Stochastic relations of random variables and processes

Lasse Leskelä
Helsinki University of Technology

7th World Congress in Probability and Statistics
Singapore, 18 July 2008

Fundamental problem of applied probability

$$
\mathrm{E} f(X(t))=?
$$

What if X is complex?

- Asymptotics
- Simulation
- Bounds

Stochastic bounds

Let X_{1} and X_{2} be (irreducible, positive recurrent) Markov processes with stationary distributions μ_{1} and μ_{2}.

Problem
Can we show that $\mu_{1} \leq_{s t} \mu_{2}$ without explicitly knowing μ_{1} or μ_{2} ?

Recall that μ_{1} is stochastically less than μ_{2}, denoted $\mu_{1} \leq_{\text {st }} \mu_{2}$, if $\int f d \mu_{1} \leq \int f d \mu_{2}$ for all positive increasing f.

Sufficient condition

Theorem (Whitt 1986; Massey 1987)
A sufficient condition for $\mu_{1} \leq_{\text {st }} \mu_{2}$ is that the transition rate kernels of X_{1} and X_{2} satisfy for all $x \leq y$:

- $Q_{1}(x, B) \leq Q_{2}(y, B)$ for all upper sets B such that $x, y \notin B$
- $Q_{2}(x, B) \geq Q_{2}(y, B)$ for all lower sets B such that $x, y \notin B$

The above condition is not sharp in general. Can we do any better?

Outline

Stochastic relations

Preservation of stochastic relations

Maximal subrelations

Outline

Stochastic relations

Preservation of stochastic relations

Maximal subrelations

Coupling

A coupling of random elements X and Y is a bivariate random element (\hat{X}, \hat{Y}) such that:

- \hat{X} has the same distribution as X
- \hat{Y} has the same distribution as Y

A coupling of probability measures μ on S_{1} and ν on S_{2} is a probability measure λ on $S_{1} \times S_{2}$ having marginals μ and ν.

Remark

(\hat{X}, \hat{Y}) is a coupling of X and Y if and only if $\mathrm{P}((\hat{X}, \hat{Y}) \in \cdot)$ is a coupling of $\mathrm{P}(X \in \cdot)$ and $\mathrm{P}(Y \in \cdot)$.

Stochastic relations

Any meaningful distributional relation should have a coupling counterpart (Hermann Thorisson).

Stochastic relations

Any meaningful distributional relation should have a coupling counterpart (Hermann Thorisson).

Denote

- $x \sim y$, if $(x, y) \in R$
- $X \sim_{\text {st }} Y$, if there exists a coupling (\hat{X}, \hat{Y}) of X and Y such that $\hat{X} \sim \hat{Y}$ almost surely.
- $\mu \sim_{\text {st }} \nu$, if there exists a coupling λ of μ and ν such that $\lambda(R)=1$.
$R_{\mathrm{st}}=\left\{(\mu, \nu): \mu \sim_{\mathrm{st}} \nu\right\}$ is the stochastic relation generated by R.
- For Dirac measures, $\delta_{x} \sim_{s t} \delta_{y}$ if and only if $x \sim y$.

Functional characterization

Theorem (Strassen 1965; L. 2008+)
The following are equivalent:
(i) $\mu \sim_{s t} \nu$
(ii) $\mu(B) \leq \nu\left(B^{\rightarrow}\right)$ for all compact $B \subset S_{1}$
(iii) $\int_{S_{1}} f d \mu \leq \int_{S_{2}} f \rightarrow d \nu$ for all upper semicontinuous compactly supported $f: S_{1} \rightarrow \mathbb{R}_{+}$

$$
\begin{gathered}
B^{\rightarrow}=\cup_{x_{1} \in B}\left\{x_{2} \in S_{2}: x_{1} \sim x_{2}\right\} \\
f^{\rightarrow}\left(x_{2}\right)=\sup _{x_{1}: x_{1} \sim x_{2}} f\left(x_{1}\right) .
\end{gathered}
$$

Functional characterization

Theorem (Strassen 1965; L. 2008+)

The following are equivalent:
(i) $\mu \sim_{\text {st }} \nu$
(ii) $\mu(B) \leq \nu\left(B^{\rightarrow}\right)$ for all compact $B \subset S_{1}$
(iii) $\int_{S_{1}} f d \mu \leq \int_{S_{2}} f \rightarrow d \nu$ for all upper semicontinuous compactly supported $f: S_{1} \rightarrow \mathbb{R}_{+}$

Remark

If R is an order (reflexive and transitive) relation on S, then conditions (ii) and (iii) are equivalent to
(ii') $\mu(B) \leq \nu(B)$ for all measurable upper sets B,
(iii') $\int_{S} f d \mu \leq \int_{S} f d \nu$ for all increasing measurable $f: S_{1} \rightarrow \mathbb{R}_{+}$.
(Strassen 1965; Kamae, Krengel, O’Brien 1977)

Examples

- Stochastic equality. Let $=_{\text {st }}$ be the stochastic relation generated by the equality $=$. Then $X==_{\text {st }} Y$ if and only if X and Y have the same distribution.
- Stochastic ϵ-distance. Define $x \approx y$ by $|x-y| \leq \epsilon$. Two real random variables satisfy $X \approx_{s t} Y$ if and only if for all x the corresponding c.d.f.'s satisfy $F_{Y}(x-\epsilon) \leq F_{X}(x) \leq F_{Y}(x+\epsilon)$.
- Stochastic induced order. Define $x \leq^{f, g}$ y by $f(x) \leq g(y)$. Then $\mu \leq_{\mathrm{st}}^{f, g} \nu$ if and only if $\mu\left(f^{-1}((\alpha, \infty))\right) \leq$ $\nu\left(g^{-1}((\alpha, \infty))\right)$ for all real numbers α (Doisy 2000).

Outline

Stochastic relations

Preservation of stochastic relations

Maximal subrelations

Monotonicity vs. relation-preservation

Order relations \rightsquigarrow monotone functions f :

$$
x \leq y \Longrightarrow f(x) \leq f(y)
$$

General relations \rightsquigarrow relation-preserving pairs of functions (f, g) :

$$
x \sim y \Longrightarrow f(x) \sim g(y)
$$

Stochastic relations \rightsquigarrow stochastically relation-preserving pairs of probability kernels (random functions) (F, G) :

$$
x \sim y \Longrightarrow F(x, \cdot) \sim_{\mathrm{st}} G(y, \cdot)
$$

Preservation of stochastic relations

A pair of probability kernels $\left(P_{1}, P_{2}\right)$ stochastically preserves a relation R, if

$$
x_{1} \sim x_{2} \Longrightarrow P_{1}\left(x_{1}, \cdot\right) \sim_{\text {st }} P_{2}\left(x_{2}, \cdot\right)
$$

or equivalently,

$$
\mu_{1} \sim_{\text {st }} \mu_{2} \Longrightarrow \mu_{1} P_{1} \sim_{\text {st }} \mu_{2} P_{2}
$$

Preservation of stochastic relations

A pair of probability kernels $\left(P_{1}, P_{2}\right)$ stochastically preserves a relation R, if

$$
x_{1} \sim x_{2} \Longrightarrow P_{1}\left(x_{1}, \cdot\right) \sim_{\text {st }} P_{2}\left(x_{2}, \cdot\right)
$$

or equivalently,

$$
\mu_{1} \sim_{\text {st }} \mu_{2} \Longrightarrow \mu_{1} P_{1} \sim_{\text {st }} \mu_{2} P_{2}
$$

Theorem (Zhang 1998; L. 2008+)
A pair $\left(P_{1}, P_{2}\right)$ stochastically preserves R if and only if there exists a probability kernel P on $S_{1} \times S_{2}$ such that:
(i) $P(x, \cdot)$ couples $P_{1}\left(x_{1}, \cdot\right)$ and $P_{2}\left(x_{2}, \cdot\right)$ for all $x=\left(x_{1}, x_{2}\right)$.
(ii) $x \in R \Longrightarrow P(x, R)=1$.

Stochastic relations of Markov processes

A pair of Markov processes stochastically preserve a relation R, if

$$
x \sim y \quad \Longrightarrow \quad X(x, t) \sim_{\text {st }} Y(y, t) \text { for all } t
$$

or equivalently,

$$
\mu \sim_{\mathrm{st}} \nu \quad \Longrightarrow \quad X(\mu, t) \sim_{\mathrm{st}} Y(\nu, t) \text { for all } t
$$

Stochastic relations of Markov processes

A pair of Markov processes stochastically preserve a relation R, if

$$
x \sim y \quad \Longrightarrow \quad X(x, t) \sim_{\text {st }} Y(y, t) \text { for all } t
$$

or equivalently,

$$
\mu \sim_{\mathrm{st}} \nu \quad \Longrightarrow \quad X(\mu, t) \sim_{\mathrm{st}} Y(\nu, t) \text { for all } t
$$

Remark
A Markov process is stochastically monotone, if

$$
x \leq y \quad \Longrightarrow \quad X(x, t) \leq_{\text {st }} X(y, t) \text { for all } t
$$

Relation-preserving Markov processes

Let X_{1} and X_{2} be discrete-time Markov processes with transition probability kernels P_{1} and P_{2}.

Theorem (L. 2008+)
The following are equivalent:
(i) X_{1} and X_{2} stochastically preserve the relation R.
(ii) $P_{1}\left(x_{1}, B\right) \leq P_{2}\left(x_{2}, B \rightarrow\right)$ for all $x_{1} \sim x_{2}$ and compact $B \subset S_{1}$.
(iii) There exists a Markovian coupling of X_{1} and X_{2} for which R is invariant.

Relation-preserving Markov processes

Let X_{1} and X_{2} be discrete-time Markov processes with transition probability kernels P_{1} and P_{2}.

Theorem (L. 2008+)
The following are equivalent:
(i) X_{1} and X_{2} stochastically preserve the relation R.
(ii) $P_{1}\left(x_{1}, B\right) \leq P_{2}\left(x_{2}, B \rightarrow\right)$ for all $x_{1} \sim x_{2}$ and compact $B \subset S_{1}$.
(iii) There exists a Markovian coupling of X_{1} and X_{2} for which R is invariant.

Remarks

- If R is an order, (ii) can be replaced by
(ii') $P_{1}\left(x_{1}, B\right) \leq P_{2}\left(x_{2}, B\right)$ for all $x_{1} \leq x_{2}$ and upper sets B (Kamae, Krengel, O'Brien 1977).
- An analogous result holds for nonexplosive Markov jump processes, generalizing the result of Whitt and Massey.

Outline

Stochastic relations
 Preservation of stochastic relations

Maximal subrelations

Stochastic subrelations

Recall our starting point:
Problem
Can we show that the stationary distributions μ_{1} and μ_{2} of Markov processes X_{1} and X_{2} satisfy $\mu_{1} \leq_{\text {st }} \mu_{2}$ without explicitly knowing μ_{1} or μ_{2} ?

Stochastic subrelations

Recall our starting point:
Problem
Can we show that the stationary distributions μ_{1} and μ_{2} of Markov processes X_{1} and X_{2} satisfy $\mu_{1} \leq_{\text {st }} \mu_{2}$ without explicitly knowing μ_{1} or μ_{2} ?

- The sufficient condition of Whitt and Massey essentially says that X_{1} and X_{2} stochastically preserve the order relation $R_{\leq}=\{(x, y): x \leq y\}$.

Stochastic subrelations

Recall our starting point:

Problem

Can we show that the stationary distributions μ_{1} and μ_{2} of Markov processes X_{1} and X_{2} satisfy $\mu_{1} \leq_{s t} \mu_{2}$ without explicitly knowing μ_{1} or μ_{2} ?

- The sufficient condition of Whitt and Massey essentially says that X_{1} and X_{2} stochastically preserve the order relation $R_{\leq}=\{(x, y): x \leq y\}$.
- A less stringent sufficient condition: Show that X_{1} and X_{2} stochastically preserve a nontrivial subrelation of R_{\leq}.

Subrelation algorithm

Given a closed relation R and continuous probability kernels P_{1} and P_{2}, define a sequence of relations by $R^{(0)}=R$,

$$
R^{(n+1)}=\left\{(x, y) \in R^{(n)}:\left(P_{1}(x, \cdot), P_{2}(y, \cdot)\right) \in R_{\mathrm{st}}^{(n)}\right\}
$$

and let $R^{*}=\bigcap_{n=0}^{\infty} R^{(n)}$.

Subrelation algorithm

Given a closed relation R and continuous probability kernels P_{1} and P_{2}, define a sequence of relations by $R^{(0)}=R$,

$$
R^{(n+1)}=\left\{(x, y) \in R^{(n)}:\left(P_{1}(x, \cdot), P_{2}(y, \cdot)\right) \in R_{\mathrm{st}}^{(n)}\right\}
$$

and let $R^{*}=\bigcap_{n=0}^{\infty} R^{(n)}$.
Theorem (L. 2008+)
The relation R^{*} is the maximal closed subrelation of R that is stochastically preserved by $\left(P_{1}, P_{2}\right)$. Especially, the pair $\left(P_{1}, P_{2}\right)$ preserves a nontrivial subrelation of R if and only if $R^{*} \neq \emptyset$.

Remark

A modified algorithm works for Markov jump processes.

Application: Multilayer loss network

Multiclass loss network with

- M_{k} servers dedicated to class- k jobs (layer 1)
- N multiclass servers processing the overflow traffic (layer 2)

Application: Multilayer loss network

Modified system $Y=\left(Y_{1,1}, \ldots, Y_{1, K} ; Y_{2,1}, \ldots, Y_{2, K}\right)$

- One class-1 server replaced by a shared server
- Can we show that $\mathrm{E} \sum_{i, k} X_{i, k} \leq \mathrm{E} \sum_{i, k} Y_{i, k}$ in steady state?

Define the relation $x \sim y$ by $\sum_{i, k} x_{i, k} \leq \sum_{i, k} y_{i, k}$.
$\checkmark \sim$ is not an order (different state spaces)

- X and Y do not preserve $\sim_{\text {st }}$
- But maybe (X, Y) preserves some subrelation of $\sim_{\text {st }}$?

Application: Multilayer loss network

Example

Two customer classes

- Server configuration: $M_{1}=3, M_{2}=2, N=2$
- Arrival rates $\lambda_{1}=1, \lambda_{2}=2$
- Service rate $\mu=1$

How many iterations do we need to compute R_{∞} ?

- X has 72 possible states
- Y has 90 possible states

Application: Multilayer loss network

Application: Multilayer loss network

What if we started with a stricter relation?

Redefine $x \sim y$ by

$$
0 \leq \sum_{i, k} y_{i, k}-\sum_{i, k} x_{i, k} \leq 1
$$

Application: Multilayer loss network

Application: Multilayer loss network

Theorem (Jonckheere \& L. 2008)
The processes X and Y stochastically preserve the relation $R=\{(x, y):|x-y| \in \Delta\}$, where

$$
\Delta=\left\{0, e_{2}, e_{2}-e_{1,1}, 2 e_{2}-e_{1,1}\right\} .
$$

Especially, the stationary distributions of the processes satisfy

$$
|Y|-1 \leq_{\text {st }}|X| \leq_{\text {st }}|Y|,
$$

and

$$
\begin{aligned}
X_{1,1} & \geq_{\text {st }} Y_{1,1}, \\
X_{1, k} & =\text { st } Y_{1, k} \quad \text { for all } k \neq 1, \\
\sum_{k} X_{2, k} & \leq_{\text {st }} \sum_{k} Y_{2, k} .
\end{aligned}
$$

Application: Load balancing

Common sense: $\mathrm{E}\left(X_{1}^{\mathrm{LB}}(t)+X_{2}^{\mathrm{LB}}(t)\right) \leq \mathrm{E}\left(X_{1}(t)+X_{2}(t)\right)$

Application: Load balancing

Common sense: $\mathrm{E}\left(X_{1}^{\mathrm{LB}}(t)+X_{2}^{\mathrm{LB}}(t)\right) \leq \mathrm{E}\left(X_{1}(t)+X_{2}(t)\right)$
The rate kernel pair $\left(Q^{\mathrm{LB}}, Q\right)$ does not stochastically preserve:

- $R^{\text {nat }}=\left\{(x, y): x_{1} \leq y_{1}, x_{2} \leq y_{2}\right\}$
- $R^{\text {sum }}=\{(x, y):|x| \leq|y|\}$, where $|x|=x_{1}+x_{2}$

How about a subrelation of $R^{\text {sum }}$?

Application: Load balancing

Theorem (L. 2008+)
The subrelation algorithm started from $R^{\text {sum }}$ yields

$$
\begin{aligned}
R^{(n)} & =\left\{(x, y):|x| \leq|y| \text { and } x_{1} \vee x_{2} \leq y_{1} \vee y_{2}+\left(y_{1} \wedge y_{2}-n\right)^{+}\right\} \\
\quad & \\
R^{*} & =\left\{(x, y):|x| \leq|y| \text { and } x_{1} \vee x_{2} \leq y_{1} \vee y_{2}\right\}
\end{aligned}
$$

Especially, $\left(Q^{\mathrm{LB}}, Q\right)$ stochastically preserves the relation R^{*}.

Remark

- R^{*} is the weak majorization order on \mathbb{Z}_{+}^{2}
- $X \sim_{\mathrm{st}}^{*} Y$ if and only if $\mathrm{E} f(X) \leq \mathrm{E} f(Y)$ for all coordinatewise increasing Schur-convex functions f (Marshall \& Olkin 1979).

Conclusions

Algorithmic probability

- Computational methods for analytical results
- Comparison without ordering
- State space reduction

Open problems:

- Numerical methods for finite Markov chains
- Subrelations versus dependence orderings
- Diffusions, Feller processes, martingales, ...

Discussion: Coupling vs. mass transportation

$$
W_{\phi}(\mu, \nu)=\inf _{\lambda \in K(\mu, \nu)} \int_{S_{1} \times S_{2}} \phi\left(x_{1}, x_{2}\right) \lambda(d x)
$$

- $K(\mu, \nu)$ is the set of couplings of μ and ν

- W_{ϕ} is a Wasserstein metric, if ϕ is a metric.
- $\mu \sim_{\text {st }} \nu$ if and only if $W_{\phi}(\mu, \nu)=0$ for $\phi\left(x_{1}, x_{2}\right)=1\left(x_{1} \nsim x_{2}\right)$.
(Monge 1781, Kantorovich 1942, Wasserstein 1969, Chen 2005)

嗇 M．－F．Chen．
Eigenvalues，Inequalities，and Ergodic Theory．
Springer， 2005.
（ M．Doisy．
A coupling technique for stochastic comparison of functions of Markov processes．
J．Appl．Math．Decis．Sci．，4（1）：39－64， 2000.
圊 M．Jonckheere and L．Leskelä．
Stochastic bounds for two－layer loss systems．
To appear in Stoch．Models，arXiv：0708．1927，2008＋．
圊 T．Kamae，U．Krengel，and G．L．O＇Brien．
Stochastic inequalities on partially ordered spaces．
Ann．Probab．，5（6）：899－912， 1977.
L．Leskelä．
Stochastic relations of random variables and processes．
Submitted．Preprint：http：／／www．iki．fi／lsl／，2008＋．
图 W．A．Massey．

Stochastic orderings for Markov processes on partially ordered spaces.
Math. Oper. Res., 12(2):350-367, 1987.
© V. Strassen.
The existence of probability measures with given marginals.
Ann. Math. Statist., 36(2):423-439, 1965.
暑 H. Thorisson.
Coupling, Stationarity, and Regeneration.
Springer, 2000.
目 W. Whitt.
Stochastic comparisons for non-Markov processes.
Math. Oper. Res., 11(4):608-618, 1986.

S.-Y. Zhang.

Existence of ρ-optimal coupling operator for jump processes.
Acta Math. Sin. (Chinese series), 41(2):393-398, 1998.

