

Acoustic Modelling of Drum Sounds with Hidden Markov Models for Music Transcription

Jouni Paulus

jouni.paulus@tut.fi

Institute of Signal Processing, Tampere University of Technology, Tampere, Finland

Introduction

- Aim to transcription (detection and recognition) of drums from polyphonic music, e.g., from acoustic signal to MIDI file.
- Two methods for applying HMMs in acoustic modelling of drum sounds is presented: instrument-wise and combinations.
- -HMMs enable modelling evolution of features during events.

Analysis front-end

- Pre-processing with sinusoids+residual -modelling.
- Extract a set of spectral features from short, overlapping frames.
- Two linear, unsupervised feature transformations.
- -Reason: features contain redundant information \rightarrow decorrelation and dimensionality reduction
- -Principal component analysis, removes second order statistical dependencies.
- -Independent component analysis, removes also higher order dependencies.

HMM architectures

- Observation distributions with Gaussian mixture models.
- Instrument-wise models
- -Each instrument is modelled independently from others, detector-like.
- -5-state HMMs for sound events, 1-state HMM for background (UBM), UBM common for all.

- Combination modelling
- Models for all instrument combinations.
- -All combinations need not to be modelled due rare occurrence.

Evaluations

- Evaluated with acoustic recordings from 3 data sets with, each set with cross-validation:
- simple drums, mainly target drums, simple patterns
- -complex drums, also non-target drums present, more complex patterns
- -RWC Pop, 100 polyphonic music pieces (30 s excerpts).
- Transcribe kick, snare and hi-hat.
- Performance compared with two other systems.
- Event-based recognition: onset detection, features, classification with binary SVMs
- -Source separation with a dictionary: non-negative spectrogram factorisation (NSF), onsets from components
- Measures: precision rate P, recall rate R, and F-measure.

Results

• F-measures for the HMM and reference methods:

• Detailed results for the best performing HMM systems (combinations) for each evaluation material set:

material metric kick drum snare drum hi-hat

simple	P(%)	81.7	88.8	82.6
drums	R(%)	89.5	82.5	93.4
complex	P(%)	73.5	59.8	76.3
drums	R(%)	92.2	86.6	89.6
RWC	P(%)	38.6	24.3	44.2
Pop	R(%)	73.5	54.5	62.7

Conclusions

- Aim to transcribe drums from complex signals with two different HMM systems.
- Modelling drum combinations instead of individual drums yielded better result.
- -Probably because drums are not independent from each other.
- Main problem low precision due event insertions.
- -Probably could be alleviated with musicological modelling.