Local Algorithms
on Grids




arXiv:1702.05456

14

", joint work with:

 Janne H Korhonen, Tuomo Lempiainen,
Christopher Purcell, Patric RJ Ostergard

» Sebastian Brandt, Przemystaw Uznanski
» Juho Hirvonen

» Joel Rybicki



2-colouring 3- colourlng 4- colouring
n

‘n

f%f% . .*.l? 2

global global local



Introduction



Setting

* Distributed graph algorithms

* node = computer, edge = communication link
* unknown topology

* Each node outputs its own part of solution
* e.g. graph colouring: node outputs its own colour



Setting

» Deterministic distributed algorithms,
model of computing
* unique identifiers
* synchronous communication rounds
. until all nodes stop

* unlimited message size,
unlimited local computation



Setting

» Deterministic distributed algorithms,
LOCAL model of computing

e Time = distance

 Algorithm with running time T
mapping from radius-T
neighbourhoods to local outputs



LCL problems

* Naor—-Stockmeyer (1995)

» Valid solution can be detected by checking
O(1)-radius neighbourhood of each node

* maximal independent set, maximal matching,
vertex colouring, edge colouring ...



LCL problems

» All LCL problems can be solved with
O(1)-round algorithms

* guess a solution, verify it in O(1) rounds

» Key question: how fast can we solve them
with algorithms?

» cf. Pvs. NP



Traditional settings

* Cole-Vishkin (1986), Linial (1992)...
 well understood

* |ots of ongoing work...
* typical challenge:



Our setting today -
y (2D)

» toroidal grid, n x n nodes, unique identifiers
e consistent orientations north/east/south/west

' (1D)

* Closer to real-world systems than
expander-like worst-case constructions?



1D grids ey
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* Vertex colouring o ol

) global, rounds

‘ local, rounds

+ Cole-Vishkin (1986), Linial (1992)



Why is 3-colouring O(log* n)?
» Upper bound:

* input: colouring with
* output: colouring with

» Lower bound:
 given: algorithm for
» construct: algorithm for
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* Vertex colouring o ol

) global, rounds

‘ local, rounds

+ Cole-Vishkin (1986), Linial (1992)



2D grids -

 Vertex colouring

» 2-colouring: global, ©(n) rounds
» 3-colouring: ?77?

* 4-colouring: 77?7

» 5-colouring: local, ©@(log* n) rounds



2D grids -

 Vertex colouring

» 2-colouring: global, ©(n) rounds
» 3-colouring: global, ©(n) rounds
» 4-colouring: local, ©(log® n) rounds

» 5-colouring: local, ©@(log* n) rounds



Classification of
LCL problems




LCL problems on grids
« O(1) time: “trivial”
» o(log* n) time implies O(1) time (Naor—Stockmeyer)
* O(log* n) time: “local”
» O(n) time: “global”
 Why nothing between local and global?



Normalisation

. LCL problems, 2D grids

. Any o(n) -time algorlthm can be
translated to a’

1. fixed O(log* n)-time component
2. problem-specific O(1)-time component
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O(log* n) O(1)



Normalisation in more detail...

* For of complexity o(n),
there are and function f
such that P can be solved as follows:

* input: 2D grid G with unique identifiers
* find a

 apply function fto each r x r neighbourhood



Some proof ideas...

* Given: A solves P in time Ig grids

» Solving P in time Ig grids:
* pick suitable n= 0O(1), k= O(1)
« find a maximal independent set (MIS) in GX

» use MIS to find for
n x n neighbourhoods

* simulate A in n x n local neighbourhoods



LCL problems on grids
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. time: *
* o(log* n) time implies O(1) time (Naor—Stockmeyer)

. time: * "

* o(n) time implies O(log* n) time ( )

b

. time:



Vertex colouring

* Every LCL problem is trivial, local, or global
* Why is in 2D grids “local™?

* Why is in 2D grids “global™?



4-colouring
on grids




4-colouring

* Lucky guess:

* Try to use computers to find

 turns out it is enough to find an MIS in G°,
then consider

* algorithm = mapping
* only possible tiles, easy to find a solution












3-colouring
on grids




3-colouring

* Inherently different from 4-colouring:
« cannot be solved locally

 But also different from 2-colouring:
* nontrivial to argue that the problem is global
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Proof idea

 Assume: a local algorithm
for Ig

* Implication: a local algorithm
for * "N

» But we can prove that this problem is global



even X even odd x odd

Consider any feasible 3-colouring...



even X even odd x odd

“
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We can convert it into a solution In constant time

(eliminate colour 2 whenever possible, then colour 3)
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even X even odd x odd
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Wrap around: Wrap around:
parity parity

F
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Boundaries can be with local rules

(keep orange on right, white on left)



even X even odd x odd
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Pick any row, label with +1 / -1

up = +1, down = -1
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Sum of crossings: Sum of crossings:
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Sum of crossings: Sum of crossings:
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Boundaries are closed curves:

up = +1, down = -1
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Locality: sum only depends on , hot on IDs

(otherwise we could construct one instance with non-constant sum)



Sum coordination

* What any 3-colouring algorithms has to
solve for every row of the grid:
* label nodes with

* there is some function g so that the IS
g(n) in any n-cycle, regardless of unique identifiers

* q(n) iff nis odd: cannot label everything with O
* |q(n)] . cannot label everything with +1



Sum coordination

* What any 3-colouring algorithms has to
solve for every row of the grid

* Requires global coordination



Conclusions
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Conclusions: LCLs on grids

* Only three complexity classes in 2D grids:

trivial , local , global
o . algorithm synthesis
. . sum coordination

» Can be generalised to d-dimensional grids!






