The estimated pattern phase was correct only in approximately half

of the cases, suggesting a point of improvement in the system. In

practice, this has more to do with computational efficiency, since

reliable pattern comparison can be achieved by taking a couple of

most prominent pattern length and phase candidates, performing

the DTW for each candidate, and selecting the highest similarity

value to the output.

3.2 Similarity Measurements

3.2.1 Similarity of Drum Patterns
A database of rhythmic patterns was used to validate the described

similarity measurement approach. The database consisted of nine

standard rhythm patterns with a couple of variations, totalling to 14

different patterns. The rhythms and the number of variations from

each were: stomp, eight-note beat (x3), sixteenth-note beat (x2),

triplet (x2), shuffle (x2), swing, waltz, samba, and songo. Varia-

tions were in the bass drum pattern for the 8th-beat, triplet, and

shuffle rhythms, and in the hi-hat pattern for the 16th-beat rhythm.

Each of the 14 patterns was performed using three different sound

sets, shown in Table 2. Swing rhythm makes an exception: it did

not make sense musically to perform it with Set 3. The sounds

were selected according to the principle that they would be as dif-

ferent as possible, yet exchangeable in different rhythmic roles.

The differences between the bass drum sounds were small. How-

ever, the snare drum sounds are quite different, depending on

whether played with stick or with brush, or at the rim of the drum.

In the same manner, closed hi-hat, ride cymbal, and the shaker pro-
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Table 1. Database for evaluating the meter estimation model.

Genre
Tactus annotated

(# of songs)

Patterns annotated

(# of songs)

Classical 85 –

Electronic/Dance 27 18

Hip Hop/Rap 12 8

Jazz/Blues 62 19

Rock/Pop 111 61

Soul/RnB/Funk 44 27

World/Folk 24 8

Total 365 141
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duce rather different sounds, but are typically used in same rhyth-

mic roles. An amateur musician performed the rhythms using

Roland SPD-6 percussion pad together with two foot pedals.

The task of the system was to recognize the same rhythmic patterns

as similar although performed using different sounds. Figure 5

shows the estimated similarities for each pair of the 41 performed

patterns (3∗ 13+2∗ swing). Each three consecutive samples repre-

sent identical rhythms, played with the three sets (except only two

for swing). The whiter the area at the intersection of each two sam-

ples, the higher their estimated similarity. The white areas with a

value missing are those for which the lengths of the two patterns

differ by a factor greater than 2, in which case the local path con-

straint does not allow the comparison.

The illustrated similarity matrix was calculated using only the nor-

malized spectral centroid as feature, and local path constraint 3.

Preprocessing was not applied. In this experiment, similarity mea-

surement was separately evaluated, taking the pattern boundaries

from manually annotated time values.

The proposed system is successful in assigning a high similarity to

same rhythms, despite of being performed with different sounds.

Bass drum variations have the effect that the patterns practically

appear as different rhythms. On the other hand, hi-hat variation in

16th-beat rhythm does not make a noticeable difference (a couple

of hi-hat hits are omitted in the variation). This does not mean that

the system would be purely bass-drum based, since among the 14

different patterns, six patterns have identical “bass drum/snare

drum” patterns.

3.2.2 Performance of Different Features
Simulations were run to determine how well different features cor-

relate with the rhythmic experience of a listener. In practice, the

optimal weights W(i) for different features in Eq. (16) were sought

for. The weight values were determined by trying out different

weight combinations and inspecting the resulting similarity matrix

for the described rhythm database, and for complex musical sig-

nals, described in more detail in Sec. 3.2.3.

Normalized spectral centroid turned out to be clearly the best per-

forming feature. After all, the most consistent similarity measures

were produced by using this feature alone. However, it should be

noted, that the normalized spectral centroid is actually an element-

by-element product of the spectral centroid and loudness, as shown

in Eq. (13). Loudness alone was somewhat successful, but using it

together with the centroid only deteriorated the results.

Different numbers of MFCC coefficients were also evaluated as

features. However, even after the normalization, MFCCs assigned

high similarities to the patterns performed with identical sound

sets, not to the patterns that were rhythmically similar.

As another observation, the path cost in Eq. (15) had to be

strongly weighted in relation to the acoustic features in order to

discriminate between e.g. triplet and 16th-beat rhythms. With a

high path cost weight, DTW allows the two patterns be of different

lengths, and compensated for slight deviations in pattern beginning

times, but punishes paths that are not straight lines through the

matrix. In other words, steady time is constrained. Verification tests

were performed which confirmed that the absolute lengths of the

two patterns do not have a noticeable effect on the similarity judg-

ment as long as the ratio of the lengths is between 0.5 and 2,

required by the local path constraints. The best performing local

path constraint in this experiment was the type 3.

3.2.3 Experiments with Complex Music Signals
In the last experiment, patterns taken from real-world musical sig-

nals were compared, using the database introduced in Sec. 3.1.

Two patterns were taken from each of the annotated 141 songs

using the manually annotated pattern boundaries. Then in-song and

inter-song similarity measures were calculated, producing a matrix

of 141x141 values, where the in-song measures are at the diagonal.

The underlying assumption was that two patterns taken from a

same song should be more similar than patterns from different

songs, despite musical variations and the interference of other

instruments.

The problem with this kind of evaluation is that it is difficult to

know if the similarity is due to rhythmic characteristics. For exam-

ple, MFCCs without normalization would model the absolute tonal

color of the piece, bringing high in-song similarities but not neces-

sarily because of the rhythm. For this reason, only the normalized

spectral centroid was used as a feature, since we know that it does

not retain any absolute features about the tonal color of a piece.

Preprocessing with a sinusoidal model was applied.

Figure 6 shows the in-song distance for each of the 141 pieces,

along with the average of inter-song distances calculated separately

for each piece. The in-song similarity is consistently higher, but the

difference is not large, most likely due to the other instruments and

rhythmic variation.

4.  SUMMARY AND CONCLUSIONS
The presented system was successful in extracting patterns from

actual musical signals, and in assigning consistent similarity mea-

sures for drum patterns performed with different sound sets. The

most successful acoustic feature for describing rhythmic patterns

turned out to be the spectral centroid weighted with the log-energy

of the signal. This vector was further normalized to have zero mean

and unity variance over time. Dynamic time warping reconciled for

tempo differences and slight beginning point deviations. However,

a relatively high cost had to be assigned to the length of the time

Table 2. Drum sets used in performing the rhythm patterns.

Drum set Sounds involved

1 bass drum snare hi-hat

2 bass drum brush slap snare ride cymbal

3 bass drum cross stick shaker

st.8beat 16beat  triplet shuffle sw.wa. sa. so.

 stomp 

 8beat 

16beat 

triplet

shuffle
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Figure 5. Calculated similarity measures for drum patterns.
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alignment path in order to constraint musical rhythms to steady

time and to discriminate between binary and ternary rhythms.
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Figure 6. In-song and inter-song similarity measures for the
database of 141 real-world musical pieces.


