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Part I:
Ramsey’s theorem

• A generalisation of the pigeonhole principle

• Frank P. Ramsey (1930):
On a problem of formal logic

• “... in the course of this investigation it is necessary
to use certain theorems on combinations which have
an independent interest...”

2



Basic definitions

• Assign a colour from {1, 2, ..., c}
to each k-subset of {1, 2, ..., N}
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Basic definitions

• X ⊂ {1, 2, ..., N} is a monochromatic subset
if all k-subsets of X have the same colour
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Ramsey’s theorem

• Assign a colour from {1, 2, ..., c}
to each k-subset of {1, 2, ..., N}

• X ⊂ {1, 2, ..., N} is a monochromatic subset
if all k-subsets of X have the same colour

• Ramsey’s theorem: For all c, k, and n
there is a finite N such that any c-colouring
of k-subsets of {1, 2, ..., N} contains
a monochromatic subset with n elements
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Ramsey’s theorem

• Assign a colour from {1, 2, ..., c}
to each k-subset of {1, 2, ..., N}

• X ⊂ {1, 2, ..., N} is a monochromatic subset
if all k-subsets of X have the same colour

• Ramsey’s theorem: For all c, k, and n
there is a finite N such that any c-colouring
of k-subsets of {1, 2, ..., N} contains
a monochromatic subset with n elements

• The smallest such N is denoted by Rc(n; k)
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Ramsey’s theorem: k = 1

• k = 1: pigeonhole principle

• If we put N items into c slots,
then at least one of the slots
has to contain at least n items

• Colour of the 1-subset {i} = slot of the element i

• Clearly holds if N ≥ c(n − 1) + 1

• Does not necessarily hold if N ≤ c(n − 1)

• Rc(n; 1) = c(n − 1) + 1
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Ramsey’s theorem: k = 2, c = 2

• Complete graphs, red and blue edges

• If the graph is large enough,
there will be a monochromatic clique

• For example, R2(2; 2) = 2,
R2(3; 2) = 6, and R2(4; 2) = 18

• A graph with 2 nodes contains
a monochromatic edge

• A graph with 6 nodes contains
a monochromatic triangle
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Ramsey’s theorem: k = 2, c = 2

• Another interpretation: graphs
• {u,v} red: edge {u,v} present

• {u,v} blue: edge {u,v} missing

• Large monochromatic subset:
• Large clique (red) or

large independent set (blue)

• Any graph with 6 nodes
contains a clique with 3 nodes or
an independent set with 3 nodes
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Ramsey’s theorem: k = 2, c = 2

• Sufficiently large graphs
(N nodes) contain large
independents sets (n nodes)
or large cliques (n nodes)

• You can avoid one of these,
but not both

• However, Ramsey numbers are
large: here N is exponential in n
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Part II:
Proof of Ramsey’s theorem

• Following Nešetřil (1995)

• Notation from Radziszowski
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Definitions

• X ⊂ {1, 2, ..., N} is a monochromatic subset:
if A and B are k-subsets of X,
then A and B have the same colour

• X ⊂ {1, 2, ..., N} is a good subset:
if A and B are k-subsets of X and min(A) = min(B),
then A and B have the same colour

• An example with c = 2 and k = 2:
{1,2,3,5} is good but not monochromatic in the colouring
{1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,5}, {4,5}
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Definitions

• X ⊂ {1, 2, ..., N} is a monochromatic subset:
if A and B are k-subsets of X,
then A and B have the same colour

• X ⊂ {1, 2, ..., N} is a good subset:
if A and B are k-subsets of X and min(A) = min(B),
then A and B have the same colour

• Rc(n; k) = smallest N s.t. ∃ monochromatic n-subset

• Gc(n; k) = smallest N s.t. ∃ good n-subset
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Proof outline

• Rc(n; k) = smallest N s.t. ∃ monochromatic n-subset

• Gc(n; k) = smallest N s.t. ∃ good n-subset

• Theorem: Rc(n; k) is finite for all c, n, k
(i) Rc(n; 1) is finite for all c, n

(ii) If Rc(n; k − 1) is finite for all c, n
then Gc(n; k) is finite for all c, n

(iii) Rc(n; k) ≤ Gc(c(n − 1) + 1; k) for all c, n, k
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Proof: step (i)

• Lemma: Rc(n; 1) is finite for all c, n

• Proof:
• Pigeonhole principle

• Rc(n; 1) = c(n − 1) + 1
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Proof: step (ii) — outline

• Lemma: if Rc(n; k − 1) is finite for all c, n
then Gc(n; k) is finite for all c, n

• Proof (for each fixed c):
• Induction on n

• Gc(k; k) is finite

• Assume that M = Gc(n − 1; k) is finite

• Then we also have a finite Rc(M; k − 1)

• Enough to show that Gc(n; k) ≤ 1 + Rc(M; k − 1)
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Proof: step (ii)

• Gc(n; k) ≤ 1 + Rc(M; k − 1) where M = Gc(n − 1; k)
• Let N = 1 + Rc(M; k − 1), consider any

colouring f of k-subsets of {1, 2, ..., N}

• Delete element 1:
colouring f’ of (k − 1)-subsets of {2, 3, ..., N}

• Find an f’-monochromatic M-subset X ⊂ {2, 3, ..., N}

• Find an f-good (n − 1)-subset Y ⊂ X

• {1} ∪ Y is an f-good n-subset of {1, 2, ..., N}
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Proof: step (ii)

• A fictional example: N = 7, M = 5, n = 5, k = 3
• Original colouring f: {1,2,3}, {1,2,4}, {1,2,5},

{1,2,6}, {1,2,7}, ..., {1,6,7}, {2,3,4}, ..., {5,6,7}

• Colouring f’: {2,3}, {2,4}, {2,5}, {2,6}, {2,7}, ..., {6,7}

• f’-monochromatic M-subset {2,3,4,5,7} of {2,3,...,N}:
{2,3}, {2,4}, {2,5}, {2,7}, ..., {5,7}

• f-good (n−1)-subset {2,4,5,7}: {2,4,5}, {2,4,7}, {4,5,7}

• {1,2,4,5,7} is f-good: {1,2,4}, {1,2,5}, {1,2,7}, ..., 
{1,5,7}, {2,4,5}, {2,4,7}, {4,5,7} 

19

In real life, these constants 
would be much larger...



Proof: step (ii)

• A fictional example: N = 7, M = 5, n = 5, k = 3
• Original colouring f: {1,2,3}, {1,2,4}, {1,2,5},

{1,2,6}, {1,2,7}, ..., {1,6,7}, {2,3,4}, ..., {5,6,7}

• Colouring f’: {2,3}, {2,4}, {2,5}, {2,6}, {2,7}, ..., {6,7}

• f’-monochromatic M-subset {2,3,4,5,7} of {2,3,...,N}:
{2,3}, {2,4}, {2,5}, {2,7}, ..., {5,7}

• f-good (n−1)-subset {2,4,5,7}: {2,4,5}, {2,4,7}, {4,5,7}

• {1,2,4,5,7} is f-good: {1,2,4}, {1,2,5}, {1,2,7}, ..., 
{1,5,7}, {2,4,5}, {2,4,7}, {4,5,7}
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Proof: step (ii) — summary

• Lemma: if Rc(n; k − 1) is finite for all c, n
then Gc(n; k) is finite for all c, n

• Proof (for each fixed c):
• Induction on n

• Gc(k; k) is finite

• We have shown that if Gc(n − 1; k) is finite
then Gc(n; k) is finite

• Trick: show that Gc(n; k) ≤ 1 + Rc(Gc(n − 1; k); k − 1)
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Proof: step (iii)

• Lemma: Rc(n; k) ≤ Gc(c(n − 1) + 1; k) for all c, n, k

• Proof:
• If N = Gc(c(n − 1) + 1; k), we can find

a good subset X with c(n − 1) + 1 elements

• If k-subset A of X has colour i, put min(A) into slot i

• E.g.: {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}:
put 1 and 3 to slot blue, 2 to slot green, 5 to any slot

• Each slot is monochromatic and
at least one slot contains n elements (pigeonhole)!
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Ramsey’s theorem: proof summary

• Rc(n; k) = smallest N s.t. ∃ monochromatic n-subset

• Gc(n; k) = smallest N s.t. ∃ good n-subset

• Theorem: Rc(n; k) is finite for all c, n, k
(i) Rc(n; 1) is finite for all c, n

(ii) If Rc(n; k − 1) is finite for all c, n
then Gc(n; k) is finite for all c, n

• Induction: Gc(n; k) ≤ 1 + Rc(Gc(n − 1; k); k − 1)

(iii) Rc(n; k) ≤ Gc(c(n − 1) + 1; k) for all c, n, k
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Part III:
An application of Ramsey’s theorem

• Czygrinow et al. (2008)

• A deterministic distributed algorithm can’t
find a (2 − ε)-approximation of vertex cover
in constant time

• Holds even if we consider an n-cycle with
unique identifiers from 1, 2, ..., n
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Lower-bound result
for vertex cover approximation

• Numbered directed n-cycle:
• directed n-cycle, each node has outdegree = indegree = 1

• node identifiers are a permutation of {1, 2, ..., n}
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Lower-bound result
for vertex cover approximation

• Fix any ε > 0 and a deterministic local algorithm A
• Assumption: A finds a feasible vertex cover

(at least in any numbered directed cycle)

• Theorem: For a sufficiently large n there is
a numbered directed n-cycle C in which
A outputs a vertex cover with ≥ (1 − ε)n nodes

• Corollary: Approximation ratio of A is
at least 2 − 2ε
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Lower-bound result
for vertex cover approximation

• Let T be the running time of A, let k = 2T + 1

• The output of a node is a function f’ of
a sequence of k integers (unique IDs)
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11 93 56 72

T = 2, k = 5:

output = f’(3, 11, 9, 5, 2)

output = f’(11, 9, 5, 2, 7)



Lower-bound result
for vertex cover approximation

• Lets focus on increasing sequences of IDs

• Then the output of a node is a function f of
a set of k integers

28

6 73 112 2113

k = 5:

output = f({3, 6, 7, 11, 13})

output = f({6, 7, 11, 13, 21})



Lower-bound result
for vertex cover approximation

• Hence we have assigned a colour f(X) ∈ {0, 1}
to each k-subset X ⊂ {1, 2, ..., n}
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output = f({3, 6, 7, 11, 13})

output = f({6, 7, 11, 13, 21})k = 5:



Lower-bound result
for vertex cover approximation

• Hence we have assigned a colour f(X) ∈ {0, 1}
to each k-subset X ⊂ {1, 2, ..., n}

• Fix a large m (depends on k and ε)

• Ramsey: If n is sufficiently large,
we can find an m-subset A ⊂ {1, 2, ..., n}
s.t. all k-subset X ⊂ A have the same colour
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Lower-bound result
for vertex cover approximation

• That is, if the ID space is sufficiently large...
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Lower-bound result
for vertex cover approximation

• That is, if the ID space is sufficiently large,
we can find a monochromatic subset of m IDs...
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f({2, 3, 6, 7, 11}) = f({2, 3, 6, 7, 13}) =
f({2, 3, 6, 7, 21}) = f({2, 3, 6, 11, 13}) =
... = f({6, 7, 11, 13, 21})



Lower-bound result
for vertex cover approximation

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes 
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Lower-bound result
for vertex cover approximation

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes 
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f({3, 6, 7, 11, 13}) = ...

Same output



Lower-bound result
for vertex cover approximation

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes 
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... and it must be 1



Lower-bound result
for vertex cover approximation

• Hence there is an n-cycle with a chain of
m − 2T nodes that output 1
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Lower-bound result
for vertex cover approximation

• Hence there is an n-cycle with a chain of
m − 2T nodes that output 1

• We can choose as large m as we want
• Good, more “black” nodes that output 1 

• However, n increases rapidly if we increase m
• Bad, more “grey” nodes that might output 0

• Trick: choose “unnecessarily large” n so that
we can apply Ramsey’s theorem repeatedly
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Lower-bound result
for vertex cover approximation

• Huge ID space...
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Lower-bound result
for vertex cover approximation

• Find a monochromatic subset of size m...
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Lower-bound result
for vertex cover approximation

• Delete these IDs...
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Lower-bound result
for vertex cover approximation

• Still sufficiently many IDs to apply Ramsey...
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Lower-bound result
for vertex cover approximation

• Repeat...
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Lower-bound result
for vertex cover approximation

• Repeat until stuck
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Lower-bound result
for vertex cover approximation

• Several monochromatic subsets + some leftovers
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Lower-bound result
for vertex cover approximation
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Lower-bound result
for vertex cover approximation
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• Thus A outputs a vertex cover with ≥ (1 − ε)n nodes


