Finnish Institute of Occupational Health

Interactive Visual
 Data Exploration with
 Subjective Feedback

Kai Puolamäki, Bo Kang, Jefrey Lijffijt, Tijl De Bie ECML PKDD 2016
 21 September 2016

kai.puolamaki@ttl.fi
http://www.iki.fi/kaip/

These slides: http://kaip.iki.fi/p/ecmlpkdd2016puolamaki.pdf

+ handling large data
+ handling high-dimensional data
+ making analytic comparisons
- identifying patterns truly relevant for the user
- black boxes, incomprehensible for the user

+ huge background knowledge
+ spotting patterns
- handling large, high-dimensional data
- making analytic comparisons

These slides: http://kaip.iki.fi/p/ecmlpkdd2016puolamaki.pdf

+ handling large data
 + handling high-dimensional data
 + making analytic comparisons

- identifying patterns truly relevant for the user
- black boxes, incomprehensible for the user
+ huge background knowledge
+ spotting patterns
- handling large, high-dimensional data
- making analytic comparisons

Toy example: 10-dimensional dataset

User already knows this clusters structure

These clusters would be novel and interesting for the user

This is just noise here

Principal components

	－2 1		－2 1		$\begin{array}{llll}-3 & 0 & 2\end{array}$		－1 1		－0．6 0.2
PC1／26\％	（ex	（tanc．					$\begin{gathered} 1 \\ \cdots \\ \cdots \end{gathered}$		
	PC2／ 11%	$\therefore \text { 要突 }$	\％						为
	Kg	PC3／11\％	\％	\％	\％ex：	\%			
	\therefore	安安	PC4／10\％			等:			
	羒		知：	PC5／10\％	\％ay	\%			
	名				PC6／10\％				多
\square	W复安		昜	\%		PC7／9\％	\mid		
		$\begin{gathered} \text { es } \\ \text { 量 } \end{gathered}$		我臬			PC8／8\％		（1）
$\cdots{ }^{*}$.0iser							PC9／4\％	
	We	$\begin{gathered} +89 \\ \hdashline+4 \\ \hdashline+11 \end{gathered}$				为为			PC10／1\％
－2 1		－2 1		－2		－2		－1．0 1.0	

Typical PC visualization: first 2 principal components

Finnish Institute of Occupational Health

Our approach

real world

user＇s background model （＝distribution over data sets）

	$\begin{array}{llll}-3 & 0 & 3\end{array}$		-213		－1 1		－2 1		－2 13
V1		1				No		为	
${ }_{\infty}^{\infty}=$	V2	\％	\％	榘	\％	4	教	\％	\％
4\％	x	V3	多	轰	Yus:	2	2	W4：	${ }_{\text {Eme }}{ }^{\text {c }}$
	\％	委名	V4	Q8．	85	W	要空	点:	\％
\％	y	\％	安	V5	F	多	5		：
$\begin{aligned} & -\sqrt{4} \\ & \bar{s}+\infty \end{aligned}$	的：	为受家	Fres	交安	V6	变	\％	\％豆：	Tm
衰	䈣		\％－9，	W复复：	垩	V7	Ste	衰	案：$\underbrace{-}{ }_{\text {－}}$
~	多	\％			x\%	4	V8	产号：	等
4，	\％	\％	\％	\％	5	灰等：	＋8	V9	
	8				+		\％	为	V10

sample from background model
user's background model (= distribution over data sets)

Background model is a distribution over

 possible data setsHere: background model is sampled by permuting values of real data (initially)

sample from background model
visualize difference
between real data and background model

!

user tells what he or she has absorbed from real data

update background model

iterate until done
visualize difference
between real data and background model

I

user tells what he or she has absorbed from real data

1

update background model

\downarrow

Task 1: visualize difference between real data and background distribution

Task 2: define visual patterns by which user can describe insights from data

Task 3: maintain description of background model (not discussed in this talk, see the paper)
iterate until done
visualize difference
between real data and background model
user tells what he or she has absorbed from real data 1
update background model

Task 1: visualize difference between real data and background distribution

Task 2: define visual patterns by which user can describe insights from data

Task 3: maintain description of background model (not discussed in this talk, see the paper)
iterate until done

Task 1: Visualize

Task 1: Visualize projection of the largest difference between real data and background distribution

|||||||||||||||||| || |

||||||||||||||||||||||||

||||||||||||||||||||||||||l|
| | ||||||||||||||||||||||

Easier task: find 1D projection to which difference is maximized

Task 1：Visualize
ㅁ ㅁ

吅唯品品

－
－

rotation $=0$

|| || |||||||||||||| | |

||| |||||||||||||||||||||||||| ||| || |

| | | |||| |||| ||||||||||||||||||| |
rotation $=15$

｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜
｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜

$$
\begin{aligned}
& \text { ロ ロ }
\end{aligned}
$$

（2）
rotation $=\mathbf{3 0}$

Task 1: Visualize
ㅁ

| || || ||| |||||||||| |||

||||||||||||||||| || | |||||||||||||||||||
rotation $=45$

｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜l｜l｜

■
吅品品

rotation $=\mathbf{6 0}$

Task 1: Visualize

rotation $=75$

Task 1: Visualize

rotation $=90$

Task 1: Visualize

rotation $=105$

|| ||

\square

||| |||l|l| \mid
rotation $=120$

rotation $=135$

rotation $=150$

晾 \square^{\square}

－路吅品
\square^{\square}
\square

ㅁ $\stackrel{\square}{\square}$

－

rotation $=165$

Task 1: Visualize

\square

| || |||||||||||||||||

rotation $=180$

Task 1: Show projection of the largest difference between real data and background distribution

Solution: Use projection pursuit to find 2D to which the real data and background distributions differ most

visualize difference
between real data and background model

1

user tells what he or she has absorbed from real data

update background model

Task 2: define visual patterns by which user can describe insights from data

Task 3: maintain description of background model
(not discussed in this talk, see the paper)
iterate until done

Task 2: Modifying background distribution with constraints

Task 2: Constraints

2D projection showing maximal difference between real data and background distribution

sample from background model

Here: 2 types of visual constraints - 2D constraints: "I know the positions of a set of points in the shown 2D projection" - clustering constraints: "The set of points are nearby maybe in other directions as well." (allows inputting insight not obvious from visualization!)

Task 2: Constrains

sample from background model

User marks 4 sets of points in real data which are different from background distribution

visualize difference
between real data and background model

I

user tells what he or she has absorbed from real data

1

update background model

\downarrow

Task 1: visualize difference between real data and background distribution

Task 2: define visual patterns by which user can describe insights from data

Task 3: maintain description of background model
(not discussed in this talk, see the paper)
iterate until done

Return to the original 10-dimensional dataset

User already knows this clusters structure

These clusters would be novel and interesting for the user

Return to the original 10-dimensional dataset

User already knows this clusters structure

These clusters

 would be novel and interesting for the userSystem does not show noise because it is similar to the background model

UCI Adult Dataset Case Study

Update Background Model	Feedback (Cluster Constraint)	Feedback (2D Constraint)

Projection:

Weight Vectors:

Snapshots:

Not discussed

- Runtime (works quite fast)
- Detailed mathematical derivation of the problem
- Example data sets
- See the conference and demo track papers for more details!

Concluding remarks

- This is a generic framework for explorative data mining:
- User has a background model that is assumed to be a distribution over data sets
- Computer can model the background distribution and show the user interesting differences between it and the real data
- User can modify his/her background distribution and inform the computer about this
- Constrained randomization (CORAND) / max.entropy (FORSIED)
- Open questions / future work:
- Real user tests still to do
- Does this make any sense cognitively?
- Other data types / interactions

Finnish Institute of Occupational Health

Please come to see our demo on Thursday or try it online (link at the paper)!

Tekes

