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Poisson grain model

Random subsets of Rd called grains: xj + (ρvj)
1/dC

• C ⊂ Rd such that |C|= 1, C is compact and starlike:

rC ⊂ C, r ∈ [0,1]

• xj points of a PRM on Rd with intensity λ

• Independent grain volumes ρV with EV = 1 and P(V ∈ ·) = F (·)
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Poisson noise field

Jλ,ρ(y) = # grains containing y

Jλ,ρ =

∫

Rd

∫

R+

1(y ∈ x+ (ρv)1/dC)Nλ(dx, dv),

where Nλ,ρ(dx, dv) is a PRM on Rd × R+ with intensity λdxF (dv)

Problem: describe Jλ,ρ as the mean grain density λ → ∞ and the

mean grain volume ρ → 0

Note: in 1D, Jλ,ρ(y) is known as the M/G/∞ process with arrival

intensity λ and mean call duration ρ
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Poisson noise as a random linear functional

Define for φ ∈ L1

Jλ,ρ(φ) =

∫

Rd
Jλ,ρ(y)φ(y) dy

Then

Jλ,ρ(φ) =
∫

Rd

∫

R+

ρvmφ(x, ρv)Nλ(dx, dv),

where mφ are the averages

mφ(x, v) = v−1
∫

x+v1/dC
φ(y) dy

5



Scaling limit for volumes with light tails

Theorem 1. Assume EV 2 <∞. Then, as λ→∞ and ρ→ 0,

Jλ,ρ(φ)− E Jλ,ρ(φ)

ρ(λEV 2)1/2
d
−→W (φ), φ ∈ L1 ∩ L2,

where W is the Gaussian random linear functional with EW (φ) = 0

and

EW (φ)W (ψ) =

∫

Rd

∫

Rd
φ(x)ψ(y) dx dy.

W can also be defined as a Gaussian random measure with Lebesgue

control measure
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Volumes with heavy tails

Assume that for a slowly varying L(v) and γ ∈ (1,2),

P (V > v) = v−γL(v)

Then E(# grains covering the origin with volume > 1) equals

λρ
∫ ∞

1/ρ
vF (dv) ∼

λργL(1/ρ)

1− γ−1
, ρ→ 0

Three regimes:

Small-grain scaling λ ργL(1/ρ)→ 0

Intermediate scaling λ ργL(1/ρ)→ γ−1

Large-grain scaling λ ργL(1/ρ)→∞
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Limit for heavy tails, small-grain scaling

Theorem 2. Assume that P (V > v) = L(v)v−γ with γ ∈ (1,2) and

λργL(1/ρ)→ 0. Then as λ→∞ and ρ→ 0,

Jλ,ρ(φ)−E Jλ,ρ(φ)

ρ(1/(1− F ))←(γλ)

d
−→ Λγ(φ), φ ∈ L1 ∩ L2,

where Λγ is the independently scattered γ-stable random measure on

R
d with Lebesgue control measure and unit skewness.

Note: in 1D: t 7→ Λγ(1[0,t]) is a γ-stable Lévy process
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Limit for heavy tails, intermediate scaling

Theorem 3. Assume that P (V > v) = L(v)v−γ with γ ∈ (1,2) and

λργL(1/ρ)→ γ−1. Then as λ→∞ and ρ→ 0,

Jλ,ρ(φ)− E Jλ,ρ(φ)
d
−→ J∗γ,C(φ), φ ∈ L1 ∩ L2,

where

J∗γ,C(φ) =

∫

Rd

∫ ∞

0
vmφ(x, v) (Nγ(dx, dv)− dx v

−γ−1dv),

and Nγ(dx, dv) is a PRM on Rd × R+ with intensity dx v−γ−1dv.
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Limit for heavy tails, large-grain scaling

Theorem 4. Assume that P (V > v) = L(v)v−γ with γ ∈ (1,2) and

λργL(1/ρ)→∞. Then as λ→∞ and ρ→ 0,

Jλ,ρ(φ)− E Jλ,ρ(φ)

(γλργL(1/ρ))1/2
d
−→Wγ,C(φ), φ ∈ L1 ∩ L2,

where Wγ,C is the Gaussian random linear functional on L1 ∩ L2 with

EWγ,C(φ) = 0 and

EWγ,C(φ)Wγ,C(ψ) =
∫∫

φ(x)Kγ,C(x− y)φ(y) dx dy,

where

Kγ,C(x) =

∫ ∞

0

∣

∣

∣v−1/dx+ C ∩ C
∣

∣

∣ v−γdv.
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Properties of the limits

The Gaussian limit Wγ,C is self-similar with H = (3− γ)/2:

Wγ,C(φ ◦ a−1)
d
= aHdWγ,C(φ)

The stable limit Λγ is self-similar with H = 1/γ:

Λγ(φ ◦ a
−1)

d
= aHdΛγ(φ)

In both cases, H ∈ (1/2,1)

All the limits, Wγ,C, J
∗
γ,C,Λγ are stationary (=translation invariant)
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Gaussian limit in the symmetric case

When C is the closed ball centered at the origin,

Kγ,C(x) = Kγ,C(e1) |x|
−(γ−1)d, e1 = (1,0, . . . ,0)

Thus,

Wγ,C
d
= Kγ,C(e1)

1/2WH, H = (3− γ)/2,

where WH is the Gaussian random linear functional on L1 ∩ L2 with

EWH(φ) = 0 and

EWH(φ)WH(ψ) =
∫

Rd

∫

Rd

φ(x)ψ(y)

|x− y|(2−2H)d
dx dy.

The covariance kernel is called the Riesz potential
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White noise representation of WH

For H ∈ (1/2,1),

WH(φ)
d
= cH,d

∫

Rd

∫

Rd

φ(y)dy

|x− y|(3/2−H)d
W (dx),

where W is the Gaussian white noise on L2
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WH in one-dimensional parameter space

When d = 1,

EWH(φ)2 =
1

2H − 1
E

(
∫ ∞

0
φ dBH

)2
,

where BH is fBm with Hurst parameter H

Thus

WH : φ 7→ cH

∫

φ dBH

with WH(1[0,t]) = cHBH(t)

This way WH extends the fractional Gaussian noise d
dtBH to multidi-

mensional parameter space
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Proofs of Theorems 1–4

The proofs are based on

(i) Fourier transform of the Poisson noise

(ii) Extended Potter’s bounds

(iii) Hardy–Littlewood maximal theorem
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Fourier transform of the Poisson noise

When N is a PRM with intensity η and
∫

(|φ| ∧ φ2)dη <∞,

then the stochastic integral
∫

φ(dN − dη) exists, and

E ei
∫

φ(dN−dη) = e
∫

Ψ(φ)dη

with

Ψ(v) = eiv − 1− iv.

Note: linearity =⇒ no need to consider
∑n
j=1 θjφj
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Potter’s bounds

Lemma 1. Let V ≥ 0 be a random variable such that P (V > v) =

L(v)v−γ for some γ > 0. Then for any ε ∈ (0, γ) there exist positive

numbers cε and ρε such that for all ρ ∈ (0, ρε),

L(v/ρ)

L(1/ρ)
≤ cε

(

v−ε ∨ v+ε
)

∀v > 0.
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Hardy–Littlewood maximal theorem

Let φ∗ be the Hardy–Littlewood maximal function of φ,

φ∗(x) = sup
v>0

v−1
∫

x+v1/dC
|φ(y)| dy

For all p > 1,

φ ∈ Lp =⇒ φ∗ ∈ L
p
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2D fractional Gaussian noise with H = 0.90

Picture taken by Penttinen and Virtamo (2004)
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2D fractional Gaussian noise with H = 0.97

Picture taken by Penttinen and Virtamo (2004)
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