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ABSTRACT

This paper describes a novel method for the automatic transcrip-
tion of drum sequences. The method is based on separating the
target drum sounds from the input signal using non-negative ma-
trix factorisation, and on detecting sound onsets from the separated
signals. The separation algorithm factorises the spectrogram of the
input signal into a sum of instrument spectrograms, each having
a fixed spectrum and a time-varying gain. The spectra are cal-
culated from a set of training signals, and the time-varying gains
are estimated with an algorithm stemming from non-negative ma-
trix factorisation. Onset times of the instruments are detected from
the estimated time-varying gains. The system gave better results
than two state-of-the-art methods in simulations with acoustic sig-
nals containing polyphonic drum sequences, and overall hit rate of
96% was accomplished. Demonstrational signals are available at
http://www.cs.tut.fi/˜paulus/demo/.

1. INTRODUCTION

Automatic music transcription and music information retrieval have
recently become more popular as the needed computational power
has become available. In general, automatic music transcription
can be divided into separate tasks of transcribing the tonal parts
and the percussive parts (drums). This paper will concentrate on
the drum transcription task, which can be defined as the task of
estimating the temporal locations of percussive sound events and
recognising the instruments which have been used to produce them.
In many systems, like in the one proposed here, the task is modified
to detecting the temporal locations of pre-defined percussive sound
events.

One of the earliest works on automatic drum transcription was
by Schloss, whose system transcribed percussion-only music in
which only one instrument is present at a time [12]. The system
located the sound event onsets based on rapid increases on ampli-
tude envelope. Each located sound event was classified to one of
the groups trained for the system based on subband-energy related
features.

Another early work was introduced by Goto and Muraoka [5].
In their system, drum transcription was used as an aid in a beat
tracking polyphonic music signals. The onset detection in their sys-
tem was done by locating power increases in frequency domain.
Bass drums and snare drums were sought from the located onsets
by inspecting peaks in the spectral content of the onsets. This work
was continued by Yoshii et al. in [17], where the event recogni-
tion was done by matching template spectrograms of individual bass
drum and snare drum events to the detected sound onset locations
in polyphonic music. The templates were automatically adapted to
the target signal, because the drum sounds used in the signal to be
analysed may differ from the template sounds.

Traditional pattern recognition approaches have also been
utilised in several ways. Herrera et al. made a thorough comparison
of different features and classification techniques for analysing indi-
vidual drum sound events [6]. In drum transcription, these methods
generally first locate possible sound onsets using, e.g., the method
suggested by Klapuri [8]. Then a set of features is extracted from

the signal at the locations of the detected onsets. The detected
onsets are labelled using standard pattern recognition techniques,
for example, k-nearest neighbours [11], support vector machines
(SVM) [4, 14], or Gaussian mixture models [4, 10]. None of these
methods seem to perform clearly better than the others, so some ad-
vanced techniques and higher-level processing have been developed
to increase the performance, such as, language modelling with ex-
plicit N-grams [10] or hidden Markov models [4], or choosing best
feature subset dynamically [11].

1.1 Separation of drum sounds

Even though individual drum sound events can be recognised quite
reliably [6], the recognition from polyphonic music is a difficult
task, because of other simultaneously occurring sounds [4]. Sepa-
ration of sound sources has been used to address the problem, e.g.,
by using methods based on independent subspace analysis (ISA)
[1, 2], and sparse coding [16].

In the case of music signals, ISA and sparse coding have been
used to separate the input signal into a sum of sources, each of
which has a fixed spectrum and a time-varying gain. This model
suits quite well for representing drum signals. The signal model
for spectrum Xt( f ) in frame t can be written as a weighted sum of
source spectra Sn( f ):

Xt ( f )≈
N

∑
n=1

an,t Sn( f ), (1)

where N is the number of sources, n is the source index, an,t is the

gain of the nth source in frame t, and f is the discrete frequency
index.

There are several different criteria for estimating an,t and Sn( f ),
including the independence of the sources [1], non-negativity [13],
or sparseness of the sources [16]. In some systems, the sources are
estimated blindly, i.e., there is no prior knowledge of the parame-
ters of the sources. Also, some proposals for the use of pre-trained
sources have been made [15].

Prior subspace analysis (PSA) proposed by FitzGerald simpli-
fies the decomposition by initialising the spectral subspaces Sn( f )
with values calculated from a large sample set [3]. Then the
time-varying gains an,t are calculated using matrix inverse, passed
through independent component analysis (ICA) and finally sub-
jected to onset detection. The main problem with PSA is that an,t
can have also negative values which do not have a reasonable phys-
ical counterpart.

Recently, non-negative matrix factorisation (NMF) has been
successfully used in several unsupervised learning tasks [9] and also
in the analysis of music signals, e.g., by Smaragdis and Brown [13].
In NMF, both the spectra Sn( f ) and gains an,t are restricted to be
non-negative. In the case of audio source separation, this can be in-
terpreted so that the spectrograms are purely additive. It has turned
out that the non-negativity constraint alone is sufficient for separat-
ing sources, to some degree.



1.2 Improvements in the proposed method

The proposed method combines the ideas of PSA and NMF. The
spectrogram of the mixture signal is decomposed into spectrograms
of target drum instruments using pre-defined fixed spectra Sn( f ) and
non-negativity constraints in the estimation of the gains an,t .

Natural drum sounds do not have an exactly fixed spectrum over
time. When examined with high frequency resolution, the spectro-
grams exhibit stochastic nature within an individual sound event. In
addition, there are differences between the occurrences of a same
drum instrument sound events. The variation of the spectrum is re-
duced by using a coarse frequency resolution, and the signal model
of Equation (1) can be used. The spectrum of a drum instrument
is approximately fixed on a coarse frequency grid, e.g., bass drums
have low-frequency energy and hi-hats have high-frequency energy.

Some publications have discussed the matter of recognising
drum patterns from polyphonic music [5, 11, 17]. Before aiming
directly to that level, the transcription task in this paper is restricted
to material consisting only of a limited number of different drum
instruments. Namely, only bass drum, snare drum, and hi-hat oc-
currences are transcribed.

2. PROPOSED METHOD

The proposed method consists of three stages: at first, source spec-
tra Sn( f ) are estimated for each instrument using training material,
as will be described in Section 2.1. At the second stage, each drum
instrument is separated from the input signal using the trained spec-
tra and the method that will be described in Section 2.2. Finally, the
temporal locations of sound events are sought from the separated
signals with the method that will be described in Section 2.3.

The magnitude spectrogram is used as a mid-level signal rep-
resentation. Since drum transcription requires a good temporal res-
olution, the length of the analysis frame is 24 ms with 75 % over-
lap between consecutive frames, leading into temporal resolution of
6 ms.

The segregation between different drum classes can be made
using a coarse frequency resolution. Only five bands (20-180 Hz,
180-400 Hz, 400-1000 Hz, 1-10 kHz and 10-20 kHz) were used in
the simulations. The number and locations of the bands were not
specifically optimised for the transcription, but these yielded the
best result from the ones tested (e.g., linearly spaced 512 frequency
bins or 25 critical bands). The magnitude spectrogram Xt ( f ) is ob-
tained by using short-time Fourier transform, summing the squared
magnitudes within each band to obtain bandwise energies, and by
taking the square root.

2.1 Estimation of the source spectra

There are several possibilities for obtaining the instrument spectra
Sn( f ) from the training data. In our simulations the best results were
obtained by using the following procedure. A set of recordings of
individual examples of a certain drum instrument n is taken. NMF

[9, 13] is used to dismantle the magnitude spectrogram Y i
t ( f ) of

each example event i into a product of non-negative spectrum W i( f )
and non-negative time-varying gain hi

t , so that Y i
t ( f ) ≈W i( f )hi

t .

The spectral basis vectors W i( f ) are then averaged over i to produce
the instrument spectra Sn( f ) of drum instrument n. The procedure
is repeated for all instruments n ∈ [1,N].

2.2 Estimation of the time-varying gains

The separation algorithm estimates time-varying gains an,t for each
drum instrument n in each frame t, so that the magnitude spectrum
Xt( f ) of the input signal is presented as a weighted sum of the fixed
spectra Sn( f ), as represented in Equation (1). The estimation is
done by minimising a cost function between the observed spectrum

Xt( f ) and the model Mt( f ) = ∑
N
n=1 an,tSn( f ). The gains an,t are re-

stricted to be non-negative. The method does not make any explicit
assumptions of the independence or sparseness of the gains.

The best transcription result was obtained using the divergence
proposed by Lee and Seung [9] as the cost function. The divergence
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Figure 1: Block diagram of procedure for detecting onsets from an
estimated time-varying gain an,t .

D between Xt( f ) and Mt ( f ) is defined as

D(Xt( f )||Mt( f )) = ∑
t, f

d(Xt( f ),Mt( f )), (2)

where the function d is defined as

d(p,q) = p log(
p

q
)− p+q. (3)

The divergence is minimised by an iterative algorithm, which
uses multiplicative updates, given as

an,t ← an,t
∑ f Xt( f )Sn( f )/Mt( f )

∑ f Sn( f )
. (4)

The iterative estimation algorithm is given by the following pro-
cedure:

1. Initialise each an,t to unity.

2. Set Mt( f ) = ∑
N
n=1 an,t Sn( f ).

3. Update each an,t using the update rule (4)

4. Evaluate cost function 2 and repeat steps 2 to 4 until the value
of the cost function converges.

In our experiments with three sources and a five-band spectral
representation, the algorithm took approximately 20-30 iterations to
converge.

2.3 Onset detection

Onset detection of the instrument n is done from the corresponding
time-varying gain an,t with a procedure motivated by the one pro-
posed by Klapuri [8]. Only the time-varying gain is used instead of
several sub-band amplitude envelope signals used in the reference.
This simplification can be done since the spectrum associated with
each gain is fixed, causing all sub-band amplitude envelopes to be of
identical form. The algorithm is motivated by the human auditory
system, which is sensitive for relative changes in signal level.

The block diagram of the onset detection procedure is illus-
trated in Figure 1. First, the gain is normalised to range [0,1]
to obtain a better control of subsequent steps of the onset de-
tection procedure. The normalised gain ãn,t is compressed with
ân,t = log(1 + Jãn,t), where J is a fixed compression factor. The
algorithm is not sensitive for the exact value of J; a value of 100
was found to be suitable. The compressed gain is differentiated
with a′n,t = ân,t − ân,t−1.

The difference signal a′n,t contains low-amplitude ripple, which

is reduced by low-pass filtering. The system is not sensitive to
the exact filter characteristics; in our implementation a fourth order

Butterworth filter with cut-off frequency 0.25π1 was used. Finally,
the filtered signal is subjected to peak picking. Peaks in the signal
represent perceptually salient onsets. Thresholding is used to pick

1sampling rate being 167 Hz



only the most prominent peaks. The threshold value can be different
for each instrument.

The thresholds needed in the onset detection are estimated auto-
matically from training material with the following procedure. The
training signals are separated with the proposed method, and onset
are located. By comparing the located onsets to the reference on-
sets, the threshold value is chosen so that the number of undetected
onsets and extraneous detections is minimised. The threshold is
calculated for each drum instrument independently.

3. EVALUATION

The performance of the proposed transcription method was evalu-
ated and compared to two other systems using acoustic signals. We
used a four-fold cross-validation setup for acoustic material from 4
recording sets, so that three sets were used for training and one set
for testing at a time.

3.1 Acoustic material

The simulation database consists of acoustic drum sequences and
individual drum samples. Three different drum kits and three dif-
ferent recording locations were used. One of the kits was recorded
in two different locations, resulting to total of four recording sets:

1. an entry level kit recorded in a medium sized room,

2. a studio grade kit recorded in a medium sized room,

3. a heavy metal kit recorded in an acoustically damped hall, and

4. an entry level kit recorded in an anechoic chamber.

The acoustic information was recorded using close micro-
phones for bass drums and snare drums, and overhead microphones
for hi-hats. Recorded signals were mixed to yield two mix-downs:
an unprocessed one, and a “production-grade” processed one where
multiband compression, equalisation, and reverberation were used.
The reference onsets were acquired by using piezo triggers on bass
drums and snare drums. The hi-hats were annotated by hand. The
temporal accuracy of the annotated onsets was estimated to be better
than 10 ms.

The drum sequences in the evaluation database are fairly sim-
ple, consisting only of bass drums, snare drums and hi-hats. Dif-
ferent playing styles are not discriminated, e.g., open, closed and
pedal hi-hats are treated as equal. The sequences used were 8-beat,
16-beat, stomp, shuffle and triole, resulting in total of 20 signals.
The sequences do not contain only several repetitions of the same
pattern, but the players were encouraged to make some variations
while playing. Only 15-second excerpts of the sequences were used
in the evaluation.

In addition to the sequences, individual drum hits were recorded
with 20 repetitions of each. These were used to obtain the spectra
Sn( f ), as explained in Section 2.1.

3.2 Performance metrics

For each drum instrument, the performance was measured by com-
paring the transcribed onsets with the reference onsets. A tran-
scribed onset was judged to be correct if it deviated less than 30 ms
from a reference onset. The transcribed and reference onsets were
matched using the following procedure. At first, the algorithm cal-
culates a V ×L matrix Z of absolute time differences between all
transcribed and reference events Zv,l = |(tv− tl)| ,v = 1 . . .V, l =
1 . . .L, where V is the number of transcribed events and L is the
number of events in reference data. Then the events v and l hav-
ing the smallest time difference are paired and removed from the
distance matrix. This pairing is continued until all remaining time
differences are larger than 30 ms or either event set runs out of
available events. The b remaining unmatched transcribed events
are insertions and the c remaining unmatched reference events are
deletions leading to instrument hit rate of Rh = 1−(b+c)/L. Also,
precision rate Rp = (V −b)/V and recall rate Rr = (L−c)/L were
calculated. Precision rate is the ratio of correct detections to all de-
tections, and recall rate is the ratio of correct detections to number

unprocessed B S H avg

Rp % 99 93 92 94
SVM Rr % 99 93 86 89

Rh % 98 86 77 87

Rp % 91 77 80 82
PSA Rr % 95 91 70 78

Rh % 86 70 46 67

Rp % 100 100 98 99
NSF Rr% 100 94 96 96

Rh % 100 93 94 96

processed B S H avg

Rp % 99 100 95 97
SVM Rr % 99 93 91 93

Rh % 98 93 86 92

Rp % 77 83 80 80
PSA Rr % 92 84 73 78

Rh % 71 67 51 63

Rp % 98 100 96 97
NSF Rr % 98 94 96 96

Rh % 95 94 93 94

Table 1: Results for the unprocessed (upper table) and “production-
grade” processed (lower table) test signals. B denotes bass drums, S
snare drums, H hi-hats, and avg the average of B, S and H. SVM is
the method described in [4], PSA the method described in [3], and
NSF the proposed method.

of events in the reference annotation. The overall hit rate was calcu-
lated as the mean of individual instrument hit rates. The presented
performance measures are calculated over the four cross validation
iterations.

3.3 Comparisons to other systems

Two other transcription systems were used for comparison with
similar evaluation setup. The systems by Gillet et al. [4] and
FitzGerald et al. [3] were tested. The method by Gillet et al. ini-
tially detects all sound event onsets from the signal, then extracts a
set of features from the locations of the detected onsets, and finally
uses an SVM classifier for recognising the events. The presence of
each drum instrument in the event is detected with a binary classi-
fier, and no sequence modeling is used. The classifiers were trained
with the acoustic sequences in the training set. The algorithm im-
plementation was based on the information given in the reference,
and the SVM implementation by Joachims was used [7].

In PSA, initially, the spectral basis vectors are calculated from
the individual drum hits in the training set. Then, the corresponding
time-varying gains are estimated with a matrix inverse and inde-
pendent component analysis. Finally, the sound onsets are detected
from the estimated time-varying gains. The implementation of the
original authors was used.

3.4 Results and discussion

The performance evaluation results are presented in Table 1. The
proposed method performed better in total than both comparison
methods with unprocessed and processed drum signals, though the
difference is smaller with processed signals. This is most likely due
to the fact that when handling the processed signals, the features
used by the SVM method were trained with processed signals, while
the spectral models used by the PSA and the proposed method were
trained with individual unprocessed hits in both scenarios, because
there were no processed individual hits available.

Some preliminary experiments were made to utilise the pro-



posed method also for more complex signals, i.e., signals contain-
ing also other drums or melodic instruments. It was noted that the
performance of the proposed system degrades if the analysed signal
does not fit the model, i.e., other interfering sounds are present in
addition to the modelled instruments. Similar performance degra-
dation was noted also with the two reference systems. It is possible
that the SVM method may be able to handle more complex input
signals, as it’s operation does not rely on direct assumptions on the
structure of the signal. This problem of method generalisation re-
mains as a subject of further development.

4. CONCLUSIONS

In this paper, we have presented a method for drum transcription.
It uses pre-calculated spectra and non-negativity constraints for the
gains of the spectra for separating different instruments. The pro-
posed method has been evaluated with simulations and the perfor-
mance of the presented method has been compared with two refer-
ence methods. The proposed method performed better than the two
reference methods in simulations with polyphonic drum sequences.
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