An application of the Cole-Vishkin
algorithm: approximating vertex
covers in anonymous networks

Jukka Suomela

Principles of Distributed Computing
10 March 2010 !

5

s(wm) om0 O '—_’Oo
2 0\0/.0

O.—»O

Vertex cover problem

e Vertex cover for a graph G:
e Subset C of nodes that “covers”
all edges: each edge incident to

at least one node in C

e Minimum vertex cover:

e Vertex cover with the smallest number of nodes

e Minimum-weight vertex cover:

e Vertex cover with the smallest total weight

Vertex cover problem

e Classical NP-hard optimisation
problem: given a graph G,
find a minimum vertex cover

e Simple 2-approximation algorithm:

e Find a maximal matching, O
output all endpoints

e At most 2 times as large as minimum VC

e No polynomial-time algorithm with
approximation factor 1.9999 known

Research question

e Can we find a 2-approximation
of a minimum vertex cover
in a distributed setting?

e Focus:

e Fast, synchronous,
deterministic distributed

algorithms

e Port-numbering model

Distributed algorithms

« Communication graph G
G e Node = computer

 Edge = communication
link

Distributed algorithms

o All nodes are identical,
G run the same algorithm

e We can choose
the algorithm

e An adversary chooses
the structure of G

e Our algorithm must
produce a valid vertex
cover in any graph G

Synchronous distributed algorithms

1. Each node reads its
@ own local input:

@ @ e node identifier

e if we assume
unique node IDs

e node weight

e if we study
weighted graphs

Synchronous distributed algorithms

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds

Synchronous distributed algorithms

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds
until all nodes
have announced
their local outputs

e 1 =1n vertex cover

Synchronous distributed algorithms

e Running time =
number of rounds

0 « Worst-case analysis
e
0

10

Distributed algorithms:
two models

1. Unique identifiers

e The standard model commonly used in the field

2. Port-numbering model
e Much weaker model of computation

e QOur focus today

11

Model 1:
Unique identifiers

 Node identifiers are
a permutation of
1,2, ..., n

e Or a subset of
1, 2, ..., poly(n)

e Permutation chosen
by adversary

12

Model 2:
Port-numbering model

e No unique identifiers

e A node of degree d can
refer to its neighbours
by integers 1, 2, ..., d

e Port-numbering chosen
by adversary

13

Cole-Vishkin algorithm

-

e Colour reduction technique

o

Chapter 1:
algorithms
“6-Color” and
“Six-2-Three”

~

)

e For cycles and trees — similar ideas can be used

in more general graphs as well

e Replaces a k-colouring with
an O(log k)-colouring in one round

e Repeated application: replaces a k-colouring with

a 6-colouring in O(log* k) rounds

e Simple additional tricks can be used to find a 3-colouring

14

Cole-Vishkin algorithm

-~

e Colour reduction technique

e If we have unique identifiers:

e Interpret unique IDs as an n-colouring

Chapter 1:
algorithms
“6-Color” and
“Six-2-Three”

~

)

e Cole-Vishkin finds a 3-colouring in O(log* n) rounds

« However, we can’t use this trick in
the port-numbering model

e And we are trying to find a vertex cover,

not a colouring!

15

Vertex cover
in the port-numbering model

e Convenient to study a more general problem:
minimum-weight vertex cover

e More general problems
are sometimes : 5
easier to solve?

Notation:
w(v) = weight of v 6 3

16

Edge packings and vertex covers

e Edge packing: weight y(e) > 0 for each edge e

e Packing constraint: y[v] < w(v) for each node v,
where y[v] = total weight of edges incident to v

17

Edge packings and vertex covers

o Edge packing: weight y(e) > O for each edge e

e Packing constraint: y[v] < w(v) for each node v,
where y[v] = total weight of edges incident to v

il -2 g "
w(u)=6j 6

18

Edge packings and vertex covers

o Edge packing: weight y(e) > O for each edge e

e Packing constraint: y[v] < w(v) for each node v,
where y[v] = total weight of edges incident to v

yvl]=3+0+4+0+0+2
w(v) =9

Edge packings and vertex covers

e Node v is saturated if y[v] = w(Vv)

o Total weight of edges incident to v is equal to w(v),
i.e., the packing constraint holds with equality

@ vlv] = w(v)
QO ylv] < w(v)

20

Edge packings and vertex covers

e Edge e is saturated if
at least one endpoint of e is saturated

e Equivalently: edge weight y(e) can’t be increased

~

21

Edge packings and vertex covers

« Maximal edge packing: all edges saturated
= none of the edge weights y(e) can be increased
— saturated nodes form a vertex cover!

22

Edge packings and vertex covers

e Minimum-weight vertex cover C* difficult to find:
e Centralised setting: NP-hard

e Distributed setting: integer problem (choose 0 or 1),
symmetry-breaking issues

 Maximal edge packing v easy to find:
e Centralised setting: trivial greedy algorithm

e Distributed setting: linear problem,
no symmetry-breaking issues (?)

23

Edge packings and vertex covers

e Minimum-weight vertex cover C* difficult to find
 Maximal edge packing vy easy to find?

e Saturated nodes C(y) in y: 2-approximation of C*

e Textbook proof: LP-duality,
relaxed complementary slackness

 Minimum-weight fractional vertex cover and
maximum-weight edge packing are dual problems

e But we there’s a simple and more elementary proof...

24

Edge packings and vertex covers

Yyec(y) W(V) Total weight of saturated nodes
= Lyec(y) YLV Saturated nodes have y[v] = w(V)
= 2..rv(€) |lenC(y)| Interchange the order of summation
<23,y lenC] Each edge is covered at least once

by C* and at most twice by C(y)

2 2o VIV Interchange the order of summation

IA

2 Yo WV) All nodes have y[v] < w(v)

25

Edge packings and vertex covers

zveC(y) ZeeE: vee y(e) jt

Yyec(y) W(V) ed nodes

- ZVEC(V) yiv] i zeeE zveC(y): vee y(e) }/[V] = w(v)

Yo.eV(e) lenC(y)| Interchange the order of summation

Each edge is covered at least once
by C* and at most twice by C(y)

IA

22..cv(e) lenC*]

2 2o VIV Interchange the order of summation

IA

2 Yo WV) All nodes have y[v] < w(v)

26

Part |: Summary

e Goal:

e Find a 2-approximation of minimum-weight vertex cover

e Deterministic algorithm in the port-numbering model

e |dea:

e Find a maximal edge packing, take saturated nodes

e Part ll;

e Begin with a “greedy but safe” algorithm

e We will see later how the Cole-Vishkin technique helps

27

Part Il:
Finding a maximal edge packing

28

Finding a maximal edge packing:
phase |

e v[v] = total weight of edges incident to node v
e Residual capacity of node v: r(v) = w(v) - y[V]

e Saturated node: 1 1
r(v) =0

29

Finding a maximal edge packing:
phase |

Start with a trivial
edge packing y(e) = 0

30

Finding a maximal edge packing:
phase |

Each node v offers
r(v)/deg(v) units to
each incident edge

31

Finding a maximal edge packing:
basic idea

Each edge accepts

the smallest of the ' 5/2
2 offers it received , g
Q. 32 Q 3/2 6
9 6
5 1 g 3/2 3/2 6 6
9@—3/2%3/2%3—3/2—@
Increase y(e) 9 214 No 3/
by this amount
y of XS
e Safe, can’t violate 6 3
packing constraints 6 3
6 3/2

32

Finding a maximal edge packing:
phase |

Update residuals...

0 2
1 5
O\ 1/2 = 3/2

1 g 3/2 3/2

15/2@—3/2%3/2%3—3/2—@
9

3/2 3/2 3/2

of hof

6 3
9/2 0

33

Finding a maximal edge packing:
phase |

Update residuals,
discard saturated

nodes and edges... %
Jo
162312
15/2@—3/2—/d
? 3/2
of ®

34

Finding a maximal edge packing:
phase |

Update residuals,

discard saturated 2
nodes and edges, :
repeat... O 1/6 O
1/2
Offers... 15/2 9 3/2
15/2@—3/2—/d
> 3n
of O
6
9/2

Finding a maximal edge packing:
phase |

Update residuals,

discard saturated 2
nodes and edges, :
repeat... O 176 O
1/2
Offers... 15/2 9 3/3
/
Increase 15/30_5 3 7Q
: 5/3
weights...
of O
6
9/2

Finding a maximal edge packing:
phase |

Update residuals,
discard saturated

nodes and edges, 1%/3
repeat... @ O 5
Offers... g 5/3
Increase 22/30_5/;’/3_/C{
weights...

X . of O
Update residuals... 6

37

Finding a maximal edge packing:

phase |

Update residuals,
discard saturated
nodes and edges,

repeat... @
Offers...

Increase 22/30
weights...

Update residuals 6

and graph, etc. 13/3

38

10/3

Finding a maximal edge packing:

phase |

This is a simple
deterministic

distributed

algorithm @

We are making

some progress 22/30Q

towards finding ~ ?

a maximal edge O
6

king — but...
packing — bu L.

39

Finding a maximal edge packing:
phase |

This is a simple 1 2 4 8 16 32 64 128
deterministic 1 2 4 8 16 32 64 128"
distributea 1 1 2 4 8 16 32 64
algorithm 1 1 2 4 8 16 32 64
' 0O 0 1 2 4 8 16 32
We are making A ST
Some progress 1 1 27 4 8 16
towargls finding 0 0 1 2 2 3
a maximal edge 1 1 2 4
packing — but 1 1 2 4

this is too slow! 0O 0 1 2

40

Finding a maximal edge packing:

colouring trick

e Offer is a local minimum:

« Node will be saturated

e And all edges incident to it

will be saturated as well

41

sof”

-

-

Residual capacity
was 8, will be 0

)

Finding a maximal edge packing:
colouring trick

o Offer is a local minimum: 4 3

« Node will be saturated

o Otherwise there is a neighbour
with a different offer: 5 2

e Interpret the offer
sequences as “colours”

e Nodes u and v have
different colours:
fu, v} is multicoloured

42

Finding a maximal edge packing:
colouring trick

e Some progress guaranteed: 4

« On each iteration, for each node,
at least one incident edge becomes
saturated or multicoloured

e Such edges are be discarded in
phase |I: node degrees decrease
by at least one on each iteration

e Hence in A iterations all edges
are saturaAted or multicoloured

CA = maximum degree) 2

43

Finding a maximal edge packing:
colouring trick

e Phase I: in A rounds all edges
are saturated or multicoloured

e Saturated edges are good —
we’re trying to construct
a maximal edge packing

 Why are the multicoloured

edges useful?

44

Finding a maximal edge packing:
colouring trick

e Phase I: in A rounds all edges
are saturated or multicoloured

e Saturated edges are good —
we’re trying to construct
a maximal edge packing

 Why are the multicoloured

edges useful?

e Let’s focus on unsaturated
nodes and edges

45

Finding a maximal edge packing:
colouring trick

e Colours are sequences of A offers,
which are rational humbers

e Assume that node weights
are integers 1, 2, ..., W

e Let’s analyse the offers more
carefully in that case...

((2,2/3,116,1/12) [
A
((2,2/3,1/6,1/24))

46

Finding a maximal edge packing:
colouring trick

o Offers are rationals of the form g/ (A!)A
o Proof idea: multiply weights by (A!)2
e Then r(v) is a multiple of (A!)? before iteration 1

o Offer r(v)/deg(v) is a multiple of (A!)2" on iteration 1

e r(v) is a multiple of (A!)2" after iteration 1
.. (more formally: proof by induction)
e r(v) is a multiple of Al before iteration A

o Offers are integers on iteration A

47

Finding a maximal edge packing:
colouring trick

o Offers are rationals of the form g/ (A!)A

e Proof idea: if we multiplied weights by (A!)2, then
the offers would integers throughout the algorithm

« Without scaling, we get in the worst case g/(A!)~

e If node weights are integers 1, 2, ..., W, then
offers are rationals between 0 and W

o Offer of vis at most r(v) s w(v) < W

e There are at most W(A!)? possible offers!

48

Finding a maximal edge packing:
colouring trick

e Colours are sequences of A offers,
which are rational humbers

o Assume that node weights
are integers 1, 2, ..., W

e Then there are at most
W(A!)? possible offers

« And hence only 2.2/3,1/6, 1/12
k = (W(A!)Y) (.23, 106, 1112 f A

possible colours [(2, 2/3, 1/6, 1/24))

49

Finding a maximal edge packing:
colouring trick

e Only k = (W(A!)?) possible colours

e Replace “inconvenient” colours
(sequences of rationals)
with “convenient” colours
(integers 1, 2, ..., k)

1378 (2,243,642} [:
2789 [(27243 H6-4/24))

50

Finding a maximal edge packing:
phase |l

 We have a proper k-colouring
of the unsaturated subgraph

e Orient from lower to higher
colour (acyclic directed graph)

| 2789 |

51

Finding a maximal edge packing:
phase |l

 We have a proper k-colouring
of the unsaturated subgraph

(2
e Orient from lower to higher O C
colour (acyclic directed graph) “' %
o Partition in A forests ~
o . O<K Q‘/‘
e Each node assigns its outgoing ®

edges to different forests @
O—>C

52

Finding a maximal edge packing:
phase |l

e For each forest in parallel...

(378 P00

53

Finding a maximal edge packing:
phase |l

e For each forest in parallel:

e Use Cole-Vishkin style
colour reduction algorithm
e Given a k-colouring,
finds a 3-colouring
in time O(log* k) o

s (3378) 00
2 (289

54

Finding a maximal edge packing:
phase |l

e For each forest and each
colour j =1, 2, 3 in sequence:

Q
e Consider all outgoing edges
of colour-j nodes S e—0 O
O O
o 0\@/ O
o Q

55

Finding a maximal edge packing:

phase |l

e For each forest and each
colour j =1, 2, 3 in sequence:

e Consider all outgoing edges
of colour-j nodes

e Node-disjoint stars: easy to
saturate all such edges in parallel

« Two simple cases:
e Ssaturate centre

e saturate all leaves

56

@—O

o
o—O

Finding a maximal edge packing:
phase |l

e This way we can saturate
all multicoloured edges:

e Each edge belongs to one forest,
and its tail has colour 1, 2, or 3 —O

e We simply go through all forests

and all colours and therefore ‘\‘O/‘

saturate everything

e—C

57

Finding a maximal edge packing:
algorithm overview

e Phase I:

o All edges become saturated
or multicoloured

e Phase II: Cifii;;;
e Multicoloured edges are O

O
partitioned in A forests (@ O! o2 .
e Forests are 3-coloured 2) 0\2/00
e 3-coloured forests are saturated o ©

58

Finding a maximal edge packing:
running time analysis

e Total running time:

o All edges become saturated or

multicoloured: O(4)
e Multicoloured forests
are 3-coloured: O(log* k) O

O\Q,O,o
e 3-coloured forests ’ Q

are saturated: O(A) 2 (2799 N * P %
e O(A + log* k) = O(A + log* W) 0 o~

. , O g
e kis huge, but log* grows slowly EX@FC]S@)

59

Finding a maximal edge packing:
summary

 Maximal edge packing and
2-approximation of vertex cover
in time O(A + log® W)

e W = maximum node weight
 Unweighted graphs: O :ig

running time simply O(4), 3 q

O—@—0<0O

independent of n 9
p ® .\MQ

o Everything can be implemented O g0

in the port-numbering model

60

Finding a maximal edge packing:
recap

Phase I:
¢ Residuals , 5é2
r(v) = w(v) - y[v] : 5
e Offer r(v)/deg(v) Q_ 3/12 (A 3/2 6
1 o 3/2 312 6
e Accept minimum, 9 9 6 6
increase weights 30—3/ 2 3/2 3/2—0
e Progress: edges 3/2 3/2 3/2
become saturated of o f
or multicoloured 6 3
(different offers) 6 3
6 3/2

61

Finding a maximal edge packing:
recap

Phase Il:

e Saturated edges are already ok,
we focus on multicoloured edges

e Colours are sequences of offers,
re-colour with integers 1, 2, ..., k

e Partition in A forests

e Cole-Vishkin:
3-colouring 1378 ((2,243 46,4+42) [

e Use colours to A

saturate all edges 2789 [(2’ 2362 l))

62

Finding a maximal edge packing:
some intuition

e Regular graph with uniform weights:

e Symmetry-breaking (e.g., graph colouring) is
not possible in the port-numbering model

e But it is trivial to find a maximal edge packing directly
e “Irregular” graph:

e We have symmetry-breaking information,
which can be used to find a graph colouring,
which can be used to find a maximal edge packing

e Handling these two cases turns out to be enough!

63

Take-home messages

e Non-trivial problems can be solved in very
restrictive models of distributed computing

e Generalise!

e More difficult problems may be easier to solve: vertex
cover = weighted vertex cover — weighted set cover...

e Cole-Vishkin technique is a powerful tool

e Wide range of applications far beyond the textbook
examples of colouring cycles with numerical IDs

e log* of almost everything is something reasonable

64

