

Business from technology

Progress in (Hadamard-coded) multiplexing of Transition Edge Sensors

SRON, the Netherlands

IPHT Jena, Germany

Jussi Ahoranta University of Helsinki, Finland Jari Penttilä, Leif Roschier Aivon Oy, Finland

Mikko Kiviranta, Nikolai Beev

VTT Technical Research Centre of Finland

Jan van der Kuur, Marcel Bruijn

Oliver Brandel, Sven Linzen, Ludwig Fritzsch

Hadamard coding with current steering switches Still in progress: difficulties with switch operation TD multiplexer using 3-junction interferometers as switches, for pixel characterization Multiplexer works, experiment with real TESes in progress Binary addressing utilizing Hadamard codes and periodicity of the SQUID response Demonstrated by slope-switching SQUIDs and test loads

Stuff covered:

Orthogonal basis sets for multiplexing 3 Wals **Hadar** (X) (X) (X) X` \rightarrow \rightarrow + _ TIME TIME

Hadamard (Walsh) codes

Codes are **bipolar two-level** ⇒ multiplication by a **commutating switch**

JJ based current steering switches

Low- β_L SQUID, Low- β_L SQUID, as voltage state controlled inductance (J.Beyer, SuST 2008)

Josephson inductance

Zappe interferometer, controlled inductance

(J.Ullom, LT26 presentation, 2011 H. Zappe, IEEE Trans. Magn. 1977))

Inductive CS switch: dynamic range

6

Inductive CS switch: dynamic range Current noise \leftrightarrow SQUID energy resol.

C

$$I_{N,SQ} = \sqrt{\frac{U}{2L_{IN}}}$$

L_{SW} and max. current are related $\blacksquare MAX, SW$ $2\pi L_{SW}$

Must be dominated by controlled-L $L_{SW} >> L_{IN}$

Switch = array of interferometers

Binary-to-Hadamard coding matrix (explained soon)

Current steering switches: **10** Zappe interferometers **in series**

Antialias filters

Functions in a strange way!

15-channel CDM MUX chip

Current steering test switch, inductive mode

Response not exactly

what we anticipated!

- Flux trapping in inductive mode (not in voltage mode)?
- Back-action from readout SQUID?

• Strong envelope in interference pattern?

Zappe interferometer arrays in voltage state

They function nicely as expected!

12-channel Beyer-style time domain MUX using voltage-state Zappe switches

Works nicely at 4.2K with test loads

Experimental 100mK TDM calorimeter setup

So far suffers from

heat leakage through the Faraday cage structure \Rightarrow no data yet

5 x 5 X-ray calorimeter array (SRON)

1:12 TDM MUX chips

Binary-to-Hadamard coding (orginally K. Irwin, SuST 2010)

10/10/2012

SQUID slope change as the commutating switch

Time evolution rtho **O** S 00 D S

First recursive step

10/10/2012

()current

7-ch Hadamard coded output, one input driven by sawtooth

10/10/2012

Summed output from SQUIDs

3-bit binary address at 2500 pix/s

Seven test signals multiplexed and demultiplexed at 2.5 kpix/s

Seven test signals multiplexed and demultiplexed at 30 kpix/s

What have we learned, achieved?

- Slope-switching adds SQUID noise $\sim N^{1/2}$. Unattractive, but no worse than the noise penalty in TDM.
- Our design of current-steering switches may be misguided. More complicated than the NIST design, complexity offers many paths for faulty operation.
- Cryogenic setup with X-ray calorimeters is almost ready Thermalization problem must be solved

• Cross-compatible fab process, IPHT Jena \Leftrightarrow VTT Espoo

We have received support from the grant no. 262947 of the European Community's seventh framework programme (FP7/2007-2013), and from the Center of Excellence in Low Temperature Quantum Phenomena and Devices by the Finnish Academy of Sciences.

- Log N scaling (binary addressing) is much more efficient than $N^{1/2}$ scaling, inherent in NIST-style TDM.
 - Example: 16 384 pixels require 128 address lines via TDM, 14 address lines via binary-addressed CDM.

Thank You!