
IS TREATMENT T₁ BETTER THAN T₂?

- Give T_1 to N_1 patients and T_2 to N_2 patients
 - Often N₁ = N₂ = N
 - Record success rates p_1 of T_1 and p_2 of T_2

IS TREATMENT T₁ BETTER THAN T₂?

- Give T_1 to N_1 patients and T_2 to N_2 patients
 - Often N₁ = N₂ = N
 - Record success rates p_1 of T_1 and p_2 of T_2
- Statistics view to the Question
 - I. Is p₁ statistically significantly larger than p₂?
 - I.e. is " $p_1 > p_2$ " likely to hold also in other samples?
 - 2. How much *uncertainty* are there in the estimated success rates?
 - I.e. where estimates from other samples would be likely to reside?
 - Crucial Q for the study design:
 - 3. How should we choose N₁ and N₂?

Sample 2 of size N₂ P₂

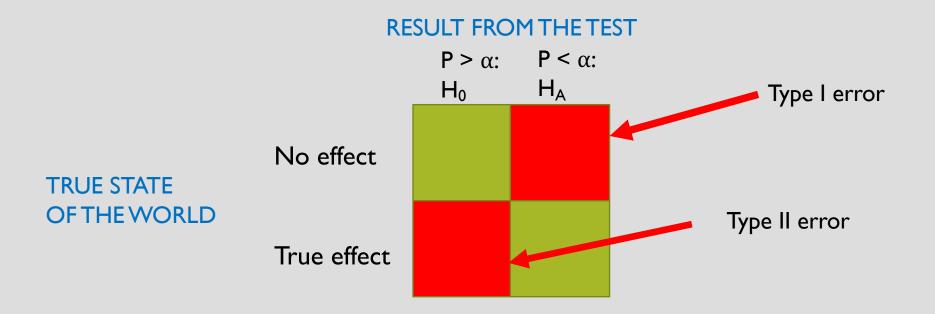
Population 2 Treated with T₂

Sample I of size N₁ P1

> Population I Treated with T₁

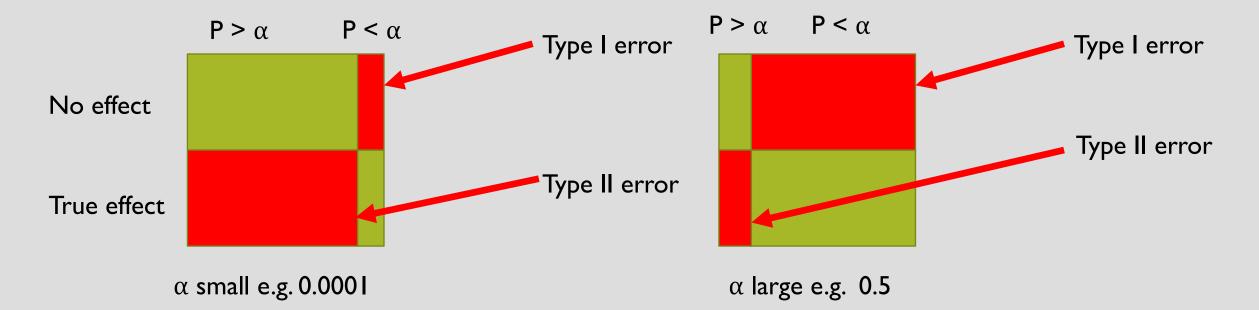
HYPOTHESIS TESTING

- H_0 (NULL HYPOTHESIS): There is no difference in success rates between the treatments
- H_A (ALTERNATIVE HYPOTHESIS): There is a difference in success rates between the treatments
- Merkitsevyystaso Significance level α : "Reject H₀" and "accept H_A" if P-value (calculated assuming H₀) is < α


Suomeksi:

Tyypin I / II virhe

- If α is defined before the experiment, then the proportion of false rejection of H₀ would be α in repeated experiments
- By making α small (say 0.00001) we can protect from false positive findings (Type I errors) but increase false negative findings (Type II errors)
- By keeping α larger (say 0.05) we have more statistical power to reject H₀ but we are more likely to make a false positive finding (Type I error)


HYPOTHESIS TESTING FRAMEWORK

- Type I error: seeing an effect that is not real, a false positive
- Type II error: failing to see an effect that is real, a false negative
- Significance level α affects how likely different types of errors are to occur

HYPOTHESIS TESTING FRAMEWORK

- Type I error: seeing an effect that is not real, a false positive
- Type II error: failing to see an effect that is real, a false negative
- With small significance level we rarely make Type I errors, but may often make Type II errors
- With large significance level we rarely make Type II errors, but may often make Type I errors

INTERPRET PROP.TEST() FROM HYPOTHESIS TESTING FRAMEWORK

(ii)

```
prop.test(A,N,p.null, correct = FALSE)
```

```
A = 485
N = 5000
p.null = 0.081
```

```
##
## 1-sample proportions test without continuity correction
##
## data: A out of N, null probability p.null
## X-squared = 17.195, df = 1, p-value = 3.373e-05
## alternative hypothesis: true p is not equal to 0.081
## 95 percent confidence interval:
## 0.08910332 0.10551545
## sample estimates:
## p
## 0.097
```

QUESTIONS

- Assume you are designing a study of the effect of a new treatment by a randomized clinical trial
- What is the null hypothesis?
- What is the alternative hypothesis?
- What is the relationship between P-value and significance level?
- What does it mean if we do a Type I error?
- What does it mean if we do a Type II error?
- How would you choose the significance level?
 - That is, which properties of your study affect your choice and what consequences does your choice have?

STATISTICAL VS CLINICAL SIGNIFICANCE

Null value

- No evidence for departure from null do not change clinical practice
- May be an important effect, but sample size is too small to be sure – do a larger study

|--|

 Statistically significantly different from null value – but not clinically important

• Statistically and clinically important – change practice

Range of clinical indifference

Rita Popat