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Spatial noise generated by independent radio sources

» (Xj, R;) location and
transmission range of

» C shape of the

SN transmission area
N > )\ mean density of the
sources
il > p mean transmission
range

Describe the aggregate noise field
Inp(x) =#{j: x € Xj+ R;C}

as A = oo and p — 0.
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Poisson grain field

Random scalar field on R

o0

holx) =) _1x € G),

j=1
generated by the grains

G =X+ (pV)9C

deterministic shape: C C R? bounded with unit volume
random locations: X; € R? independently scattered

random volumes: V; > 0 i.i.d. with unit mean

vV v v Vv

model parameters: mean density A and mean volume p



Poisson grain field in dimension one

For C =[0,1) in dimension one,

o0

hot) =D 1t € X+ (pV))V9C)
j=1

=Y 1 <t < X+ pV))
j=1

This is the M/G /oo queueing process:
» arrival instants X; Poisson with intensity A

> service times pVj i.i.d. with mean p
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Heavy tails and regular variation

Assume
» P(V;>v)=L(v)v"
» L(v) slowly varying:
Lov) _

Vll_>moo ) ~ 1, foralld>0

Heavy tails when v € (1,2):

» EV; <o
> E\/J-2 =
Examples

» slowly varying: any f(v) with lim,_,o f(v) >0
» not slowly varying: f(v) =e™", f(v) =2+ sin(v)
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High-intensity M /G /oo process with heavy tails:
(1) Long service times

Assume P(V; > v) = L(v)v~7 with vy € (1,2)

Theorem (Mikosch, Resnick, Rootzén, Stegeman, 2002)
Assume A — oo and p — 0 such that A\p7L(1/p) — oo. Then

/Ot <JA,p(5) —E JMS)) ds 5 By(t).

p

By is fractional Brownian motion with H = (3 — v)/2:
» Gaussian process
» EBu(t)=0
> EBy(s)Bu(t) = 3(t2H + s2H — |t — s|2H)
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High-intensity M /G /oo process with heavy tails:
(1) Short service times

Theorem (Mikosch et al., 2002)
Assume A — oo and p — 0 such that A\p"L(1/p) — 0. Then

/Ot <JA,p(5) —E Jm(s)) ds <5 Ay(t).

Ap

A, is -y-stable Lévy process with unit skewness:
» independent increments

> -stable marginals with

E oM () — o—tl6]Y(1-isgn(6) tan(w7/2))



Poisson grain fields in higher dimensions

For dimensions d > 1,

li J =7
A—)olorr;l)—m )\,p(x)

Problems:
» The limit functions do not have point values (cf. derivative of
Brownian motion)
> The cumulative process [, Jx ,(s8) ds does not characterize
spatial correlation
Solution:
» Consider the random linear functional

Ingl®) = [ 5 ax)6() e

> For example for d = 1 with ¢ = 1 ¢,
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Poisson integral representation of J) ,(x)

[ee]

Ip(x) =D 1(x € X; + (pV))/9C)
j=1

:/ / 1(x€y+v1/dC) Ny o(dy, dv),
Rd JR,

» N, , is a Poisson random measure on with intensity

ENy,(¢) = )\/]Rd /R+ d(x,v)dxP(pV € dv)
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Poisson integral representation of J) ,(¢)

» Jy,p as random linear functional
Ingld) = [ ) 80 o

:/ / v mg(x, v) Ny ,(dx, dv)
RY SR,

» my are the averages

fvl/dc ¢(X+y) dy
fvl/dc d-y

my(x, v) =
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High-density limit for light-tailed volumes

Theorem
Assume E V2 < co. Then, as A — oo and p — 0,

Inp(9) —ENrp(¢) o
;(A E v2)1/g — W(g), ¢el’nl?

W is the white Gaussian noise on R?:
» Gaussian random linear functional
» EW(¢) =0
> EW(Q)W(¢) = [pa $(x)1(x) dx

Note that for d = 1:

> W(l[o t]) = fO dS) B(t)
» B(t) is Brownian motion
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Grains with heavy-tailed volumes

» Assume P(V > v) = v 7L(v) for v € (1,2)
» Then for small p,

EY 1(x € G)1(G| > 1) = )\p/ VPV € dv)
j=1 1/p
_ ApL(1/p)
1—~1

» Three asymptotical regimes:

Small-grain scaling ApTL(1/p) = 0O
Intermediate scaling ~ ApYL(1/p) = y7!
Large-grain scaling ApTL(1/p) — oo
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Three heavy-tailed limits: (I) Small-grain scaling

Theorem
If \ = oo and p — 0 such that A\p"L(1/p) — 0, then

JA,p(¢) E JA,p(¢)

/A= F)) () A(8), del'nlL?

A, is the independently scattered ~y-stable random linear functional
on R? characterized by

E eiM(9) — o—o3(1-iBs tan(’f—;t))’

where o4 = ||9lly, By = 18]Iy (I[+11 — ll¢-[]7), and

il = e [, [, 720 ey
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Three heavy-tailed limits: (1) Intermediate scaling

Theorem
If X\ — 0o and p — 0 such that \p"L(1/p) — vy~ 1, then

Dop($) = Edrp(d) =2 L c(¢), delinl?

J; ¢ is the random linear functional on LN L2 with

L c(9) = /]Rd /0 vmg(x, v) (N, (dx, dv) — dx v=7"tdv),

where N, (dx, dv) is a PRM on R? x R, with intensity dx v—""ldv
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Three heavy-tailed limits: (Ill) Large-grain scaling

Theorem
If A = 0o and p — 0 such that A\p"L(1/p) — oo, then

Ip(¢) —EJ
ZﬁﬁzL(l/p;’)q(/f) = Wacl9), gelint?

W, ¢ is the Gaussian random linear functional on L1 N L2
» E W'y,C(¢) =0
> EW, c(®)Wy,c(¥) = [[ p(x)K,,c(x — y)p(y) dx dy,

where
K, c(x) = / v Vx4 CcncC|vdv
0
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Properties of the limits

Self-similarity

» A random linear functional J is self-similar, if
Jpoa )<L aHy(¢), forall $anda>0

> The large-grain limit W, ¢ is self-similar with H = (3 —v)/2
» The small-grain limit A, is self-similar with H = 1/~
Stationarity
> All limits W%C,Jj;’c,/\v are stationary
Correlations
» W, c and J;,c share the same second order statistics

» A, has infinite second moments
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Fractional Gaussian noise

When the shape C is the closed unit ball,
d
Wyc=cWh, H=(3-17)/2

where Wy is fractional Gaussian noise on L' N L2:
» E WH((;S) =0
> EWn(O)WH(¥) = [ oo 2ot Eys dx dy
The covariance kernel is called the Riesz potential
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Fractional Gaussian noise in dimension d = 1

In dimension one,

Wnlio) = | " Wit(ds) = cuBu(t),

where By is fractional Brownian motion.

Hence

Wy = CHEBH

in the sense of generalized functions.
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White noise representation of Wy

For H e (1/2,1),

o(y)d
WH(¢)—CHd/ / |X_(|}g/2y,_,)d

where W is white Gaussian noise on L2

W(dx),

N

\3



Proofs of Theorems 1-4

The proofs are based on
(i) Fourier transform of the Poisson noise
(i) Extended Potter’s bounds

(iii) Hardy-Littlewood maximal function theory
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Fourier transform of the Poisson noise

When N is a PRM with intensity 7 and

/ (9] A 62)dn < oo,

then the stochastic integral [ ¢(dN — dn) exists, and

E el [ ¢(dN—dn) _ [ V(8)dn

with _
Y(v)=¢€e"—1—iv.

Note: linearity = no need to consider Z}’Zl 0;0;
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Potter's bounds

Lemma
Let V > 0 be a random variable such that P(V > v) = L(v)v™?

for some v > 0. Then for any € € (0,~) there exist positive
numbers ¢ and p. such that for all p € (0, p¢),

L(v/p) e e
L(1/p)§c6(v Vvt Vv >o.
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Hardy—Littlewood maximal theorem

Let ¢, be the Hardy-Littlewood maximal function of ¢,

¢ (X) = sup fvl/dC |¢(X+y)| dy
v>0 Joac dy

For all p > 1,
€Ll = ¢, €LP
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Illustration

Inp(®) ~ Edrp(9) + (YA07)> Wii(99)

-1

Symmetric grains Asymmetric grains
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