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Part I:
Ramsey’s theorem

e A generalisation of the pigeonhole principle

e Frank P. Ramsey (1930):
On a problem of formal logic

e “...1n the course of this investigation it is necessary
to use certain theorems on combinations which have
an independent interest...”
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Basic definitions

e Assign a colour from {1, 2, ..., c}
to each k-subset of {1, 2, ..., N}
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Basic definitions

e Xc {1, 2, ..., N}is a monochromatic subset
if all k-subsets of X have the same colour

N=6,k=2,c=2
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Ramsey’s theorem

e Assign a colour from {1, 2, ..., c}
to each k-subset of {1, 2, ..., N}
e X {1, 2, ..., N}is a monochromatic subset

if all k-subsets of X have the same colour

« Ramsey’s theorem: For all ¢, k, and n
there is a finite N such that any c-colouring
of k-subsets of {1, 2, ..., N} contains
a monochromatic subset with n elements



Ramsey’s theorem

e Assign a colour from {1, 2, ..., c}
to each k-subset of {1, 2, ..., N}

e X {1, 2, ..., N}is a monochromatic subset
if all k-subsets of X have the same colour

« Ramsey’s theorem: For all ¢, k, and n
there is a finite N such that any c-colouring
of k-subsets of {1, 2, ..., N} contains
a monochromatic subset with n element<s[

Ramsey
o The smallest such N is denoted by Rc(n; k) numbers




Ramsey’s theorem: k = 1

e k = 1: pigeonhole principle

o If we put N items into c slots,
then at least one of the slots
has to contain at least n items

e Colour of the 1-subset {i} = slot of the element i
e Clearly holdsif N>c(n-1) + 1

e Does not necessarily hold if N<c(nh-1)

e Re(n; 1)=c(n-1) + 1



Ramsey’s theorem: k=2, c = 2

 Complete graphs, red and blue edges

o If the graph is large enough,
there will be a monochromatic clique

e For example, R2(2; 2) = 2,
R2(3; 2) = 6, and R2(4; 2) = 18

e A graph with 2 nodes contains
a monochromatic edge

e A graph with 6 nodes contains
a monochromatic triangle




Ramsey’s theorem: k=2, c = 2

o Another interpretation: graphs
e {u,v} red: edge {u,v} present
e {u,v} blue: edge {u,v} missing

e Large monochromatic subset:

e Large clique (red) or
large independent set (blue)

e Any graph with 6 nodes
contains a clique with 3 nodes or
an independent set with 3 nodes
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Ramsey’s theorem: k=2, c = 2

 Sufficiently large graphs
(N nodes) contain large
independents sets (n nodes)
or large cliques (n nodes)

e You can avoid one of these,
out not both

« However, Ramsey numbers are
arge: here N is exponential in n
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Part Il:
Proof of Ramsey’s theorem

 Following Nesetril (1995)

e Notation from Radziszowski
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Definitions
3

N

e X {1, 2, ..., N} is a monochromatic subset:

if A and B are k-subsets of X,
then A and B have the same colour

e Xc {1, 2, ..., N}is a good subset:

if A and B are k-subsets of X and min(A) = min(B),
then A and B have the same colour

e« An example with ¢ =2 and k = 2:
£1,2,3,5} is good but not monochromatic in the colouring

{1,23}, {1,3}, (1,43, {1,5}, {2,3}, {2,4}, {2,5}, {3,5}, {4,5
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Definitions

e X {1, 2, ..., N} is a monochromatic subset:

if A and B are k-subsets of X,
then A and B have the same colour

e Xc {1, 2, ..., N} is a good subset:
if A and B are k-subsets of X and min(A) = min(B),
then A and B have the same colour

e Rc(n; k) = smallest N s.t. 3 monochromatic n-subset

e G¢(n; k) = smallest N s.t. 3 good n-subset
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Proof outline

e Rc(n; k) = smallest N s.t. 3 monochromatic n-subset
e Gc(n; k) = smallest N s.t. 3 good n-subset

e« Theorem: Rc(n; k) is finite for all ¢, n, k
(i) Rc(n; 1) is finite for all ¢, n

(i) If Re(n; k — 1) is finite for all ¢, n
then G¢(n; k) is finite for all ¢, n

(i1i) Rc(n; k) < Ge(c(n - 1) +1; k) for all ¢, n, k
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Proof: step (i)

« Lemma: Rc(n; 1) is finite for all ¢, n

e Proof:
e Pigeonhole principle
e Re(n; 1)=c(n-1) + 1
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Proof: step (i1) — outline

e Lemma: if Rc(n; k - 1) is finite for all ¢, n
then G¢(n; k) is finite for all ¢, n
e Proof (for each fixed ¢):
e Induction on n
e Gc(k; k) is finite
e Assume that M = G¢(n - 1; k) is finite
 Then we also have a finite Rc(M; k - 1)
e Enough to show that G¢(n; k) <1+ Rc(M; k- 1)
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f: 1{1,2,3} {1,2,4} {1,3,4} {2,3,4}
Proof: step (11) |f: 233 24 3,4

e Ge(n; k) <1+ Rc(M; k-1) where M = Ge(n - 1; k)

e Let N=1+ R(M; k - 1), consider any
colouring f of k-subsets of {1, 2, ..., N}

e Delete element 1:
colouring f’ of (k — 1)-subsets of {2, 3, ..., N}

e Find an f’-monochromatic M-subset X c {2, 3, ..., N}

e Find an f-good (n - 1)-subset Y c X
« {1} u Yis an f-good n-subset of {1, 2, ..., N}
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: In real life, these constants :
Proof: step (") would be much larger... )
WV/

e A fictional example: N =7,

e Original colouring f: {1,2,3},
{1)2)6}) {1)237}) ***) {1)6)7})

e Colouring f’: {2,3}, {2,4}, {2,

M=5,n=5 k=3

1,2,4}, 11,2,55,
12,3,4}, ..., 13,6,7]}

5}, 12,6}, 12,7}, «.., 16,7}

e f’-monochromatic M-subset {2,3,4,5,7} of {2,3,...,N}:

12,35, 12,43, 12,55, 12,75, -,

12,73

e f-good (n-1)-subset {2,4,5,7}: {2,4,5}, {2,4,7}, {4,5,7}

° {1)2)4a5,7} is f'gOOd: {1)2;4}) {1)2;5}) {1)2;7}) cee)
{1)5)7}) {2)4)5}) {2)4)7}) {4:5)7}
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Proof: step (ii) }/ ( = k_1j )
M=>Gcd(n-1; k

=5,n/F5 k=3

e A fictional example: N =7,

e Original colouring f: {1,2,3}/{1,2,4}, {//,2,5},
{1)2)6}) {1)217}) cey {1)6)7 ) {2)3)4}) **) {5)617}

» Colouring f°: {2,3}, 12,4}, /2,35, 12,6}, 12,75, ..., 16,7}

e f’-monochromatic M-subset {2,3,4,b,7} of {2,3,...,N}:
12,3}, 12,4}, 12,3}, 12,73, ..., {5,7}

e f-good (n-1)-subset {2,4,5,7}: {2,4,5}, {2,4,7}, {4,5,7}

° {1)2)4a5,7} is f'gOOd: {1)2;4}) {1)2;5}) {1)2;7}) cee)
{1)5)7}) {2)4)5}) {2)4)7}) {4:5)7}

20



Proof: step (i) — summary

e Lemma: if Rc(n; k - 1) is finite for all ¢, n
then G¢(n; k) is finite for all ¢, n
e Proof (for each fixed ¢):
e Induction on n
e Gc(k; k) is finite

 We have shown that if G¢(n - 1; k) is finite
then Gc(n; k) is finite

e Trick: show that G¢(n; k) <1+ Rc(Ge(n - 1; k); k-1)
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Proof: step (iii)
3

e Lemma: Rc(n; k) < Ge(c(n -1) +1; k) forall ¢, n, k

e Proof:

e If N=Gc(c(n-1)+1; k), we can find
a good subset X with ¢(n - 1) + 1 elements

e If k-subset A of X has colour i, put min(A) into slot i

- E.g.: {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}:
put 1 and 3 to slot blue, 2 to slot green, 5 to any slot

e Each slot is monochromatic and
at least one slot contains n elements (pigeonhole)!
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Ramsey’s theorem: proof summary

e Rc(n; k) = smallest N s.t. 3 monochromatic n-subset
e Gc(n; k) = smallest N s.t. 3 good n-subset

e« Theorem: Rc(n; k) is finite for all ¢, n, k
(i) Rc(n; 1) is finite for all ¢, n

(i) If Re(n; k — 1) is finite for all ¢, n
then G¢(n; k) is finite for all ¢, n

e Induction: G¢(n; k) <1 + Ro(Ge(n - 1; k); k-1)
(i1i) Rc(n; k) < Ge(c(n - 1) +1; k) for all ¢, n, k
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Part llI:
An application of Ramsey’s theorem

e Czygrinow et al. (2008)

e A deterministic distributed algorithm can’t
find a (2 — €)-approximation of vertex cover
in constant time

e Holds even if we consider an n-cycle with
unique identifiers from 1, 2, ..., n

24



Lower-bound result
for vertex cover approximation

« Numbered directed n-cycle:
e directed n-cycle, each node has outdegree = indegree = 1

e node identifiers are a permutation of {1, 2, ..., n}
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Lower-bound result
for vertex cover approximation

e Fix any € > 0 and a deterministic local algorithm A

e Assumption: A finds a feasible vertex cover
(at least in any numbered directed cycle)

« Theorem: For a sufficiently large n there is
a humbered directed n-cycle C in which
A outputs a vertex cover with > (1 - €)n nodes

e Corollary: Approximation ratio of A is
at least 2 - 2¢
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Lower-bound result
for vertex cover approximation

e Let T be the running time of A, let k = 2T + 1

e The output of a node is a function f’ of
a sequence of k integers (unique IDs)

T=2, k=5 [ outpu=r11,9,527) |

--»@a@a@a@aéa@a@ .

[ output = (3, 11, 9, 5, 2) )
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Lower-bound result
for vertex cover approximation

e Lets focus on increasing sequences of IDs

e Then the output of a node is a function f of
a set of k integers

k=5: " output - 16, 7, 11, 13, 21) |

[ output = f({3, 6, 7, 11, 13}) )
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Lower-bound result
for vertex cover approximation

« Hence we have assigned a colour f(X) € {0, 1}
to each k-subset X c {1, 2, ..., n}

k=5: " output - 16, 7, 11, 13, 21) |

--»@a@a@v@a@a@ .

[ output = f({3, 6, 7, 11, 13}) )
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Lower-bound result
for vertex cover approximation

« Hence we have assigned a colour f(X) € {0, 1}
to each k-subset X c {1, 2, ..., n}

e Fix a large m (depends on k and ¢€)

« Ramsey: If n is sufficiently large,
we can find an m-subset A c {1, 2, ..., n}

s.t. all k-subset X ¢ A have the same colour
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Lower-bound result
for vertex cover approximation

e That is, if the ID space is sufficiently large...

D)W E)()D)(8)(2)09
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Lower-bound result
for vertex cover approximation

e That is, if the ID space is sufficiently large,

we can find a monochromatic subset of m IDs...

f{2, 3,6, 7,11}) = f{2, 3,6, 7, 13}) =
f{2, 3, 6,7, 21}) = f{2, 3, 6, 11, 13}) =
... =f({6,7, 11, 13, 21})

01 1: 1001 < 17 100D
1O IOIDIOIVIOIDID
21 IIDIDIDIDIDIDIDIE)
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Lower-bound result
for vertex cover approximation

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes




Lower-bound result
for vertex cover approximation

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

Same output

f({z) 3) 6) 7; 11}) =
f({3) 6) 7; 11, 13}) = eee




Lower-bound result
for vertex cover approximation

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

Same output

... and it must be 1




Lower-bound result
for vertex cover approximation

e Hence there is an n-cycle with a chain of
m - 2T nodes that output 1

/\ /\
[ output 1 ) [ output 0 or 1 )
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Lower-bound result
for vertex cover approximation

e Hence there is an n-cycle with a chain of
m - 2T nodes that output 1

 We can choose as large m as we want

e Good, more “black” nodes that output 1

« However, n increases rapidly if we increase m

e Bad, more “grey” nodes that might output O

e Trick: choose “unnecessarily large” n so that
we can apply Ramsey’s theorem repeatedly
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Lower-bound result
for vertex cover approximation

 Huge ID space...
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Lower-bound result
for vertex cover approximation

e Find a monochromatic subset of size m...

DOWB)(O)(®)()0Y
WIOIOIO] - IOIW ' IOID)
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DI :: IO
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Lower-bound result
for vertex cover approximation

e Delete these IDs...

ORS00
W@ i
DIIDIDIDIDRNDIDIED)
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Lower-bound result
for vertex cover approximation

o Still sufficiently many IDs to apply Ramsey...

ORRO] - IOI0WIOIOKD
W @ @
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Lower-bound result
for vertex cover approximation

e Repeat...

OEROBNOIOIDIOOD
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Lower-bound result
for vertex cover approximation

» Repeat until stuck
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Lower-bound result
for vertex cover approximation

e Several monochromatic subsets + some leftovers

02 16/ « IOIOIIO] > 1O
W)@ O® 19
QIEN: IDIDID] 27 EDIDIE)
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Lower-bound result
for vertex cover approximation

1T 1 1 T 1 1

2 215218 227 233 244 245 2 4 217 223 232 2 39 246

©@ . - .
@ Large enough n: Large enough m: 35
at most €n/2 nodes at most en/2 nodes

@ <K in the grey area B near the boundaries 36

Ge
D) 1) C) e
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Lower-bound result
for vertex cover approximation

e Thus A outputs a vertex cover with > (1 - €)n nodes

18 227 2 33 23 232 2 39
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