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Vertex cover problem

e Vertex cover for a graph G:
e Subset C of nodes that “covers”
all edges: each edge incident to

at least one node in C

e Minimum vertex cover:

e Vertex cover with the smallest number of nodes

e Minimum-weight vertex cover:

e Vertex cover with the smallest total weight



Vertex cover problem

e Classical NP-hard optimisation
problem: given a graph G,
find a minimum vertex cover

e Simple 2-approximation algorithm:

e Find a maximal matching, O
output all endpoints

e At most 2 times as large as minimum VC

e No polynomial-time algorithm with
approximation factor 1.9999 known



Research question

« Exactly how well can we
approximate vertex cover
in a distributed setting?

e Focus:

e Fast, synchronous,
deterministic distributed

algorithms

e Weakest possible models
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Distributed algorithms

« Communication graph G

G « Node = computer

e €.g., Turing machine,
finite state machine

e Edge = communication
link

e computers can
exchange messages



Distributed algorithms

o All nodes are identical,
G run the same algorithm

e We can choose
the algorithm

e An adversary chooses
the structure of G

e Our algorithm must
produce a valid vertex
cover in any graph G



Synchronous distributed algorithms

1. Each node reads its
@ own local input:

@ @ e node identifier

e if we assume
unique node IDs

e node weight

e if we study
weighted graphs



Synchronous distributed algorithms

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds



Synchronous distributed algorithms

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds
until all nodes
have announced
their local outputs

e 1 =1n vertex cover



Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each neighbour
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Synchronous distributed algorithms

« Communication round:

each node
\N 1.sends a message
«— to each neighbour
—

(message propagation...)

\
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Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour
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Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

3. updates its own state
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Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

3. updates its own state

4. possibly stops and
announces its output
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Synchronous distributed algorithms

« Communication rounds
are repeated until all

G nodes have stopped and
announced their outputs
a Q e Running time =
Q number of rounds

e Worst-case analysis
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Distributed algorithms:
three models

1. Unique identifiers
2. Port-numbering model

3. Broadcast model
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Model 1:
Unique identifiers

 Node identifiers are
a permutation of
1,2, ..., n

e« Permutation chosen
by adversary
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Model 2:
Port-numbering model

e No unique identifiers

e A node of degree d can
refer to its neighbours
by integers 1, 2, ..., d

e Port-numbering chosen
by adversary
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Model 3:
Broadcast model

e No identifiers,
no port numbers

[Send “A”) « A node has to send
the same message
to each neighbour

Send “A”)

Receives: | * A node does not know
. 2 x “A” which message was
Send “B o ) .
X 1 x“B B received from which

neighbour
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Distributed algorithms:
three models

1. Unique identifiers

2. Port-numbering model
e Vector with deg(v) outgoing messages

e Vector with deg(v) incoming messages

3. Broadcast model
e Only one outgoing message

e Multiset with deg(v) incoming messages
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper

lower

upper

lower | upper

O(n)

f(4) + polylog(n)

-

f(4) + O(log® n) <

f(B)

N

log* = iterated logarithm
— inverse of power tower

~

/

A

Broadcast
model

Port
numbering

Unique
identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
O(n) 1
Z
f(8) + polylog(n) - 7
Trivial
f(4) + O(log® n) .
algorithm
f(b) : ’
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
O(n) 1
f(4) + polylog(n) - \ 2
f(8) + O(log" n) Maximal matching |
(Panconesi & Rizzi 2001)
f(2) - )
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
O(n) e ™ 2 1
f(A) + polylog(n) Near-maximal —— 2 )
) edge packing
f(A) * O(log n) (Khuller et al. 1994) 2
f(b) S g

Broadcast Port Unique

model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
O(n) e ™ 2 1
f(A) + polylog(n) Deterministic y) )
LP rounding
f(8) + O(log™ n) (Kuhn et al. 2006) 2+¢ 2
f(A) ~ —r2 4 2+¢
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
O(n) 2 1
f(&) + polylog(n)( ) 2 2
Czygrinow et al. 2008
f(A) + O(log* n) | Lenzen & Wattenhofer 2008 | 2 + € 2
f(D) 2 2 | 2+e| 2 |2+¢
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
O(n) 2 2 2 1
y
f(0) + polylog(n) | 2 (2 | 2 2
Trivial
f(A) + O(log* n) 2 2 2 +¢€ 2
(cycles)
f(A) 2~ 42 | 2+g| 2 |2+¢
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
O(n) 2 2 2 1
f(A) + polylog(n) 2 2 2 2
f(A) + O(log* n) 2 2 2 +¢€ 2
f(4) 2 2 2 +¢€ 2 2 +¢€
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
O(n) 2 2 2
. N
f(A) + polylog(n) 2 2 2 Could we
have 2?
A) + O(log™ n 2 2 2+¢€
f(4) + O(log® n) % // y
f(A) 2 2 2+¢€ 2 2+¢
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

~

lower | upper | lower | upper | lower | upper
O(n) 2 2 | R
Anything |~
f(A) + polylog(n) | 2 ? here? Could we
A have 2?
A) + O(log™ n 2 ? 2 2+¢€
f(8) + O(log* n) ) / l
f(A) 2 ? 2 2+¢€ 2 2+¢
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
O(n) 2 ? 2 2 p
f(A) + polylog(n) | 2 ? 2 2 DISC
2009
A) + O(log* n 2 ? 2 2
f(4) + O(log® n) /.
f(A) 2 ? 2 2 2
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
o(n) 2 2 |( h
Latest |
f(A) + polylog(n) 2 2 results DISC
A 2009
A) + O(log* n 2 2 2 2
f(4) + O(log® n) / /.
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
O(n) 2 2 2 2
f(A) + polylog(n) 2 2 2 2
f(A) + O(log* n) 2 2 2 2
f(4) 2 2 2 2 2 2
Broadcast Port Unique
model numbering identifiers
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Deterministic distributed algorithms
for vertex cover: approximation ratios

lower | upper | lower | upper | lower | upper
O(n) 2 2 2 2
. ; N
Let’s study
f(A) + polylog(n) 2 2 2 2 this case
) first...
f(A) + O(log* n) 2 2 2 2 /. Y
f(A) 2 2 2 2 2
Broadcast Port Unique
model numbering identifiers
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Vertex cover
in the port-numbering model

e Convenient to study a more general problem:
minimum-weight vertex cover

e More general problems
are sometimes

easier to solve! 1 d

Notation:
w(v) = weight of v 6 3
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Edge packings and vertex covers

e Edge packing: weight y(e) > 0 for each edge e

e Packing constraint: for each node v,
the total weight of edges incident to v is at most w(v)
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Edge packings and vertex covers

e Edge packing: weight y(e) > 0 for each edge e

e Packing constraint: for each node v,
the total weight of edges incident to v is at most w(v)
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Edge packings and vertex covers

 In linear programming, these are dual problems:

e Minimum-weight
(fractional) vertex cover

e maximum-weight 1 5
edge packing
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Edge packings and vertex covers

e Saturated node v: the total weight on edges
incident to v is equal to w(v)
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Edge packings and vertex covers

e Saturated edge e:
at least one endpoint of e is saturated
— edge weight y(e) can’t be increased

~
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Edge packings and vertex covers

« Maximal edge packing: all edges saturated
<= hone of the edge weights y(e) can be increased
— saturated nodes form a vertex cover
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Edge packings and vertex covers

e Minimum-weight vertex cover C* difficult to find:
e Centralised setting: NP-hard

o Distributed setting: integer problem,
symmetry-breaking issues

 Maximal edge packing v easy to find:
e Centralised setting: trivial greedy algorithm

e Distributed setting: linear problem,
no symmetry-breaking issues (?)
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Edge packings and vertex covers

 Minimum-weight vertex cover C* difficult to find
 Maximal edge packing vy easy to find?

e Saturated nodes C(y) in y: 2-approximation of C*
« W(C(y)) = 2w(C7)
e Notation: w((C) = total weight of the nodes v € C

e Proof: LP-duality, relaxed complementary slackness
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Edge packings and vertex covers

 Minimum-weight vertex cover C* difficult to find
 Maximal edge packing vy easy to find?

e Saturated nodes C(y) in y: 2-approximation of C*
« W(C(y)) = 2w(C7)

o Constant 2: C(y) covers edges at most twice,
C* at least once

e Immediate generalisation to hypergraphs

w(C(y) = > yl] = > wyle)lenCly)l <2) yle)lenC*| =2 ylv] < 2w(C)
eck eck veC*

veC(y)
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Finding a maximal edge packing

e Basic idea from Khuller et al. (1994) and
Papadimitriou and Yannakakis (1993)
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Finding a maximal edge packing:
basic idea

e v[v] = total weight of edges incident to node v
e Residual capacity of node v: r(v) = w(v) - y[V]

e Saturated node: 1 1
r(v) =0
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Finding a maximal edge packing:
basic idea

Start with a trivial
edge packing y(e) = 0
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Finding a maximal edge packing:
basic idea

Each node v offers
r(v)/deg(v) units to
each incident edge




Finding a maximal edge packing:
basic idea

Each edge accepts

the smallest of the ' 5/2
2 offers it received , g
Q. 32 Q 3/2 6
9 6
5 1 g 3/2 3/2 6 6
9@—3/2%3/2%3—3/2—@
Increase y(e) 9 214 No 3/
by this amount
y of XS
e Safe, can’t violate 6 3
packing constraints 6 3
6 3/2
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Finding a maximal edge packing:
basic idea

Update residuals...

0 2
1 5
O\ 1/2 = 3/2

1 g 3/2 3/2

15/2@—3/2%3/2%3—3/2—@
9

3/2 3/2 3/2

of hof

6 3
9/2 0
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Finding a maximal edge packing:
basic idea

Update residuals,
discard saturated

nodes and edges... %
Jo
162312
15/2@—3/2—/d
? 3/2
of ®
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Finding a maximal edge packing:
basic idea

Update residuals,

discard saturated 2
nodes and edges, :
repeat... O 1/6 O
1/2
Offers... 15/2 9 3/2
15/2@—3/2—/d
> 3n
of O
6
9/2



Finding a maximal edge packing:
basic idea

Update residuals,

discard saturated 2
nodes and edges, :
repeat... O 176 O
1/2
Offers... 15/2 9 3/3
/
Increase 15/30_5 3 7Q
: 5/3
weights...
of O
6
9/2



Finding a maximal edge packing:
basic idea

Update residuals,
discard saturated

nodes and edges, 1%/3
repeat... @ O 5
Offers... g 5/3
Increase 22/30_5/;/3_/0/
weights...

X . of O
Update residuals... 6
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Finding a maximal edge packing:

basic idea

Update residuals,
discard saturated
nodes and edges,

repeat... @
Offers...

Increase 22/30
weights...

Update residuals 6

and graph, etc. 13/3
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Finding a maximal edge packing:

basic idea

This is a simple
deterministic

distributed

algorithm @

We are making

some progress  22/30Q

towards finding ~ ?

a maximal edge O
6

king — but...
packing — bu L.
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Finding a maximal edge packing:
basic idea

This is a simple 1 2 4 8 16 32 64 128
deterministic 1 2 4 8 16 32 64 128"
distributea 1 1 2 4 8 16 32 64
algorithm 1 1 2 4 8 16 32 64
' 0O 0 1 2 4 8 16 32
We are making A ST
Some progress 1 1 27 4 8 16
towargls finding 0 0 1 2 2 3
a maximal edge 1 1 2 4
packing — but 1 1 2 4

this is too slow! 0O 0 1 2
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Finding a maximal edge packing:

colouring trick

e Offer is a local minimum:

« Node will be saturated

e And all edges incident to it

will be saturated as well

58
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Residual capacity
was 8, will be 0
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Finding a maximal edge packing:
colouring trick

o Offer is a local minimum: 4 3

« Node will be saturated

o Otherwise there is a neighbour
with a different offer: 5 2

e Interpret the offer
sequences as colours

e Nodes u and v have
different colours:
fu, v} is multicoloured
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Finding a maximal edge packing:
colouring trick

e Progress guaranteed: 4

« On each iteration, for each node,
at least one incident edge becomes
saturated or multicoloured

e Such edges are be discarded;
maximum degree A decreases
by at least one

e Hence in A rounds all edges
are saturated or multicoloured

60



Finding a maximal edge packing:
colouring trick

e In A rounds all edges are
saturated or multicoloured

e Saturated edges are good —
we’re trying to construct
a maximal edge packing

 Why are the multicoloured

edges useful?
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Finding a maximal edge packing:
colouring trick

e In A rounds all edges are
saturated or multicoloured

e Saturated edges are good —
we’re trying to construct
a maximal edge packing

 Why are the multicoloured

edges useful?

e Let’s focus on unsaturated
nodes and edges

62



Finding a maximal edge packing:
colouring trick

e Colours are sequences of
A rational humbers

e Assume that node weights
are integers 1, 2, ..., W

e Then colours are rationals
of the form g/ (A!)? with

qgetl, 2, ..., Wj

((2,2/3,116,1/12) [
A
((2,2/3,1/6,1/24) )
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Finding a maximal edge packing:

colouring trick

e Colours are sequences of
A rational humbers

e Assume that node weights
are integers 1, 2, ..., W

e Then colours are rationals
of the form g/ (A!)? with

qgetl, 2, ..., Wj

o k= (W(A!)2)? possible
colours, replace with
integers 1, 2, ..., k

64
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Finding a maximal edge packing:
colouring trick

e Colours are sequences of
A rational humbers

a )
e Assume that node weights Looks ugly,

are integers 1, 2, ..., W but don’t worry,

+ Then colours are rationals | " the end we will
take log® of k

of the form g/ (A!)? with y
qge{l, 2, ,/

o k= (W(A!)2)2 possible
colours, replace with

integers 1, 2, ..., k

65



Finding a maximal edge packing:
colouring trick

 We have a proper k-colouring
of the unsaturated subgraph

e Orient from lower to higher
colour (acyclic directed graph)

| 2789 |
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Finding a maximal edge packing:
colouring trick

 We have a proper k-colouring
of the unsaturated subgraph

(2
e Orient from lower to higher O C
colour (acyclic directed graph) “' %
o Partition in A forests ~
o . O<K Q‘/‘
e Each node assigns its outgoing ®

edges to different forests @
O—>C
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Finding a maximal edge packing:
colouring trick

e For each forest in parallel...

(378 P00
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Finding a maximal edge packing:
colouring trick

e For each forest in parallel:

e Use Cole-Vishkin (1986) style
colour reduction algorithm
e Given a k-colouring,
finds a 3-colouring
in time O(log* k
(log® k) o
« Bit manipulation trick:

each step replaces -( X
a k-colouring with 3 @
an O(log k)-colouring , C_/\U
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Finding a maximal edge packing:
colouring trick

e For each forest and each

colour j =1, 2, 3 in sequence: q

O—@—)<0O

e Node-disjoint stars, -

O
easy to saturate in parallel ® ‘\‘O/. O
o Q

e In O(A) rounds we have
saturated all edges e—C

e Saturate all outgoing edges
of colour-j nodes
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Finding a maximal edge packing:
summary

e Total running time:

o All edges are saturated or

multicoloured: O(4)
e Multicoloured forests
are 3-coloured: O(log* k) O
Q

» 3-coloured forests s (3] o0 Q
are saturated: O(A) 2 (2799 N 'y %
e O(A + log* k) = O(A + log* W) . ?O/O.O

e k is huge, but log* grows slowly
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Finding a maximal edge packing:
summary

 Maximal edge packing and
2-approximation of vertex cover
in time O(A + log® W)

e W = maximum node weight
 Unweighted graphs: O :ig

running time simply O(4), 3 q

O—@—0<0O

independent of n 9
p ® .\MQ

o Everything can be implemented O g0

in the port-numbering model
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Vertex cover algorithms

e 2-approximation of vertex cover in time O(A)
in the port-numbering model

e Insight: consider a more general problem,
minimum-weight vertex cover

e 2-approximation of vertex cover in time poly(A)
in the broadcast model?

e Insight: consider a more general problem,
minimum-weight set cover!
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Set cover algorithm

e Set covers in a distributed setting: fA.B}, {B,D}
» bipartite graph, “sets” and “elements” {B,C,D;}
e Degree bounds:

e element frequency at most f

e set size at most k

e Vertex cover:

e edge = element (f = 2)
e node = set (k = A)
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Set cover algorithm

e Similar techniques:
e Find a maximal fractional packing

e Generalisation of maximal
edge packings

e Saturated sets: f-approximation
of minimum-weight set cover

75




Set cover algorithm

e Similar techniques:
e Find a maximal fractional packing

e “Greedy but safe”
offer/accept rounds

e Progress guaranteed:
something is always
saturated or multicoloured
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Set cover algorithm

e Dissimilar techniques:

« Repeated iterations of
saturation + colouring phases

« We don’t try to find
a proper 3-colouring but
a weak 3-colouring

o Easier in the broadcast model,
enough to make some progress

e Lots of technicalities...
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Set cover algorithm

« Maximal fractional packing
in O(f?k* + fk log* W) rounds,
broadcast model
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Set cover algorithm: application

e Use the set cover algorithm to find a vertex cover

e |In vertex cover instances, nodes have
local state but edges are stateless

e |In set cover instances, both sets
and elements have local state

o Simulation possible, trick:
pass around the full history of
broadcasts, re-compute the states

e Larger messages, but
the same number of rounds

79



Set cover algorithm: application

e Use the set cover algorithm to find a vertex cover

e 2-approximation of unweighted
vertex cover in O(A?%) rounds,

broadcast model I:
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Conclusions

e 2-approximation algorithms for vertex cover:
e Time O(A), port-numbering model

e Time O(A?), broadcast model

« Research questions:

R
e Can you do it faster,
in any model? .
Q
« What else can be solved (@ Cp0 O @00
- O O
in the broadcast model? 2 . -
o O
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Conclusions

e 2-approximation algorithms for vertex cover:
e Time O(A), port-numbering model

e Time O(A?), broadcast model

e Take-home message:

e Sometimes more
general problems .
are easier to solve! -
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