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A crude statistical inference in the GWAS framework is based on a fixed significance threshold and only
determines whether the P-value falls below the GWS threshold (typically 5e-8). However, we almost always
make more efficient use of the data by reporting effect sizes, their standard errors and numerical values for
P-values.

Suppose that there are two variants that both pass the GWS threshold, first yielding a P-value of 4e-8 and
the second of 2e-200. How could we quantify the probability that each of these variants is having a non-zero
effect? We have previously learned that the P-value itself is not a probability on the null hypothesis. Let’s
next look what information and assumptions, in addition to the P-value, we would need in order to talk
about a probability of a non-zero effect.

Here is a review on Bayesian methods in GWAS by Stephens & Balding.

From significance to the probability of association

In order to talk about probability of a hypothesis, we need to define the set of all possible hypotheses whose
combined probability is 1, i.e., we work under the assumption that one of the hypotheses is true.

Note that for P-value calculation, we only ever define the null hypothesis and therefore we are unable to
talk about the probability of the null hypothesis because we haven’t defined what else is possible: Even if
the data seemed unlikely under the null hypothesis, if the data were even more unlikely under other possible
hypotheses, then the null hypothesis might still be quite probable, and such considerations cannot be done
from the P-value alone.

In our case, we consider only two hypotheses: H0 : β = 0 and H1 : β ̸= 0. Next we need to quantify the prior
probabilities of these hypotheses. These answer to the question: What would I consider as probability
of each hypothesis before I have seen the data. The phrase “What would I ” is there on purpose: prior
probabilities are subjective. They are based on whatever knowledge I have available. Therefore different
persons may have different prior probabilities for the same hypothesis and my prior can (and will!) change
as I learn more about the question. For example, P (H1) = 10−5 could be a reasonable prior for a non-zero
effect based on what I know about GWAS. (Last week we saw how a magnitude more stringent assumption
P (H1) = 10−6 led us to the common GWS threshold of 5e-8.)

Then we observe the data D and our interest is in the probabilities of each hypothesis after we have seen the
data. This is the core question of Bayesian inference: How does observing the data update our beliefs from
our current state of knowledge, described by prior probabilities P (Hi), into our posterior probabilities
P (Hi|D)? In short: How do we learn from data? Not surprisingly, the answer is the Bayes rule.
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4.1 Bayes rule To write down the Bayes rule (also called Bayes theorem, Bayes formula), we just remember
that we are considering joint distributions of two variables. Here the two variables are the hypothesis Hi

and the observed data D. We expand their joint probability P (Hi, D) using conditional probability rule in
both ways possible

P (Hi | D)P (D) = P (Hi, D) = P (D | Hi)P (Hi),
from which we can solve the conditional probability that the hypothesis holds given that we have observed
the data D:

P (Hi|D) = P (D | Hi)P (Hi)
P (D) , for i = 0, 1.

This is the Bayes rule. The conditional probability on the left hand side is also called the posterior
probability of the hypothesis given the data.

Since the term P (D) (the marginal probability of the observed data) does not depend on hypothesis Hi, we
can get rid of it by taking the ratio of the posteriors of the two hypotheses:

P (H1 | D)
P (H0 | D) = P (D | H1)P (H1)

P (D | H0)P (H0) .

Hence, in order to compute the posterior probability ratio for the hypotheses, we will still need the terms
P (D | Hi) in addition to the prior probabilities. P (D | Hi) describes what kind of data sets we are likely to
see under each hypothesis and with which probability. After these probability densities are specified, the
inference is about letting the possible hypotheses compete both in how well they explain the observed data
(terms P (D | H1) and P (D | H0)) and in how probable they are a priori (prior probablity terms P (H1) and
P (H0)).

Example 4.1. The Bayesian inference shows that both the observed data AND the prior knowledge is
crucial for a complete inference. Suppose, for example, that a sequencing effort of my genome returns data
D that seem to miss chromosome 6 completely. We have two hypotheses: H0: “There is a technical error”,
or H1: “I don’t carry any copies of chromosome 6 (in the cells involved)”. The observed result could have
resulted from either of these options and hence under both hypotheses P (D | Hi) is relatively high, indicating
that the data are consistent with both hypotheses. However, the prior odds of P (H1)/P (H0) are likely small
if we think that it is much more likely that there is a technical error somewhere than that I would be missing
chr 6 and still be alive and even pretty healthy. Hence, the posterior conclusion that combines the prior
probabilities and the observed data is that it is more probable that we have an error somewhere in the
process than that I don’t carry chr 6, even though the observation alone couldn’t tell the two hypotheses
apart.

Example 4.2. Interpretation of a medical test result is the standard example of the use of Bayes rule. Let’s
apply it to a case where we try to determine whether an individual has a disease given his genotype.

Suppose that each copy of HLA-DRB1*1501 allele on chromosome 6 increases the risk of multiple sclerosis
by OR=3. Prevalence of MS-diseases is K = 0.001 and population frequency of DRB1*1501 is 0.20. What
is probability of ever getting the disease for each genotype (i.e. 0,1 or 2 copies of DRB*1501)?

Answer. Denote by D the event of getting the disease and by X the genotype. Here D has the role of a
hypothesis and X the role of observed data in the above formulation of Bayes rule. Bayes rule says that for
each genotype x ∈ {0, 1, 2}:

P (D | X = x) = P (D)P (X = x | D)
P (X = x) .

We know that P (D) = K = 0.001 and we can assume that the control frequencies are approximately the
population frequencies since the diseases has so low prevalence. Let’s use function case.control.freqs()
from GWAS 1 to determine the case frequencies assuming HWE in control population:

K = 0.001
or = 3
f = 0.2
cc.f = case.control.freqs(f, or)
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The risk to get the disease given the genotype is, according to Bayes rule

rbind(genotype = c(0, 1, 2), risk = K * cc.f$cases / cc.f$controls)

## [,1] [,2] [,3]
## genotype 0.0000000000 1.000000000 2.000000000
## risk 0.0005102041 0.001530612 0.004591837

So even though the disease status has a large effect on the genotype distributions, still even the high risk
group has risk < 0.5% and the genotype doesn’t give a practically useful predictive accuracy at the level of
an individual from the population because the disease is so rare.

4.2 Probability model for observed GWAS data To use Bayes rule in GWAS setting, we need to
define a probability density function for the observed data under both the null hypothesis and the alternative
hypothesis.

In a linear regression GWAS model y = µ + xβ + ε, the observed data Dk = (yyy,xxxk) consist of the phenotype
vector yyy and the vector of genotypes xxxk at the tested variant k. When we assume Gaussian errors (i.e. each
εi having a Normal distribution with same variance σ2) the probability density of data for a fixed value of
effect size β and error variance σ2 is

p
(
Dk | β, σ2) = N (yyy; xxxkβ, σ2I) ∝ exp

(
−(yyy − xxxkβ)T (yyy − xxxkβ)/(2σ2)

)
.

We have ignored µ here by assuming that y and xk are mean-centered values; this just simplifies the notation
but doesn’t affect the inference on parameter β.

Under the null model, we set β = 0 and in the alternative model, we can set β to some other value b1. If we
do not want to specify our model of true effect by a single value b1, we can use a prior distribution for β,
for example, by saying that under the alternative model β ∼ N (b1, τ2

1 ). This means that if the alternative
model holds, then the true effect sizes are distributed around value b1 with a standard deviation of τ1. With
this prior distribution, the probability of data under H1 is given by weighting the above likelihood function
by the prior probability of each possible value of β:

p(Dk | H1) =
∫

β

p
(
Dk | β, σ2) p(β | H1)dβ =

∫
β

N
(
yyy; xxxkβ, σ2)N

(
β; b1, τ2

1
)

dβ.

(For simplicity, in both models, we may fix σ2 to its empirical maximum likelihood estimate.)

If we assume that the mean parameter b1 = 0 in the Gaussian prior of β, then the integral can be done
analytically to give

p(Dk | H1) = c · N
(

β̂; 0, τ2
1 + SE2

)
,

where c is a constant and β̂ is the MLE of β and SE the corresponding standard error. Note that by replacing
τ1 with 0, we have

p(Dk | H0) = c · N
(

β̂; 0, SE2
)

.

These results show that quantity p(Dk | Hi) that tells how well model Hi explains the data can be evaluated
(up to a constant) by asking how well the model can explain the observed estimate β̂. The null model
assumes that the estimate is a result of sampling variation alone (only the SE contributes to the deviation
from 0) whereas the alternative model allows some additional variance τ2

1 around 0 due to the truely non-zero
effect. Let’s demonstrate this.

Example 4.3.
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n = 3000 # sample size for SE calculation
f = 0.3 # MAF for SE calculation
sigma = 1 # error SD
se = sigma / sqrt(2*f*(1-f)*n) # SE for QT GWAS
tau = 0.1 # prior standard deviation for effect size beta under H1

# Let's draw probability densities of "data" under the two models, H0 and H1
# as a function of MLE estimate
x = seq(-0.3, 0.3, by = 0.01)
y1 = dnorm(x, 0, sqrt(tauˆ2 + seˆ2) )
y0 = dnorm(x, 0, se)
plot(x, y0, t = "l", col = "cyan", lwd = 2, xlab = expression(hat(beta)),

ylab = "probability density of data")
lines(x, y1, col = "magenta", lwd = 2)
legend("topright", c("H0", "H1"), col = c("cyan","magenta"), lwd = 2)

# We make a shortcut and don't simulate data at all, but we directly simulate estimates
# Suppose we have two cases, first follows null (beta = 0), second follows alternative (beta = 0.2)
b =c(0, 0.2)
b.est = rnorm(2, b, se) #these are simulated estimates: true means and Gaussian noise determined by SE
points(b.est, c(0, 0), pch = 19, col = c("blue", "red") )
#Next: log of Bayes factor of H1 vs H0, will be explained below
# use log-scale to avoid inaccuracies.
log.bf.10 = dnorm(b.est, 0, sqrt(tauˆ2 + seˆ2), log = T ) - dnorm(b.est, 0, se, log = T)
bf.10 = exp(log.bf.10) #then turn from log-scale to Bayes factor scale
text(b.est[1], 4, signif(bf.10[1], 2), col = "blue")
text(b.est[2], 4, signif(bf.10[2], 2), col = "red")
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The distribution under H0 describes what kinds of effect estimates we can get with this sample size and MAF
when the true effect is exactly 0. Any deviation from 0 is then by statistical sampling effect, as quantified
by the SE.

The distribution under H1 describes what kinds of effect estimates we expect when we have BOTH a non-zero
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effect size, whose expected range is described by the standard deviation τ1, and we have ALSO a statistical
sampling effect as quantified by the SE.

If the observed estimate β̂ is close to 0, then H0 explains the data better than H1, whereas the opposite is
true when β̂ is farther away from 0. With these parameters, H1 starts to dominate roughly when |β̂| ≥ 0.05.
Values close to zero are relatively more likely under the null than under the alternative. This is because
the the null model can only explain well data sets with effect estimates near zero whereas the alternative
model can also explain observations that are farther away from the zero, and hence the probability mass of
the alternative is less concentrated around 0 than that of the null. Consequently, the null model gets higher
probability densities near 0 than the alternative model that has spread its probability density more widely
away from 0.

4.3 Bayes factor Two points shown in the plot above are examples of possible estimates that could
result either under H0 (blue) or H1 (red). The values are ratios P (D|H1)/P (D|H0) of probability densities
computed at these two points. When this ratio < 1, the null model H0 explains the data better than the
alternative model and when it is > 1, the opposite is true. This ratio is called Bayes factor (BF) that is
the factor that multiplies the prior odds to get to the posterior odds:

P (H1 | D)
P (H0 | D)︸ ︷︷ ︸

posterior odds

= P (D | H1)
P (D | H0)︸ ︷︷ ︸
Bayes factor

× P (H1)
P (H0)︸ ︷︷ ︸

prior odds

.

To interpret the Bayes factor we can think that in order that the posterior probability of the alternative
model would be at least 10-fold compared to that of the null, the BF needs to be at least 10 times the inverse
of the prior odds. If the prior odds are 1e-5, then we would need a BF of at least 1e+6 to result in posterior
odds > 10.

We are almost there having calculated a proper probability for the null hypothesis. We still need to agree
on the prior probability of the null model. Last week we saw that current genome-wide significance level
can be thought to correspond to a prior probability of about Pr(H1) = 10−6. We know that this seems very
stringent compared to the true genetic architecture behind complex traits and diseases, but it gives us a
conservative reference point. With this prior probability, the posterior odds and posterior probabilities for
the alternative model are:

post.odds = bf.10 * 1e-6/(1-1e-6) # P(H_1|D) / P(H_0|D)
post.prob = post.odds / (1 + post.odds) # P(H_1|D)
paste(post.prob)

## [1] "5.22229033295724e-07" "0.999980639798069"

For an illustration, let’s check the P-values corresponding to these two data sets using a Wald statistic β̂/SE:

pchisq( (b.est/se)ˆ2, df = 1, lower = F )

## [1] 2.342612e-01 6.999659e-14

So P-value of the first one is quite close to 0.2, whereas the second is way beyond 5e-8. And the Bayesian
analysis said that the first one is almost certain to be null whereas the second one is almost certain to have
a non-zero effect. Thus, there is no difference between the conclusion of the standard P-value-based GWAS
inference and the Bayesian inference, and this is typically the case when there is enough data available.
Conceptually, however, there is a large difference between the P-value, which is a probability of seeing at
least as extreme data under the null, and the posterior probability of the hypothesis itself.

5



There were several assumptions made in the Bayesian analysis about the effect sizes under H1 and also on
the prior probabilities of the models, and the posterior probabilities will change when these assumptions are
changed. Therefore, P-values remain useful simple summaries of data that can be computed easily. The
important thing is to know what P-values are and what they are not, and that what kind of additional pieces
of information would be needed in order to properly quantify the probabilities of the hypotheses.

4.4 Approximate Bayes factor in GWAS The calculation of the Bayes factor above, that was based
on the maximum likelihood estimate β̂ and its SE, was proposed by Jon Wakefield in 2009. The formula is

ABF ≈ P (D | H1)
P (D | H0) ≈

N
(

β̂; 0, τ2
1 + SE2

)
N
(

β̂; 0, SE2
) =

(2π)−0.5(τ2
1 + SE2)−0.5 exp

(
− 1

2
β̂2

τ2
1 +SE2

)
(2π)−0.5(SE2)−0.5 exp

(
− 1

2
β̂2

SE2

)
=

√
SE2

τ2
1 + SE2 exp

(
1
2

β̂2

SE2
τ2

1

τ2
1 + SE2

)
,

where the alternative model is specified by an effect size prior H1 : β ∼ N (0, τ2
1 ). We have presented the ABF

in the form where the alternative is in the numerator and null in the denominator. Hence large ABF means
strong evidence in favor of the alternative model. (Wakefield’s paper used the inverse of this quantity as
Bayes factor, i.e., it computes Bayes factor comparing null to the alternative whereas we compare alternative
to null.)

In R, this is easy to compute using dnorm() function, as we did above. It is always good to do the ratio of
densities on log-scale to avoid possible numerical underflows/overflows. In dnorm() this happens by adding
log = TRUE to the command. Then the ratio of densities becomes a difference between log-densities:

log.bf = dnorm(b.est, 0, sqrt(tau^2 + se^2), log = T ) - dnorm(b.est, 0, se, log = T)
bf = exp(log.bf) #turn from log-scale to Bayes factor scale

The same formula can be used when β̂ and its SE originate from a disease study analyzed by logistic re-
gression. In that case, the formula is an approximation based on the assumption that the logistic regression
likelihood has a shape of a Gaussian density function. Therefore, this approach is generally called Approx-
imate Bayes Factor (ABF).

ABF can be computed from the observed GWAS data (β̂, SE) once we have chosen the variance τ2
1 of the

effect size distribution under the alternative. How should we do that?

Example 4.4. Let’s assume that the non-zero effects have a distribution N (0, τ2
1 ) and we want to determine

τ1 in such a way that with 95% probability the effect (of a SNP with MAF = 0.25) explains less than
proportion p of the phenotypic variance v = Var(y). We will first compute the effect size βp that explains
exactly phenotypic variance of p·v, and then we will find the sd parameter τ1 for which 95% of the probability
mass of N (0, τ2

1 ) is within the region (−βp, βp).

v = 1 # Set this to the phenotypic variance
p = 0.01 # Effect explains less than 1% of the trait variance,
target.prob = 0.95 # with this probability
maf = 0.25 # minor allele frequency
# 2*maf*(1 - maf)*bˆ2 = p * v --> b = +/- sqrt(p*v/(2*maf*(1-maf)))
b = sqrt(p * v / ( 2 * maf * (1 - maf) ) )
tau.seq = seq(0, 1, 0.001) #grid to evaluate tau
x = pnorm(b, 0, tau.seq, lower = F) #what is the upper tail prob. at b for each value of tau?
tau.1 = tau.seq[which.min( abs(x - (1 - target.prob)/2) )] #which is closest to target prob?
#Check that the probability mass in (-b,b) is indeed close to target
print(paste0("tau.1=",tau.1," has mass ",signif(1 - 2*pnorm(b, 0, tau.1, lower = F),3),

" in (-",signif(b,4),", ",signif(b,4),")."))
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## [1] "tau.1=0.083 has mass 0.951 in (-0.1633, 0.1633)."

Example 4.5. For case-control GWAS, we want to find such τ1 that with 95% probability a variant can
increase risk by at most OR of 1.30. Now we get the critical point βp directly as log(1.30) and then proceed
as above.

or = 1.30 # Effect is at most this large
target.prob = 0.95 # with this probability
b = log(or)
tau.seq = seq(0, 1, 0.001) # grid to evaluate tau
x = pnorm(b, 0, tau.seq, lower = F) # what is the upper tail prob. at b for each value of tau?
tau.1 = tau.seq[which.min( abs(x - (1 - target.prob)/2) )] # which is closest to target prob?
# Check that the probability mass in (-b,b) is indeed close to target
print(paste0("tau.1=",tau.1," has mass ",signif(1 - 2*pnorm(b, 0, tau.1, lower = F),3),

" in (-",signif(b,4),", ",signif(b,4),")."))

## [1] "tau.1=0.134 has mass 0.95 in (-0.2624, 0.2624)."

Note that the above choices of τ1 do not model very large effect sizes. There are variants that explain, say,
over 10% of the variation of a quantitative trait or that have an OR of 3 for some disease. To properly model
them in the Bayesian framework, one would need to use several prior distributions and average the results
(Bayesian model averaging).
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