Local coordination and symmetry breaking

Jukka Suomela
Aalto University, Finland
Zürich, 26 August 2015

Running example: Maximal matching

LOCAL model

- Input: simple undirected graph G
- communication network
- nodes labelled with unique $O(\log n)$-bit identifiers

LOCAL model

- Input: simple undirected graph G
- Output: each node v produces a local output
- graph colouring: colour of node v
- vertex cover: 1 if v is in the cover
- matching: with whom v is matched

LOCAL model

- Nodes exchange messages with each other, update local states
- Synchronous communication rounds
- Arbitrarily large messages

LOCAL model

- Time $=$ number of communication rounds
- until all nodes stop and produce their local outputs

LOCAL model

- Time = number of communication rounds
- Time = distance:
- in t communication rounds, all nodes can learn everything in their radius- t neighbourhoods
time $t=2$

LOCAL model

LOCAL model

LOCAL model

- Everything trivial in time diam(G)
- all nodes see whole G, can compute any function of G
- What can be solved much faster?

Distributed time complexity

- $n=$ number of nodes
- $\Delta=$ maximum degree
- $\Delta<n$
- Time complexity $t=t(n, \Delta)$

Landscape

$O(1) \quad \log ^{\star} n$
 $\log n$
 n

Landscape

$O(1) \quad \log ^{\star} n$
 $\log n$
 n

Δ

 $\log \Delta$

 $\log ^{*} \Delta$

 O(1)
 All problems

Landscape

$O(1) \quad \log ^{\star} n$
 $\log n$
 n

Landscape

$O(1) \quad \log ^{*} n \quad \log n \quad n$

Landscape

$O(1) \quad \log ^{*} n \quad \log n \quad n$

Landscape

$O(1) \quad \log ^{*} n$
 $\log n$
 n

Weak colouring (odd-degree graphs)

Landscape

O(1) $\quad \log ^{*} n$
 $\log n$
 n

Dominating sets (planar graphs)

Landscape

$\log n \quad n$

our focus today $n \gg \Delta$

Typical state of the art

$O(1) \quad \log ^{*} n$

Typical state of the art

O(1) $\quad \log ^{*} n$

Δ	yes	positive: $O(\Delta)$
$\log \Delta$? ? ?	exponential gap
$\log ^{\star} \Delta$	as a function of Δ	
$O(1)$	no	
		negative: $O(\log \Delta)$

Typical state of the art

$$
O(1) \quad \log ^{\star} n
$$

Δ

yes

$\log \Delta$
$\log ^{*} \Delta$
$O(1)$
positive: $O(\Delta)$
exponential gap as a function of Δ

- or much worse
negative: nothing

Example:
 LP approximation

- $O(\log \Delta)$: possible
- Kuhn et al. $(2004,2006)$
- o($(\log \Delta)$: not possible
- Kuhn et al. $(2004,2006)$

Example: Maximal matching

- $O\left(\Delta+\log ^{*} n\right):$ possible
- Panconesi \& Rizzi (2001)
- $O(\Delta)+o\left(\log ^{*} n\right)$: not possible
- Linial (1992)
- $O(\Delta)+O\left(\log ^{*} n\right):$ unknown

Example: Bipartite maximal matching

- $O(\Delta)$: trivial
- Hańćkowiak et al. (1998)
- o(Δ): unknown

Example: Bipartite maximal matching

- $O(\Delta)$: trivial for Δ-regular graphs
- Hańćkowiak et al. (1998)
- $O(1)$: unknown for Δ-regular graphs

Example: Semi-matching

- $O\left(\Delta^{5}\right)$: possible
- Czygrinow et al. (2012)
- o($\left.\Delta^{5}\right)$: unknown

Example: Semi-matching

- O(Δ^{5}): possible
- Czygrinow et al. (2012)
- o(Δ^{5}): unknown
- o(Δ): unknown

Example: Weak colouring

- $\mathbf{O}\left(\log ^{*} \Delta\right)$: possible (in odd-degree graphs)
- Naor \& Stockmeyer (1995)
- o($\left.\log ^{*} \Delta\right)$: unknown

Orthogonal challenges?

- n: "symmetry breaking"
- fairly well understood
- Cole \& Vishkin (1986), Linial (1992), Ramsey theory ...
- Δ : "local coordination"
- poorly understood
"symmetry breaking"

$O(1) \quad \log ^{*} n$

Orthogonal challenges

- Example: maximal matching, $\mathbf{O}\left(\Delta+\log ^{*} n\right)$
- Restricted versions:
- pure symmetry breaking, $O\left(\log ^{*} n\right)$
- pure local coordination, $O(\Delta)$

Orthogonal challenges

- Example: maximal matching, $\mathbf{O}\left(\boldsymbol{\Delta}+\log { }^{*} n\right)$
- Pure symmetry breaking:
- input = cycle
- no need for local coordination
- O(log* n) is possible and tight

Orthogonal challenges

- Example: maximal matching, $\mathbf{O}\left(\Delta+\log ^{*} n\right)$
- Pure local coordination:
- input = 2-coloured graph
- no need for symmetry breaking
- $O(\Delta)$ is possible - is it tight?

Maximal matching in 2-coloured graphs

- Trivial algorithm:
- black nodes send proposals to their neighbours, one by one
- white nodes accept the first
 proposal that they get
- "Coordination" \approx one by one traversal

Maximal matching in 2-coloured graphs

- Trivial algorithm:
- black nodes send proposals to their neighbours, one by one
- white nodes accept the first
 proposal that they get
- Clearly $O(\Delta)$, but is this tight?

Maximal matching in 2-coloured graphs

- General case:
- upper bound: $O(\Delta)$
- lower bound: $\Omega(\log \Delta)-K u h n$ et al.
- Regular graphs:
- upper bound: $O(\Delta)$
- lower bound: nothing!

Linear-in- Δ bounds

- Many combinatorial problems seem to require "local coordination", takes $O(\Delta)$ time?
- Lacking: linear-in- Δ lower bounds
- known for restricted algorithm classes (Kuhn \& Wattenhofer 2006)

Good news

- We are finally making some progress!
- Key problem: maximal matching
- Start with a "toy model": edge colouring model

EC: edge colouring

No identifiers
No orientations
Edges coloured with $O(\Delta)$ colours

Recent progress

- Maximal matching in EC model
- $O(\Delta)$: trivial
- greedily by colour classes
- o(Δ): not possible
- PODC 2012

What about the LOCAL model?

- Not yet there with maximal matchings...
- But we can prove lower bounds for maximal fractional matchings!

Matching

- Edges labelled with integers $\{0,1\}$
- Sum of incident edges at most 1
- Maximal matching: cannot increase the value of any label

Fractional matching

- Edges labelled with real numbers [0, 1]
- Sum of incident edges at most 1
- Maximal fractional matching: cannot increase the value of any label

Maximal fractional matching

- Possible in time $O(\Delta)$
- does not require symmetry breaking
- d-regular graph: label all edges with $1 / d$
- Nontrivial part: graphs that are not regular...

Recent progress

- Maximal fractional matching in LOCAL model
- $O(\Delta)$: possible
- SPAA 2010
- o(Δ): not possible
- PODC 2014

State of the art in 2014

- Problems with $0\left(\Delta+\log ^{\star} n\right)$ algorithms:
- maximal matching
- maximal independent set
- vertex colouring with $\Delta+1$ colours
- edge colouring with $2 \Delta-1$ colours ...

State of the art in 2014

- Problems with $O\left(\Delta+\log ^{*} n\right)$ algorithms
- Problems with $O(\Delta)$ algorithms:
- maximal fractional matching
- bipartite maximal matching ...

State of the art in 2014

- Problems with $O\left(\Delta+\log ^{*} n\right)$ algorithms
- Problems with $O(\Delta)$ algorithms
- Some linear-in- $\boldsymbol{\Delta}$ lower bounds:
- maximal matchings, EC model
- maximal fractional matchings, LOCAL model

State of the art in 2014

- All these problems characterised as follows:
- any partial solution can be completed
- but completion may be unique
- "Completable but tight" problems
- greedy algorithm works, but it may be constrained

State of the art in 2014

- Conjecture: "completable but tight" problems cannot be solved in time $0(\Delta)+0\left(\log ^{\star} n\right)$

State of the art in 2015

- Conjecture: "completable but tight" problems cannot be solved in time $o(\Delta)+0\left(\log ^{\star} n\right)$
- Wrong!

State of the art in 2015

- Barenboim (PODC 2015):
- vertex colouring with $\Delta+1$ colours
- can be solved in time $o(\Delta)+O\left(\log ^{*} n\right)$

We have a separation!

- Barenboim (PODC 2015):
- edge colouring with $2 \Delta-1$ colours
- possible in time $o(\Delta)$ in EC model
- PODC 2012:
- maximal matching
- not possible in time $o(\Delta)$ in EC model

Next steps?

- Separation for maximal independent set and ($\Delta+1$)-vertex colouring in weak models
- Model: anonymous vertex-coloured graphs
- Lower bound: just take line graphs
- Upper bound: adapt Barenboim's idea ??

Next steps?

- What is the new conjecture?
- Which problems require linear-in- Δ rounds?
- ($\Delta+1$)-colouring: not
- Greedy colouring: perhaps??
- lower bounds: e.g. Gavoille et al. (2009)

Next steps?

- Linear-in- Δ lower bound for bipartite maximal matching
- Good: pure local coordination, no symmetry-breaking needed
- Needed: extend known techniques so that they tolerate 2-coloured inputs

Next steps?

- Poorly understood: optimisation problems
- Example: minimum vertex cover (VC) vs. maximal fractional matchings (MFM)
- Good: MFM \rightarrow 2-approximation of VC
- Needed: 2-approximation of VC \rightarrow MFM ???

Next steps?

- Reductions, conditional lower bounds!
- hardness, completeness?
- Problems that are at least as hard as bipartite maximal matching
- Problems that are at most as hard as bipartite maximal matching

Summary

- Distributed time complexity, LOCAL model
- O(log* n): "symmetry breaking", OK
- $O(\Delta)$: "local coordination", poorly understood
- Next step: bipartite maximal matching

