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Vertex cover problem
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• Vertex cover for a graph G:
• Subset C of nodes that “covers”

all edges: each edge incident to
at least one node in C

• Minimum vertex cover:
• Vertex cover with the smallest number of nodes

• Minimum-weight vertex cover:
• Vertex cover with the smallest total weight



Vertex cover problem
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• Classical NP-hard optimisation
problem: given a graph G,
find a minimum vertex cover

• Simple 2-approximation algorithm:
• Find a maximal matching,

output all endpoints

• At most 2 times as large as minimum VC

• No polynomial-time algorithm with
approximation factor 1.9999 known



Research question
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• Exactly how well can we
approximate vertex cover
in a distributed setting?

• Focus:
• Fast, synchronous,

deterministic distributed
algorithms

• Weakest possible models



Distributed algorithms
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• Communication graph G

• Node = computer
• e.g., Turing machine, 

finite state machine

• Edge = communication 
link

• computers can
exchange messages

G



Distributed algorithms
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• All nodes are identical,
run the same algorithm

• We can choose
the algorithm

• An adversary chooses
the structure of G

• Our algorithm must
produce a valid vertex
cover in any graph G

G



Synchronous distributed algorithms
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1. Each node reads its
own local input:
• node identifier

• if we assume
unique node IDs

• node weight

• if we study
weighted graphs

4
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Synchronous distributed algorithms
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1. Each node reads its
own local input

2. Repeat synchronous 
communication rounds
...



Synchronous distributed algorithms
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1. Each node reads its
own local input

2. Repeat synchronous 
communication rounds
until all nodes
have announced
their local outputs

• 1 = in vertex cover



Synchronous distributed algorithms
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• Communication round:
each node

1.sends a message
to each neighbour



Synchronous distributed algorithms
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• Communication round:
each node

1.sends a message
to each neighbour

(message propagation...)



Synchronous distributed algorithms

12

• Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour



Synchronous distributed algorithms

13

• Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

3.updates its own state



Synchronous distributed algorithms
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1

0

• Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

3.updates its own state

4.possibly stops and 
announces its output



Synchronous distributed algorithms
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• Communication rounds 
are repeated until all 
nodes have stopped and 
announced their outputs

• Running time =
number of rounds

• Worst-case analysis



Distributed algorithms:
three models
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1. Unique identifiers

2. Port-numbering model

3. Broadcast model



Model 1:
Unique identifiers
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• Node identifiers are
a permutation of
1, 2, ..., n

• Permutation chosen
by adversary

4

1

3
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Model 2:
Port-numbering model
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• No unique identifiers

• A node of degree d can 
refer to its neighbours 
by integers 1, 2, ..., d

• Port-numbering chosen 
by adversary

1
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Model 3:
Broadcast model
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• No identifiers,
no port numbers

• A node has to send
the same message
to each neighbour

• A node does not know
which message was
received from which
neighbour

Send “A”

Send “B”

Receives:
2 × “A”
1 × “B”

Send “A”



Distributed algorithms:
three models
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1. Unique identifiers

2. Port-numbering model

• Vector with deg(v) outgoing messages

• Vector with deg(v) incoming messages

3. Broadcast model

• Only one outgoing message

• Multiset with deg(v) incoming messages



Deterministic distributed algorithms
for vertex cover: approximation ratios
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lower upper lower upper lower upper

O(n)

f(Δ) + polylog(n)

f(Δ) + O(log* n)

f(Δ)

Broadcast
model

Broadcast
model

Port
numbering

Port
numbering

Unique
identifiers

Unique
identifiers

log* = iterated logarithm
≈ inverse of power tower



Deterministic distributed algorithms
for vertex cover: approximation ratios
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lower upper lower upper lower upper

O(n)

f(Δ) + polylog(n)

f(Δ) + O(log* n)

f(Δ)

1

Broadcast
model

Broadcast
model

Port
numbering

Port
numbering

Unique
identifiers

Unique
identifiers

Trivial
algorithm



Deterministic distributed algorithms
for vertex cover: approximation ratios
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lower upper lower upper lower upper

O(n)

f(Δ) + polylog(n)

f(Δ) + O(log* n)

f(Δ)
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2
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Broadcast
model

Broadcast
model

Port
numbering

Port
numbering

Unique
identifiers

Unique
identifiers

Maximal matching
(Panconesi & Rizzi 2001)



Deterministic distributed algorithms
for vertex cover: approximation ratios
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Near-maximal
edge packing
(Khuller et al. 1994)



Deterministic distributed algorithms
for vertex cover: approximation ratios
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Broadcast
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Unique
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Deterministic 
LP rounding
(Kuhn et al. 2006)



Deterministic distributed algorithms
for vertex cover: approximation ratios

26

lower upper lower upper lower upper

O(n)

f(Δ) + polylog(n)

f(Δ) + O(log* n)

f(Δ)

2 1

2 2

2 + ε 2

2 2 2 + ε 2 2 + ε

Broadcast
model

Broadcast
model

Port
numbering

Port
numbering

Unique
identifiers

Unique
identifiers

Czygrinow et al. 2008
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Deterministic distributed algorithms
for vertex cover: approximation ratios
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Deterministic distributed algorithms
for vertex cover: approximation ratios
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Deterministic distributed algorithms
for vertex cover: approximation ratios
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Could we 
have 2?



Deterministic distributed algorithms
for vertex cover: approximation ratios
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lower upper lower upper lower upper
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model
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identifiers

Could we 
have 2?

Anything 
here?



Deterministic distributed algorithms
for vertex cover: approximation ratios
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Deterministic distributed algorithms
for vertex cover: approximation ratios
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results



Deterministic distributed algorithms
for vertex cover: approximation ratios
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Deterministic distributed algorithms
for vertex cover: approximation ratios
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lower upper lower upper lower upper

O(n)
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Let’s study 
this case 
first...



Vertex cover
in the port-numbering model

• Convenient to study a more general problem:
minimum-weight vertex cover

• More general problems
are sometimes
easier to solve!
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Notation:
w(v) = weight of v

51

3

9 6 6
9

6



Edge packings and vertex covers

• Edge packing: weight y(e) ≥ 0 for each edge e
• Packing constraint: for each node v,

the total weight of edges incident to v is at most w(v)

36
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Edge packings and vertex covers

• Edge packing: weight y(e) ≥ 0 for each edge e
• Packing constraint: for each node v,

the total weight of edges incident to v is at most w(v)
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3 + 0 + 4 + 0 + 0 + 2 ≤ 9



Edge packings and vertex covers

• In linear programming, these are dual problems:
• minimum-weight

(fractional) vertex cover

• maximum-weight
edge packing
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Edge packings and vertex covers

• Saturated node v: the total weight on edges 
incident to v is equal to w(v)
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Edge packings and vertex covers

• Saturated edge e:
at least one endpoint of e is saturated
⇐⇒ edge weight y(e) can’t be increased
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2 + ε would violate
a packing constraint



Edge packings and vertex covers

• Maximal edge packing: all edges saturated
⇐⇒ none of the edge weights y(e) can be increased
⇐⇒ saturated nodes form a vertex cover
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Edge packings and vertex covers

• Minimum-weight vertex cover C* difficult to find:
• Centralised setting: NP-hard

• Distributed setting: integer problem,
symmetry-breaking issues

• Maximal edge packing y easy to find:
• Centralised setting: trivial greedy algorithm

• Distributed setting: linear problem,
no symmetry-breaking issues (?)

42



Edge packings and vertex covers

• Minimum-weight vertex cover C* difficult to find

• Maximal edge packing y easy to find?

• Saturated nodes C(y) in y: 2-approximation of C*
• w(C(y)) ≤ 2w(C*)

• Notation: w(C) = total weight of the nodes v ∈ C

• Proof: LP-duality, relaxed complementary slackness

43



Edge packings and vertex covers

• Minimum-weight vertex cover C* difficult to find

• Maximal edge packing y easy to find?

• Saturated nodes C(y) in y: 2-approximation of C*
• w(C(y)) ≤ 2w(C*)

• Constant 2: C(y) covers edges at most twice,
C* at least once

• Immediate generalisation to hypergraphs

44

1 Introduction

In this work, we present deterministic distributed approximation algorithms for two classical prob-
lems: minimum-weight vertex cover and minimum-weight set cover.

1.1 Maximal edge packings and vertex covers

Let G = (V,E) be a simple, undirected, node-weighted graph; each node v ∈ V is associated with
a positive weight wv. A set C ⊆ V is a vertex cover if each edge has at least one endpoint in C,
and it is a minimum-weight vertex cover if it also minimises its total weight w(C) =

�
v∈C wv.

While vertex cover is a classical NP-hard optimisation problem, there is a simple technique
for obtaining efficient approximation algorithms: find a maximal edge packing (a maximal dual
solution) and output all saturated nodes. For a nonnegative function y : E → [0,+∞), let us define
the shorthand notation

y[v] =
�

e∈E: v∈e

y(e)

for each v ∈ V . We say that y is an edge packing if y[v] ≤ wv for all v ∈ V . A node v ∈ V is
saturated in the edge packing y if y[v] = wv. An edge e = {u, v} ∈ E is saturated if u or v or
both are saturated, i.e., y(e) cannot be increased without violating the constraint y[u] ≤ wu or
y[v] ≤ wv. An edge packing y is maximal if all edges are saturated.

Let C(y) be the set of nodes saturated in y. The classical result by Bar-Yehuda and Even [6]
shows that if y is a maximal edge packing then C(y) is a 2-approximation of a minimum-weight
vertex cover; for the sake of completeness, we give a short proof here. First, observe that C(y) is
a vertex cover by definition: if an edge is not covered by C(y), then y is not maximal. To show
the approximation ratio, let C∗ be a minimum-weight vertex cover. As C(y) contains at most two
endpoints of each edge and C∗ contains at least one endpoint of each edge, we have

w(C(y)) =
�

v∈C(y)

y[v] =
�

e∈E

y(e) |e ∩ C(y)| ≤ 2
�

e∈E

y(e) |e ∩ C∗
| = 2

�

v∈C∗

y[v] ≤ 2w(C∗).

In a centralised setting, a maximal edge packing y is easy to find: for each e ∈ E, in an
arbitrary order, increase the value y(e) until one of the endpoints of e becomes saturated. In this
work, we give an efficient distributed algorithm that finds a maximal edge packing, and hence also
a 2-approximation of a minimum-weight vertex cover.

1.2 Maximal fractional packings and set covers

To deal with the set cover problem in a distributed setting, it is convenient to restate the problem
by using a bipartite graph H = (S ∪ U, A). Each node s ∈ S represents a subset, each node u ∈ U
represents an element of the universe, and an edge {s, u} ∈ A denotes that the element u ∈ U is a
member of the subset s ∈ S. Each subset node s ∈ S is associated with a positive weight ws. A
collection C ⊆ S is a set cover if each element u ∈ U has at least one neighbour in C, and it is a
minimum-weight set cover if it also minimises its total weight w(C) =

�
s∈C ws.

Let y : U → [0,+∞) be a nonnegative function. Define the shorthand notation

y[s] =
�

u∈N(s)

y(u)

for each s ∈ S; here N(s) ⊆ U is the set of elements adjacent to the subset node s. We say that
y is a fractional packing if y[s] ≤ ws for all subset nodes s ∈ S. A subset node s ∈ S is saturated

1



Finding a maximal edge packing

• Basic idea from Khuller et al. (1994) and
Papadimitriou and Yannakakis (1993)
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Finding a maximal edge packing:
basic idea

• y[v] = total weight of edges incident to node v

• Residual capacity of node v: r(v) = w(v) − y[v]

• Saturated node:
r(v) = 0
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Finding a maximal edge packing:
basic idea

Start with a trivial
edge packing y(e) = 0
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Finding a maximal edge packing:
basic idea

Each node v offers
r(v)/deg(v) units to 
each incident edge
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Finding a maximal edge packing:
basic idea

Each edge accepts
the smallest of the
2 offers it received

Increase y(e)
by this amount

• Safe, can’t violate 
packing constraints
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Finding a maximal edge packing:
basic idea

Update residuals...
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Finding a maximal edge packing:
basic idea

Update residuals,
discard saturated
nodes and edges...
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Finding a maximal edge packing:
basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...
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Finding a maximal edge packing:
basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...
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Finding a maximal edge packing:
basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

Update residuals...
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Finding a maximal edge packing:
basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

Update residuals
and graph, etc.
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Finding a maximal edge packing:
basic idea

This is a simple 
deterministic 
distributed 
algorithm

We are making
some progress
towards finding
a maximal edge
packing — but...
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Finding a maximal edge packing:
basic idea

This is a simple 
deterministic 
distributed 
algorithm

We are making
some progress
towards finding
a maximal edge
packing — but
this is too slow!
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Finding a maximal edge packing:
colouring trick
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4 3

2
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5

• Offer is a local minimum:
• Node will be saturated

• And all edges incident to it
will be saturated as well

2

2 2

2

Residual capacity
was 8, will be 0



Finding a maximal edge packing:
colouring trick
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4 3

2

2

5

• Offer is a local minimum:
• Node will be saturated

• Otherwise there is a neighbour
with a different offer:

• Interpret the offer
sequences as colours

• Nodes u and v have
different colours:
{u, v} is multicoloured

1 2

2

2

2



Finding a maximal edge packing:
colouring trick
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4 3

2

2

5

• Progress guaranteed:
• On each iteration, for each node,

at least one incident edge becomes
saturated or multicoloured

• Such edges are be discarded;
maximum degree ∆ decreases
by at least one

• Hence in ∆ rounds all edges
are saturated or multicoloured

1 2
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2
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Finding a maximal edge packing:
colouring trick

61

• In ∆ rounds all edges are 
saturated or multicoloured

• Saturated edges are good —
we’re trying to construct
a maximal edge packing

• Why are the multicoloured
edges useful?



Finding a maximal edge packing:
colouring trick

62

• In ∆ rounds all edges are 
saturated or multicoloured

• Saturated edges are good —
we’re trying to construct
a maximal edge packing

• Why are the multicoloured
edges useful?

• Let’s focus on unsaturated
nodes and edges



Finding a maximal edge packing:
colouring trick

63

• Colours are sequences of
∆ rational numbers

• Assume that node weights
are integers 1, 2, ..., W

• Then colours are rationals
of the form q/(∆!)∆ with
q ∈ {1, 2, ..., W}

(2, 2/3, 1/6, 1/24)

(2, 2/3, 1/6, 1/12)



Finding a maximal edge packing:
colouring trick
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• Colours are sequences of
∆ rational numbers

• Assume that node weights
are integers 1, 2, ..., W

• Then colours are rationals
of the form q/(∆!)∆ with
q ∈ {1, 2, ..., W}

• k = (W(∆!)∆)∆ possible
colours, replace with
integers 1, 2, ..., k 2789

1378



Finding a maximal edge packing:
colouring trick

65

• Colours are sequences of
∆ rational numbers

• Assume that node weights
are integers 1, 2, ..., W

• Then colours are rationals
of the form q/(∆!)∆ with
q ∈ {1, 2, ..., W}

• k = (W(∆!)∆)∆ possible
colours, replace with
integers 1, 2, ..., k

Looks ugly,
but don’t worry,

in the end we will
take log* of k



Finding a maximal edge packing:
colouring trick
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• We have a proper k-colouring
of the unsaturated subgraph

• Orient from lower to higher 
colour (acyclic directed graph)

2789

1378



Finding a maximal edge packing:
colouring trick
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• We have a proper k-colouring
of the unsaturated subgraph

• Orient from lower to higher 
colour (acyclic directed graph)

• Partition in ∆ forests
• Each node assigns its outgoing

edges to different forests

2789

1378



Finding a maximal edge packing:
colouring trick
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• For each forest in parallel...

2789

1378



Finding a maximal edge packing:
colouring trick

69

• For each forest in parallel:
• Use Cole–Vishkin (1986) style

colour reduction algorithm

• Given a k-colouring,
finds a 3-colouring
in time O(log* k)

• Bit manipulation trick:
each step replaces
a k-colouring with
an O(log k)-colouring

2789

13783

2



Finding a maximal edge packing:
colouring trick

70

• For each forest and each
colour j = 1, 2, 3 in sequence:

• Saturate all outgoing edges
of colour-j nodes

• Node-disjoint stars,
easy to saturate in parallel

• In O(∆) rounds we have
saturated all edges



Finding a maximal edge packing:
summary

71

• Total running time:
• All edges are saturated or 

multicoloured: O(∆)

• Multicoloured forests
are 3-coloured: O(log* k)

• 3-coloured forests
are saturated: O(∆)

• O(∆ + log* k) = O(∆ + log* W)
• k is huge, but log* grows slowly

2789

13783
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Finding a maximal edge packing:
summary

72

• Maximal edge packing and
2-approximation of vertex cover
in time O(∆ + log* W)

• W = maximum node weight

• Unweighted graphs:
running time simply O(∆),
independent of n

• Everything can be implemented
in the port-numbering model

2789

13783
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Vertex cover algorithms

• 2-approximation of vertex cover in time O(∆)
in the port-numbering model

• Insight: consider a more general problem,
minimum-weight vertex cover

• 2-approximation of vertex cover in time poly(∆)
in the broadcast model?

• Insight: consider a more general problem,
minimum-weight set cover!
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Set cover algorithm

• Set covers in a distributed setting:
• bipartite graph, “sets” and “elements”

• Degree bounds:
• element frequency at most f

• set size at most k

• Vertex cover:
• edge ≈ element (f = 2)

• node ≈ set (k = ∆)
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Set cover algorithm

• Similar techniques:
• Find a maximal fractional packing

• Generalisation of maximal
edge packings

• Saturated sets: f-approximation
of minimum-weight set cover
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Set cover algorithm

• Similar techniques:
• Find a maximal fractional packing

• “Greedy but safe”
offer/accept rounds

• Progress guaranteed:
something is always
saturated or multicoloured
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Set cover algorithm

• Dissimilar techniques:
• Repeated iterations of

saturation + colouring phases

• We don’t try to find
a proper 3-colouring but
a weak 3-colouring

• Easier in the broadcast model,
enough to make some progress

• Lots of technicalities...
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Set cover algorithm

• Maximal fractional packing
in O(f2k2 + fk log* W) rounds,
broadcast model
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Set cover algorithm: application

79

• Use the set cover algorithm to find a vertex cover
• In vertex cover instances, nodes have

local state but edges are stateless

• In set cover instances, both sets
and elements have local state

• Simulation possible, trick:
pass around the full history of
broadcasts, re-compute the states

• Larger messages, but
the same number of rounds



Set cover algorithm: application

80

• Use the set cover algorithm to find a vertex cover

• 2-approximation of unweighted
vertex cover in O(∆2) rounds,
broadcast model



Conclusions

81

• 2-approximation algorithms for vertex cover:
• Time O(∆), port-numbering model

• Time O(∆2), broadcast model

• Research questions:
• Can you do it faster,

in any model?

• What else can be solved
in the broadcast model? 2789

13783
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Conclusions

82

• 2-approximation algorithms for vertex cover:
• Time O(∆), port-numbering model

• Time O(∆2), broadcast model

• Take-home message:
• Sometimes more

general problems
are easier to solve!
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