Designing Local Algorithms with Algorithms

Jukka Suomela · Aalto University

Joint work with...

Juho Hirvonen · Janne H. Korhonen Tuomo Lempiäinen · Christopher Purcell Joel Rybicki · Patric Östergård (Aalto)

Sebastian Brandt · Przemysław Uznański (ETH Zurich)

Orr Fischer (Tel Aviv)

Algorithm synthesis

- Computer science: what can be automated?
- Can we *automate our own work*?
- Can we outsource algorithm design to computers?
 - input: problem specification
 - output: asymptotically optimal algorithm

Today: a success story

- Case study:
 - computational design of local distributed algorithms for LCL problems on grid graphs

- Spoiler:
 - undecidable but with one bit of advice we can do it!
 - not just in theory but also in practice

Setting

- Distributed graph algorithms
- Input graph = computer network
 - node = computer, edge = communication link
 - unknown topology
- Each node outputs its own part of solution
 - e.g. graph colouring: node outputs its own colour

Setting

- Deterministic distributed algorithms, LOCAL model of computing
 - unique identifiers
 - synchronous communication rounds
 - time = number of rounds until all nodes stop
 - unlimited message size, unlimited local computation

Setting

- Deterministic distributed algorithms, LOCAL model of computing
- Time = distance
- Algorithm with running time T: mapping from radius-T neighbourhoods to local outputs

LCL problems

- LCL = locally checkable labelling
 - Naor–Stockmeyer (1995)
- Valid solution can be detected by checking O(1)-radius neighbourhood of each node
 - maximal independent set, maximal matching, vertex colouring, edge colouring ...

LCL problems

- All LCL problems can be solved with O(1)-round *nondeterministic* algorithms
 - guess a solution, verify it in O(1) rounds
- Key question: how fast can we solve them with deterministic algorithms?
 - cf. P vs. NP

Traditional settings

- Directed cycles
 - Cole–Vishkin (1986), Linial (1992)...
 - well understood

- General (bounded-degree) graphs
 - lots of ongoing work...
 - typical challenge:
 expander-like constructions

Our setting today

- Oriented grids (2D)
 - toroidal grid, $n \times n$ nodes, unique identifiers
 - consistent orientations north/east/south/west
- Generalisation of directed cycles (1D)
- Closer to real-world systems than expander-like worst-case constructions?

- Vertex colouring in 1D grids
- 2-colouring: global, ⊖(n) rounds
- **3-colouring:** local, Θ(log* *n*) rounds
 - Cole–Vishkin (1986), Linial (1992)

- Vertex colouring in 2D grids
- 2-colouring: global, ⊖(n) rounds
- 3-colouring: ???
- 4-colouring: ???
- **5-colouring:** local, Θ(log* *n*) rounds

- Vertex colouring in 2D grids
- 2-colouring: global, Θ(n) rounds
- 3-colouring: global, ⊖(n) rounds
- 4-colouring: local, Θ(log* n) rounds
- **5-colouring:** local, Θ(log* *n*) rounds

- Vertex colouring in **4-regular graphs**
- 2-colouring: global, ⊖(n) rounds
- 3-colouring: global, ⊖(n) rounds
- 4-colouring: intermediate, polylog rounds
- **5-colouring:** local, Θ(log* *n*) rounds

Complexity of LCL problems

- 1D grids:
 - everything is O(1), $\Theta(\log^* n)$, or $\Theta(n)$
 - decidable
- Bounded-degree graphs:
 - intermediate complexities, polylog(n) ...
 (Brand et al. 2016)
 - undecidable (Naor–Stockmeyer 1995)

Complexity of LCL problems

- 1D grids:
 - everything is O(1), $\Theta(\log^* n)$, or $\Theta(n)$
 - decidable
- 2D grids:
 - everything is O(1), $\Theta(\log^* n)$, or $\Theta(n)$
 - undecidable

Complexity of LCL problems

- 1D grids:
 - everything is O(1), $\Theta(\log^* n)$, or $\Theta(n)$
 - decidable
- 2D grids:
 - everything is O(1), $\Theta(\log^* n)$, or $\Theta(n)$
 - undecidable but let us not despair!

Goal: algorithm synthesis

- Setting:
 - input: specification of an LCL problem
 - output: asymptotically optimal algorithm for 2D grids
- Does this make any sense?
 - most interesting case: Θ(log* n) time
 - how could one even represent an arbitrary Θ(log* *n*)-round algorithm in a computer??

(26)92 33 57 (49) (74)77 Α (62) (48)(24)(55)71 79 8 (67) (60)31 21 15) (30) 3 (95) (47)(98)5 (23) 17 0 (20)(64)87 (80) (25)(38) (88)(61) (51) (69) (99)(45) (91) 1 (53)(63)(16) (39) (58) (40)2 **O**(log* *n*)

Goal: algorithm synthesis

- Θ(log* *n*)-round algorithm in 2D grids:
 - mapping from Θ(log* n) × Θ(log* n) neighbourhoods to local outputs
 - nodes are labelled with 1, 2, ..., poly(*n*)
- Infinite family of functions
- Awkward to handle with computers

Key insight: normalisation

- Setting: LCL problems, 2D grids
- Theorem: Any Θ(log* n)-time algorithm can be translated to a "normal form"
 - we isolate a fixed $\Theta(\log^* n)$ -time component
 - everything else is a *finite function*

(92) (49)(26)33 (57 74 0 1 0 0 0 0 (62)(55)MIS 79 8 (48)(24) 0 0 0 0 1 0 f (60)(67) (15) (30)0 31 21 3 0 0 0 1 U (23)(47)(98)5 (95)0 17 0 0 0 1 0 0 (88)(87 (80)(25) (38)(20)(64) · 1 0 0 0 0 0 ' **1** ' (99)(91)(51)(69) 45 (61)0 0 0 0 0 1 (39)2 (58) (53)(63)(40)(16)0 1 0 0 0 0 1 **O**(log* *n*) **O(1)**

Key insight: normalisation

- For any problem P of complexity Θ(log* n), there are constants k and r and function f such that P can be solved as follows:
 - input: 2D grid G with unique identifiers
 - find a *maximal independent set in G^k*
 - discard unique identifiers
 - apply function *f* to each *r* × *r* neighbourhood

Some proof ideas

- Given: A solves P in time o(n) in $n \times n$ grids
- Solving P in time O(log* N) in N × N grids:
 - pick suitable n = O(1), k = O(1)
 - find MIS in G^k
 - use MIS to find *locally unique identifiers* for *n* × *n* neighbourhoods
 - simulate A in $n \times n$ local neighbourhoods

Normalisation in practice

- Example: 4-colouring
- Sufficient to pick *k* = 3, *r* = 7
- Algorithm \approx mapping $\{0, 1\}^{7 \times 7} \rightarrow \{1, 2, 3, 4\}$
 - only finitely many candidates
 - given a candidate, we can easily verify if it is good

What about undecidability?

- Trivial case: complexity O(1)
- Undecidable: given an LCL problem, is its complexity Θ(log* n) or Θ(n) in 2D grids?
- However, if we get just one bit of advice (or make a lucky guess), we can find an asymptotically optimal algorithm!

Synthesis with advice

- Advice: complexity is Θ(log* n)
 - try each pair (r, k)
 - check if there is a valid mapping from binary r × r matrices that represent local parts of maximal independent sets in G^k
- Advice: complexity is Θ(n)
 - trivial brute force is optimal

It works in practice, too!

- Ongoing work: we have already synthesised asymptotically optimal algorithms for *thousands* of LCL problems
 - "high-throughput algorithm design"
 - can gain insights into the structure of large families of *parametrised problems*
 - synthesis unsuccessful: conjecture lower bound?

Some building blocks

- Enumerate all r × r neighbourhoods that represent possible fragments of maximal independent sets in G^k
- Construct neighbourhood graphs
 - algorithm ≈ labelling of neighbourhood graph
- Apply SAT solvers to find a labelling

Human beings still needed

- Computers can design e.g. very efficient algorithms for 4-colouring
- We still needed human beings to prove that there is no algorithm for 3-colouring
 - new lower-bound techniques needed, but more about this in some other talk!

Conclusions

- Nontrivial algorithms: O(log* n) complexity
- Any such algorithm can be split in two parts:
 - "symmetry breaking": find an MIS
 - "computation": nontrivial but finite
- Main open question: how far can we push this beyond oriented 2D grids?

(92) (49)(26)33 (57 74 0 1 0 0 0 0 (62)(55)MIS 79 8 (48)(24) 0 0 0 0 1 0 f (60)(67) (15) (30)0 31 21 3 0 0 0 1 U (23)(47)(98)5 (95)0 17 0 0 0 1 0 0 (88)(87 (80)(25) (38)(20)(64) · 1 0 0 0 0 0 ' **1** ' (99)(91)(51)(69) 45 (61)0 0 0 0 0 1 (39)2 (58) (53)(63)(40)(16)0 1 0 0 0 0 1 **O**(log* *n*) **O(1)**