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Introduction Evaluations

e Aim to transcription (detection and recognition) of drums from

polyphonic music, e.g., from acoustic signal to MIDI file. e Evaluated with acoustic recordings from 3 data sets with, each set

e Two methods for applying HMMs in acoustic modelling of drum with cross-validation:

sounds is presented: instrument-wise and combinations. — simple drums, mainly target drums, simple patterns

—HMMSs enable modelling evolution of features during events. — complex drums, also non-target drums present, more complex

patterns

Analysis front-end — RWC Pop, 100 polyphonic music pieces (30 s excerpts).

e [ranscribe kick, snare and hi-hat.

e Pre-processing with sinusoids+residual -modelling. e Performance compared with two other systems.

e Extract a set of spectral features from short, overlapping frames. —Event-based recognition: onset detection, features, classification

with binary SVMs

—Source separation with a dictionary: non-negative spectrogram

e Two linear, unsupervised feature transformations.

— Reason: features contain redundant information — decorrelation
and dimensionality reduction factorisation (NSF), onsets from components

—Principal component analysis, removes second order statistical e Measures: precision rate P, recall rate R, and F-measure.

dependencies.

—Independent component analysis, removes also higher order de-

pendencies. Results

HMM architectures

e F-measures for the HMM and reference methods:

e Observation distributions with Gaussian mixture models.
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e Instrument-wise models
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—Each instrument is modelled independently from others, detector-
like.

—b-state HMMs for sound events, 1-state HMM for background
(UBM), UBM common for all.
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= e Detailed results for the best performing HMM systems (combina-
- - , - , - . tions) for each evaluation material set:
OFF /X o
S S S material metric kick drum snare drum hi-hat
““““““““““““““““““““““““““““““““““““““““““““““ simple P(%) 81.7 88.8 82.6
drums R(%)| 89.5 82.5 93.4
(4 (s (4 (B (4 (4 (4
ON . o elS
; 1O-O~0Or1Q-0O=0Or71Q-0—0 7 complex P(%)  73.5 59.8 76.3
- X drums R(%)| 92.2 86.6 89.6
a ;o | |
OFF . 3 3 - RWC  P(%) 386 243 442
Pop R(%) 735 54.5 62.7
e Combination modelling
—Models for all instrument combinations.
— All combinations need not to be modelled due rare occurrence. Conclusions
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e Aim to transcribe drums from complex signals with two different

HMM systems.

e Modelling drum combinations instead of individual drums yielded

better result.

—Probably because drums are not independent from each other.

e Main problem low precision due event insertions.

—Probably could be alleviated with musicological modelling.




