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Fundamental problem of applied probability

E f (X (t)) = ?

What if X is complex?

◮ Asymptotics

◮ Simulation

◮ Bounds



Stochastic bounds

Let X1 and X2 be (irreducible, positive recurrent) Markov
processes with stationary distributions µ1 and µ2.

Problem
Can we show that µ1 ≤st µ2 without explicitly knowing µ1 or µ2?

Recall that µ1 is stochastically less than µ2, denoted µ1 ≤st µ2, if
∫

f dµ1 ≤
∫

f dµ2 for all positive increasing f .



Sufficient condition

Theorem (Whitt 1986; Massey 1987)

A sufficient condition for µ1 ≤st µ2 is that the transition rate
kernels of X1 and X2 satisfy for all x ≤ y :

◮ Q1(x ,B) ≤ Q2(y ,B) for all upper sets B such that x , y /∈ B

◮ Q2(x ,B) ≥ Q2(y ,B) for all lower sets B such that x , y /∈ B

The above condition is not sharp in general. Can we do any better?
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Coupling

A coupling of random elements X and Y is a bivariate random
element (X̂ , Ŷ ) such that:

◮ X̂ has the same distribution as X

◮ Ŷ has the same distribution as Y

A coupling of probability measures µ on S1 and ν on S2 is
a probability measure λ on S1 × S2 having marginals µ and ν.

Remark
(X̂ , Ŷ ) is a coupling of X and Y if and only if
P((X̂ , Ŷ ) ∈ ·) is a coupling of P(X ∈ ·) and P(Y ∈ ·).
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Stochastic relations

Any meaningful distributional relation should have a
coupling counterpart (Hermann Thorisson).

S1

S2

R

Denote

◮ x ∼ y , if (x , y) ∈ R

◮ X ∼st Y , if there exists a coupling
(X̂ , Ŷ ) of X and Y such that
X̂ ∼ Ŷ almost surely.

◮ µ ∼st ν, if there exists a coupling λ
of µ and ν such that λ(R) = 1.

Rst = {(µ, ν) : µ ∼st ν} is the stochastic relation generated by R .

◮ For Dirac measures, δx ∼st δy if and only if x ∼ y .



Functional characterization

Theorem (Strassen 1965; L. 2008+)

The following are equivalent:

(i) µ ∼st ν

(ii) µ(B) ≤ ν(B→) for all compact B ⊂ S1

(iii)
∫

S1
f dµ ≤

∫

S2
f → dν for all upper semicontinuous compactly

supported f : S1 → R+

S1

S2

B

B→

R B→ = ∪x1∈B{x2 ∈ S2 : x1 ∼ x2}

f →(x2) = sup
x1:x1∼x2

f (x1).



Functional characterization

Theorem (Strassen 1965; L. 2008+)

The following are equivalent:

(i) µ ∼st ν

(ii) µ(B) ≤ ν(B→) for all compact B ⊂ S1

(iii)
∫

S1
f dµ ≤

∫

S2
f → dν for all upper semicontinuous compactly

supported f : S1 → R+

Remark
If R is an order (reflexive and transitive) relation on S , then
conditions (ii) and (iii) are equivalent to

(ii’) µ(B) ≤ ν(B) for all measurable upper sets B ,

(iii’)
∫

S
f dµ ≤

∫

S
f dν for all increasing measurable f : S1 → R+.

(Strassen 1965; Kamae, Krengel, O’Brien 1977)



Examples

◮ Stochastic equality. Let =st be the stochastic relation
generated by the equality =. Then X =st Y if and only if X
and Y have the same distribution.

◮ Stochastic ǫ-distance. Define x ≈ y by |x − y | ≤ ǫ. Two real
random variables satisfy X ≈st Y if and only if for all x the
corresponding c.d.f.’s satisfy FY (x − ǫ) ≤ FX (x) ≤ FY (x + ǫ).

◮ Stochastic induced order. Define x ≤f ,g y by f (x) ≤ g(y).

Then µ ≤f ,g
st

ν if and only if µ(f −1((α,∞))) ≤
ν(g−1((α,∞))) for all real numbers α (Doisy 2000).
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Monotonicity vs. relation-preservation

Order relations  monotone functions f :

x ≤ y =⇒ f (x) ≤ f (y)

General relations  relation-preserving pairs of functions (f , g):

x ∼ y =⇒ f (x) ∼ g(y)

Stochastic relations  stochastically relation-preserving pairs of
probability kernels (random functions) (F ,G ):

x ∼ y =⇒ F (x , ·) ∼st G (y , ·)



Preservation of stochastic relations

A pair of probability kernels (P1,P2) stochastically preserves a
relation R , if

x1 ∼ x2 =⇒ P1(x1, ·) ∼st P2(x2, ·)

or equivalently,

µ1 ∼st µ2 =⇒ µ1P1 ∼st µ2P2.



Preservation of stochastic relations

A pair of probability kernels (P1,P2) stochastically preserves a
relation R , if

x1 ∼ x2 =⇒ P1(x1, ·) ∼st P2(x2, ·)

or equivalently,

µ1 ∼st µ2 =⇒ µ1P1 ∼st µ2P2.

Theorem (Zhang 1998; L. 2008+)

A pair (P1,P2) stochastically preserves R if and only if there exists
a probability kernel P on S1 × S2 such that:

(i) P(x , ·) couples P1(x1, ·) and P2(x2, ·) for all x = (x1, x2).

(ii) x ∈ R =⇒ P(x ,R) = 1.



Stochastic relations of Markov processes

A pair of Markov processes stochastically preserve a relation R , if

x ∼ y =⇒ X (x , t) ∼st Y (y , t) for all t,

or equivalently,

µ ∼st ν =⇒ X (µ, t) ∼st Y (ν, t) for all t.



Stochastic relations of Markov processes

A pair of Markov processes stochastically preserve a relation R , if

x ∼ y =⇒ X (x , t) ∼st Y (y , t) for all t,

or equivalently,

µ ∼st ν =⇒ X (µ, t) ∼st Y (ν, t) for all t.

Remark
A Markov process is stochastically monotone, if

x ≤ y =⇒ X (x , t) ≤st X (y , t) for all t.



Relation-preserving Markov processes
Let X1 and X2 be discrete-time Markov processes with transition
probability kernels P1 and P2.

Theorem (L. 2008+)

The following are equivalent:

(i) X1 and X2 stochastically preserve the relation R.

(ii) P1(x1,B) ≤ P2(x2,B
→) for all x1 ∼ x2 and compact B ⊂ S1.

(iii) There exists a Markovian coupling of X1 and X2 for which R
is invariant.



Relation-preserving Markov processes
Let X1 and X2 be discrete-time Markov processes with transition
probability kernels P1 and P2.

Theorem (L. 2008+)

The following are equivalent:

(i) X1 and X2 stochastically preserve the relation R.

(ii) P1(x1,B) ≤ P2(x2,B
→) for all x1 ∼ x2 and compact B ⊂ S1.

(iii) There exists a Markovian coupling of X1 and X2 for which R
is invariant.

Remarks

◮ If R is an order, (ii) can be replaced by

(ii’) P1(x1, B) ≤ P2(x2, B) for all x1 ≤ x2 and upper sets B

(Kamae, Krengel, O’Brien 1977).

◮ An analogous result holds for nonexplosive Markov jump
processes, generalizing the result of Whitt and Massey.
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Recall our starting point:

Problem
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Markov processes X1 and X2 satisfy µ1 ≤st µ2 without explicitly
knowing µ1 or µ2?



Stochastic subrelations

Recall our starting point:

Problem
Can we show that the stationary distributions µ1 and µ2 of
Markov processes X1 and X2 satisfy µ1 ≤st µ2 without explicitly
knowing µ1 or µ2?

◮ The sufficient condition of Whitt and Massey essentially says
that X1 and X2 stochastically preserve the order relation
R≤ = {(x , y) : x ≤ y}.



Stochastic subrelations

Recall our starting point:

Problem
Can we show that the stationary distributions µ1 and µ2 of
Markov processes X1 and X2 satisfy µ1 ≤st µ2 without explicitly
knowing µ1 or µ2?

◮ The sufficient condition of Whitt and Massey essentially says
that X1 and X2 stochastically preserve the order relation
R≤ = {(x , y) : x ≤ y}.

◮ A less stringent sufficient condition: Show that X1 and X2

stochastically preserve a nontrivial subrelation of R≤.



Subrelation algorithm

Given a closed relation R and continuous probability kernels P1

and P2, define a sequence of relations by R (0) = R ,

R (n+1) =
{

(x , y) ∈ R (n) : (P1(x , ·),P2(y , ·)) ∈ R
(n)
st

}

,

and let R∗ =
⋂∞

n=0 R (n).



Subrelation algorithm

Given a closed relation R and continuous probability kernels P1

and P2, define a sequence of relations by R (0) = R ,

R (n+1) =
{

(x , y) ∈ R (n) : (P1(x , ·),P2(y , ·)) ∈ R
(n)
st

}

,

and let R∗ =
⋂∞

n=0 R (n).

Theorem (L. 2008+)

The relation R∗ is the maximal closed subrelation of R that is
stochastically preserved by (P1,P2). Especially, the pair (P1,P2)
preserves a nontrivial subrelation of R if and only if R∗ 6= ∅.

Remark
A modified algorithm works for Markov jump processes.



Application: Multilayer loss network

Multiclass loss network with

◮ Mk servers dedicated to class-k jobs (layer 1)

◮ N multiclass servers processing the overflow traffic (layer 2)

λ1

λK

1

1

1

M1

MK

N

X1,1

X1,K

X2,1, . . . , X2,K



Application: Multilayer loss network

Modified system Y = (Y1,1, . . . ,Y1,K ;Y2,1, . . . ,Y2,K )

◮ One class-1 server replaced by a shared server

◮ Can we show that E
∑

i ,k Xi ,k ≤ E
∑

i ,k Yi ,k in steady state?

Define the relation x ∼ y by
∑

i ,k xi ,k ≤
∑

i ,k yi ,k .

◮ ∼ is not an order (different state spaces)

◮ X and Y do not preserve ∼st

◮ But maybe (X ,Y ) preserves some subrelation of ∼st?



Application: Multilayer loss network

Example

Two customer classes

◮ Server configuration: M1 = 3, M2 = 2, N = 2

◮ Arrival rates λ1 = 1, λ2 = 2

◮ Service rate µ = 1

How many iterations do we need to compute R∞?

◮ X has 72 possible states

◮ Y has 90 possible states
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Application: Multilayer loss network

What if we started with a stricter relation?

Redefine x ∼ y by

0 ≤
∑

i ,k

yi ,k −
∑

i ,k

xi ,k ≤ 1
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Application: Multilayer loss network

Theorem (Jonckheere & L. 2008)

The processes X and Y stochastically preserve the relation
R = {(x , y) : |x − y | ∈ ∆}, where

∆ = {0, e2, e2 − e1,1, 2e2 − e1,1}.

Especially, the stationary distributions of the processes satisfy

|Y | − 1 ≤st |X | ≤st |Y |,

and

X1,1 ≥st Y1,1,

X1,k =st Y1,k for all k 6= 1,
∑

k

X2,k ≤st

∑

k

Y2,k .



Application: Load balancing

λ1

λ2

λ1 + λ2

X1(t)

X2(t)

XLB

1 (t)

XLB

2 (t)

Common sense: E(XLB

1 (t) + XLB

2 (t)) ≤ E(X1(t) + X2(t))



Application: Load balancing

λ1

λ2

λ1 + λ2

X1(t)

X2(t)

XLB

1 (t)

XLB

2 (t)

Common sense: E(XLB

1 (t) + XLB

2 (t)) ≤ E(X1(t) + X2(t))

The rate kernel pair (QLB,Q) does not stochastically preserve:

◮ Rnat = {(x , y) : x1 ≤ y1, x2 ≤ y2}

◮ Rsum = {(x , y) : |x | ≤ |y |}, where |x | = x1 + x2

How about a subrelation of Rsum?



Application: Load balancing

Theorem (L. 2008+)

The subrelation algorithm started from Rsum yields

R (n) =
{

(x , y) : |x | ≤ |y | and x1 ∨ x2 ≤ y1 ∨ y2 + (y1 ∧ y2 − n)+
}

↓

R∗ = {(x , y) : |x | ≤ |y | and x1 ∨ x2 ≤ y1 ∨ y2} .

Especially, (QLB,Q) stochastically preserves the relation R∗.

Remark

◮ R∗ is the weak majorization order on Z
2
+

◮ X ∼∗
st Y if and only if E f (X ) ≤ E f (Y ) for all coordinatewise

increasing Schur-convex functions f (Marshall & Olkin 1979).



Conclusions

Algorithmic probability

◮ Computational methods for analytical results

◮ Comparison without ordering

◮ State space reduction

Open problems:

◮ Numerical methods for finite Markov chains

◮ Subrelations versus dependence orderings

◮ Diffusions, Feller processes, martingales, . . .



Discussion: Coupling vs. mass transportation

Wφ(µ, ν) = inf
λ∈K(µ,ν)

∫

S1×S2

φ(x1, x2)λ(dx)

◮ K (µ, ν) is the set of couplings of µ and ν

µ ν

φ

◮ Wφ is a Wasserstein metric, if φ is a metric.
◮ µ ∼st ν if and only if Wφ(µ, ν) = 0 for φ(x1, x2) = 1(x1 6∼ x2).

(Monge 1781, Kantorovich 1942, Wasserstein 1969, Chen 2005)
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