Ramsey's theorem and lower-bound results

Jukka Suomela

Adaptive Computing Group
Helsinki Institute for Information Technology HIIT University of Helsinki

11 March 2010

Part I:

Ramsey's theorem

- A generalisation of the pigeonhole principle
- Frank P. Ramsey (1930): On a problem of formal logic
- "... in the course of this investigation it is necessary to use certain theorems on combinations which have an independent interest..."

Basic definitions

- Assign a colour from $\{1,2, \ldots, c\}$	$N=4, k=3, c=2$	
to each k-subset of $\{1,2, \ldots, N\}$	$\{1,2,3\}$	$\{1,2,4\}$
$\{1,3,4\}$	$\{2,3,4\}$	

$N=13, k=1, c=3$			
$\{1\}$	$\{2\}$	$\{3\}$	$\{4\}$
$\{5\}$	$\{6\}$	$\{7\}$	$\{8\}$
$\{9\}$	$\{10\}$	$\{11\}$	$\{12\}$
$\{13\}$			

$N=6, k=2, c=2$			
$\{1,2\}$	$\{1,3\}$	$\{1,4\}$	$\{1,5\}$
$\{2,3\}$	$\{2,4\}$	$\{2,5\}$	$\{2,6\}$
	$\{3,4\}$	$\{3,5\}$	$\{3,6\}$
		$\{4,5\}$	$\{4,6\}$
		$\{5,6\}$	

Basic definitions

- Assign a colour from $\{1,2, \ldots, c\}$ to each k-subset of $\{1,2, \ldots, N\}$

Basic definitions

- $X \subset\{1,2, \ldots, N\}$ is a monochromatic subset if all k-subsets of X have the same colour

Ramsey's theorem

- Assign a colour from $\{1,2, \ldots, c\}$ to each k-subset of $\{1,2, \ldots, N\}$
- $X \subset\{1,2, \ldots, N\}$ is a monochromatic subset if all k-subsets of X have the same colour
- Ramsey's theorem: For all c, k, and n there is a finite N such that any c-colouring of k-subsets of $\{1,2, \ldots, N\}$ contains a monochromatic subset with n elements

Ramsey's theorem

- Assign a colour from $\{1,2, \ldots, c\}$ to each k-subset of $\{1,2, \ldots, N\}$
- $X \subset\{1,2, \ldots, N\}$ is a monochromatic subset if all k-subsets of X have the same colour
- Ramsey's theorem: For all c, k, and n there is a finite N such that any c-colouring of k-subsets of $\{1,2, \ldots, N\}$ contains a monochromatic subset with n elements
- The smallest such N is denoted by $R_{c}(n ; k)$ numbers

Ramsey's theorem: $k=1$

- $k=1$: pigeonhole principle
- If we put N items into c slots, then at least one of the slots has to contain at least n items
- Colour of the 1 -subset $\{i\}=$ slot of the element i
- Clearly holds if $N \geq c(n-1)+1$
- Does not necessarily hold if $N \leq c(n-1)$
- $R_{c}(n ; 1)=c(n-1)+1$

Ramsey's theorem: $k=2, c=2$

- Complete graphs, red and blue edges
- If the graph is large enough, there will be a monochromatic clique
- For example, $R_{2}(2 ; 2)=2$,

$$
R_{2}(3 ; 2)=6 \text {, and } R_{2}(4 ; 2)=18
$$

- A graph with 2 nodes contains a monochromatic edge
- A graph with 6 nodes contains a monochromatic triangle

Ramsey's theorem: $k=2, c=2$

- Another interpretation: graphs
- $\{u, v\}$ red: edge $\{u, v\}$ present
- $\{u, v\}$ blue: edge $\{u, v\}$ missing
- Large monochromatic subset:
- Large clique (red) or large independent set (blue)
- Any graph with 6 nodes contains a clique with 3 nodes or an independent set with 3 nodes

Ramsey's theorem: $k=2, c=2$

- Sufficiently large graphs (N nodes) contain large independents sets (n nodes) or large cliques (n nodes)
- You can avoid one of these, but not both
- However, Ramsey numbers are large: here N is exponential in n

Part II: Proof of Ramsey’s theorem

- Following Nešetřil (1995)
- Notation from Radziszowski

Definitions

- $X \subset\{1,2, \ldots, N\}$ is a monochromatic subset: if A and B are k-subsets of X, then A and B have the same colour
- $X \subset\{1,2, \ldots, N\}$ is a good subset: if A and B are k-subsets of X and $\min (A)=\min (B)$, then A and B have the same colour
- An example with $c=2$ and $k=2$:
$\{1,2,3,5\}$ is good but not monochromatic in the colouring $\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{4,5\}$

Definitions

- $X \subset\{1,2, \ldots, N\}$ is a monochromatic subset: if A and B are k-subsets of X, then A and B have the same colour
- $X \subset\{1,2, \ldots, N\}$ is a good subset: if A and B are k-subsets of X and $\min (A)=\min (B)$, then A and B have the same colour
- $R_{c}(n ; k)=$ smallest N s.t. \exists monochromatic n-subset
- $G_{c}(n ; k)=$ smallest N s.t. \exists good n-subset

Proof outline

- $R_{c}(n ; k)=$ smallest N s.t. \exists monochromatic n-subset
- $G_{c}(n ; k)=$ smallest N s.t. \exists good n-subset
- Theorem: $R_{c}(n ; k)$ is finite for all c, n, k
(i) $\quad R_{c}(n ; 1)$ is finite for all c, n
(ii) If $R_{c}(n ; k-1)$ is finite for all c, n then $G_{c}(n ; k)$ is finite for all c, n
(iii) $R_{c}(n ; k) \leq G_{c}(c(n-1)+1 ; k)$ for all c, n, k

Proof: step (i)

- Lemma: $R_{c}(n ; 1)$ is finite for all c, n
- Proof:
- Pigeonhole principle
- $R_{c}(n ; 1)=c(n-1)+1$

Proof: step (ii) - outline

- Lemma: if $R_{c}(n ; k-1)$ is finite for all c, n then $G_{c}(n ; k)$ is finite for all c, n
- Proof (for each fixed c):
- Induction on n
- $G_{c}(k ; k)$ is finite
- Assume that $M=G_{c}(n-1 ; k)$ is finite
- Then we also have a finite $R_{c}(M ; k-1)$
- Enough to show that $G_{c}(n ; k) \leq 1+R_{c}(M ; k-1)$

Proof: step (ii)

$f:\{1,2,3\}\{1,2,4\}\{1,3,4\}\{2,3,4\}$ $f^{\prime}:\{2,3\} \quad\{2,4\} \quad\{3,4\}$

- $G_{c}(n ; k) \leq 1+R_{c}(M ; k-1)$ where $M=G_{c}(n-1 ; k)$
- Let $N=1+R_{c}(M ; k-1)$, consider any colouring f of k-subsets of $\{1,2, \ldots, N\}$
- Delete element 1: colouring f^{\prime} of $(k-1)$-subsets of $\{2,3, \ldots, N\}$
- Find an f^{\prime}-monochromatic M-subset $X \subset\{2,3, \ldots, N\}$
- Find an f-good ($n-1$)-subset $Y \subset X$
- $\{1\} \cup Y$ is an f-good n-subset of $\{1,2, \ldots, N\}$

Proof: step (ii)

In real life, these constants would be much larger...

- A fictional example: $N=7, M=5, n=5, k=3$
- Original colouring $f:\{1,2,3\},\{1,2,4\},\{1,2,5\}$, $\{1,2,6\},\{1,2,7\}, \ldots,\{1,6,7\},\{2,3,4\}, \ldots,\{5,6,7\}$
- Colouring $f^{\prime}:\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{2,7\}, \ldots,\{6,7\}$
- f^{\prime}-monochromatic M-subset $\{2,3,4,5,7\}$ of $\{2,3, \ldots, N\}$: $\{2,3\},\{2,4\},\{2,5\},\{2,7\}, \ldots,\{5,7\}$
- f-good (n-1)-subset $\{2,4,5,7\}:\{2,4,5\},\{2,4,7\},\{4,5,7\}$
- $\{1,2,4,5,7\}$ is f-good: $\{1,2,4\},\{1,2,5\},\{1,2,7\}, \ldots$, $\{1,5,7\},\{2,4,5\},\{2,4,7\},\{4,5,7\}$

Proof: step (ii)

$$
N-1 \geq R_{c}(M ; k-1)
$$

- A fictional example: $N=7, M=5, n=5, k=3$
- Original colouring $f:\{1,2,3\} /\{1,2,4\},\{, 2,5\}$, $\{1,2,6\},\{1,2,7\}, \ldots,\{1,6,7\},\{2,3,4\}, \ldots,\{5,6,7\}$
- Colouring $f^{\prime}:\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{2,7\}, \ldots,\{6,7\}$
- f^{\prime}-monochromatic M-subset $\{2,3,4,0,7\}$ of $\{2,3, \ldots, N\}$: $\{2,3\},\{2,4\},\{2,5\},\{2,7\}, \ldots,\{5,7\}$
- f-good (n-1)-subset $\{2,4,5,7\}:\{2,4,5\},\{2,4,7\},\{4,5,7\}$
- $\{1,2,4,5,7\}$ is f-good: $\{1,2,4\},\{1,2,5\},\{1,2,7\}, \ldots$, $\{1,5,7\},\{2,4,5\},\{2,4,7\},\{4,5,7\}$

Proof: step (ii) - summary

- Lemma: if $R_{c}(n ; k-1)$ is finite for all c, n then $G_{c}(n ; k)$ is finite for all c, n
- Proof (for each fixed c):
- Induction on n
- $G_{c}(k ; k)$ is finite
- We have shown that if $G_{c}(n-1 ; k)$ is finite then $G_{c}(n ; k)$ is finite
- Trick: show that $G_{c}(n ; k) \leq 1+R_{c}\left(G_{c}(n-1 ; k) ; k-1\right)$

Proof: step (iii)

- Lemma: $R_{c}(n ; k) \leq G_{c}(c(n-1)+1 ; k)$ for all c, n, k
- Proof:
- If $N=G_{c}(c(n-1)+1 ; k)$, we can find a good subset X with $c(n-1)+1$ elements
- If k-subset A of X has colour i, put $\min (A)$ into slot i
- E.g.: $\{1,2\},\{1,3\},\{1,5\},\{2,3\},\{2,5\},\{3,5\}$: put 1 and 3 to slot blue, 2 to slot green, 5 to any slot
- Each slot is monochromatic and at least one slot contains n elements (pigeonhole)!

Ramsey's theorem: proof summary

- $R_{c}(n ; k)=$ smallest N s.t. \exists monochromatic n-subset
- $G_{c}(n ; k)=$ smallest N s.t. \exists good n-subset
- Theorem: $R_{c}(n ; k)$ is finite for all c, n, k
(i) $\quad R_{c}(n ; 1)$ is finite for all c, n
(ii) If $R_{c}(n ; k-1)$ is finite for all c, n then $G_{c}(n ; k)$ is finite for all c, n
- Induction: $G_{c}(n ; k) \leq 1+R_{c}\left(G_{c}(n-1 ; k) ; k-1\right)$
(iii) $R_{c}(n ; k) \leq G_{c}(c(n-1)+1 ; k)$ for all c, n, k

Part III:
An application of Ramsey's theorem

- Czygrinow et al. (2008)
- A deterministic distributed algorithm can't find a $(2-\varepsilon)$-approximation of vertex cover in constant time
- Holds even if we consider an n-cycle with unique identifiers from $1,2, \ldots, n$

Lower-bound result for vertex cover approximation

- Numbered directed n-cycle:
- directed n-cycle, each node has outdegree $=$ indegree $=1$
- node identifiers are a permutation of $\{1,2, \ldots, n\}$

Lower-bound result for vertex cover approximation

- Fix any $\varepsilon>0$ and a deterministic local algorithm A
- Assumption: A finds a feasible vertex cover (at least in any numbered directed cycle)
- Theorem: For a sufficiently large n there is a numbered directed n-cycle C in which A outputs a vertex cover with $\geq(1-\varepsilon) n$ nodes
- Corollary: Approximation ratio of A is at least $2-2 \varepsilon$

Lower-bound result for vertex cover approximation

- Let T be the running time of A, let $k=2 T+1$
- The output of a node is a function f ' of a sequence of k integers (unique IDs)

Lower-bound result for vertex cover approximation

- Lets focus on increasing sequences of IDs
- Then the output of a node is a function f of a set of k integers
$k=5:$

$$
\text { output }=f(\{6,7,11,13,21\})
$$

Lower-bound result for vertex cover approximation

- Hence we have assigned a colour $f(X) \in\{0,1\}$ to each k-subset $X \subset\{1,2, \ldots, n\}$
$k=5:$

$$
\text { output }=f(\{6,7,11,13,21\})
$$

Lower-bound result for vertex cover approximation

- Hence we have assigned a colour $f(X) \in\{0,1\}$ to each k-subset $X \subset\{1,2, \ldots, n\}$
- Fix a large m (depends on k and ε)
- Ramsey: If n is sufficiently large, we can find an m-subset $A \subset\{1,2, \ldots, n\}$
s.t. all k-subset $X \subset A$ have the same colour

Lower-bound result for vertex cover approximation

- That is, if the ID space is sufficiently large...

Lower-bound result for vertex cover approximation

- That is, if the ID space is sufficiently large, we can find a monochromatic subset of m IDs...

$$
\begin{aligned}
& f(\{2,3,6,7,11\})=f(\{2,3,6,7,13\})= \\
& f(\{2,3,6,7,21\})=f(\{2,3,6,11,13\})= \\
& \ldots=f(\{6,7,11,13,21\})
\end{aligned}
$$

Lower-bound result for vertex cover approximation

- Construct a numbered directed cycle: monochromatic subset as consecutive nodes

Lower-bound result for vertex cover approximation

- Construct a numbered directed cycle: monochromatic subset as consecutive nodes

Lower-bound result for vertex cover approximation

- Construct a numbered directed cycle: monochromatic subset as consecutive nodes

Lower-bound result for vertex cover approximation

- Hence there is an n-cycle with a chain of $m-2 T$ nodes that output 1

Lower-bound result for vertex cover approximation

- Hence there is an n-cycle with a chain of $m-2 T$ nodes that output 1
- We can choose as large m as we want
- Good, more "black" nodes that output 1
- However, n increases rapidly if we increase m
- Bad, more "grey" nodes that might output 0
- Trick: choose "unnecessarily large" n so that we can apply Ramsey's theorem repeatedly

Lower-bound result for vertex cover approximation

- Huge ID space...

Lower-bound result for vertex cover approximation

- Find a monochromatic subset of size m...

Lower-bound result for vertex cover approximation

- Delete these IDs...

Lower-bound result for vertex cover approximation

- Still sufficiently many IDs to apply Ramsey...

Lower-bound result for vertex cover approximation

- Repeat...

Lower-bound result for vertex cover approximation

- Repeat until stuck

Lower-bound result for vertex cover approximation

- Several monochromatic subsets + some leftovers

Lower-bound result for vertex cover approximation

Lower-bound result for vertex cover approximation

- Thus A outputs a vertex cover with $\geq(1-\varepsilon) n$ nodes

