

Progress in (Hadamard-coded) multiplexing of Transition Edge Sensors

Mikko Kiviranta, Nikolai Beev
VTT Technical Research Centre of Finland
Jan van der Kuur, Marcel Bruijn
SRON, the Netherlands
Oliver Brandel, Sven Linzen, Ludwig Fritzsch
IPHT Jena, Germany
Jussi Ahoranta
University of Helsinki, Finland
Jari Penttiliä, Leif Roschier
Aivon Oy, Finland

Stuff covered:

- Hadamard coding with current steering switches

Still in progress: difficulties with switch operation
-TD multiplexer using 3-junction interferometers as switches, for pixel characterization

Multiplexer works, experiment with real TESes in progress

- Binary addressing utilizing Hadamard codes and periodicity of the SQUID response

Demonstrated by slope-switching SQUIDs and test loads

Orthogonal basis sets for multiplexing

Hadamard
－Walsh

TES
signals
定定定定定定定定

Hadamard (Walsh) codes

Codes are bipolar two-level

\Rightarrow multiplication by a

commutating switch

JJ based current steering switches

Low- β_{L} SQUID, voltage state (J.Beyer, SuST 2008)

Low- β_{L} SQUID, as controlled inductance

$$
L_{J}=\frac{\Phi_{0}}{2 \pi I_{C} \cos \phi_{A}}
$$

Zappe interferometer, controlled inductance
(J.Ullom, LT26 presentation, 2011
H. Zappe, IEEE Trans. Magn. 1977))

Josephson
inductance

Inductive CS switch: dynamic range

Inductive CS switch: dynamic range

Current noise \leftrightarrow SQUID energy resol.
$I_{N, S Q}=\sqrt{\frac{\varepsilon}{2 L_{I N}}}$
$L_{S W}$ and max. current are related
$I_{M A X, S W} \sim \frac{\Phi_{0}}{2 \pi L_{S W}}$
Must be dominated by controlled- L

$$
L_{S W} \gg L_{I N}
$$

$L_{S W}$ becomes small, lets use \boldsymbol{N} in series

$$
D \equiv \frac{I_{M A X}}{I_{N}} \sim \sqrt{N} \quad \begin{aligned}
& \text { Switch }=\text { array } \\
& \text { of interferomet }
\end{aligned}
$$ of interferometers

15-channel CDM MUX chip

Binary-to-Hadamard coding matrix (explained soon)

Current steering switches: 10 Zappe interferometers in series

Antialias filters

Functions in a strange way!

Current steering test switch, inductive mode

Response not exactly what we anticipated!

- Flux trapping in inductive mode (not in voltage mode)?
- Back-action from readout SQUID?
- Strong envelope in interference pattern?

Zappe interferometer arrays in voltage state

They function nicely as expected!

12-channel Beyer-style time domain MUX using voltage-state Zappe switches

Works nicely at 4.2 K with test loads

Experimental 100mK TDM calorimeter setup

So far suffers from heat leakage through the Faraday cage structure \Rightarrow no data yet

Binary-to-Hadamard coding

 (orginally K. Irwin, SuST 2010)
SQUID slope change as the commutating switch

The primitive Hadamard matrix

səроэ ןеиобочдо 'sןəuиечつ
 Time evolution

First recursive step

$$
\left.\left.\left[\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)-\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\right]-\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\right] \quad\left(\begin{array}{cc}
1 \\
1 & 1 \\
1 & -1
\end{array}\right)\right]
$$

Successive multiplications by -1 \Leftrightarrow Successive $\Phi_{0} / 2$ flux shifts

Second recursive step

$$
\left[\begin{array}{llll}
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) & \left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) & \left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) & \left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right) & -\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right) & \left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) & -\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right) & \left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) & -\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) & -\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) & -\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) & -\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) & \left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{array}\right]
$$

7-ch Hadamard coded output, one input driven by sawtooth

Seven test signals multiplexed and demultiplexed

 at $2.5 \mathrm{kpix} / \mathrm{s}$

Seven calibration signals multiplexed and demultiplexed at $2.5 \mathrm{kpix} / \mathrm{s}$

Seven test signals multiplexed and demultiplexed at $30 \mathrm{kpix} / \mathrm{s}$

What have we learned, achieved?

- Log N scaling (binary addressing) is much more efficient than $N^{1 / 2}$ scaling, inherent in NIST-style TDM.

Example: 16384 pixels require 128 address lines via TDM, 14 address lines via binary-addressed CDM.

- Slope-switching adds SQUID noise $\sim N^{1 / 2}$.

Unattractive, but no worse than the noise penalty in TDM.

- Our design of current-steering switches may be misguided.

More complicated than the NIST design, complexity offers many paths for faulty operation.

- Cryogenic setup with X-ray calorimeters is almost ready

Thermalization problem must be solved

- Cross-compatible fab process, IPHT Jena \Leftrightarrow VTT Espoo

We have received support from the grant no. 262947 of the European Community's seventh framework programme (FP7/2007-2013) , and from the Center of Excellence in Low Temperature Quantum Phenomena and Devices by the Finnish Academy of Sciences.

Thank You!

