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Algorithm synthesis

• Computer science: what can be automated?

• Can we automate our own work?

• Can we outsource algorithm design
to computers?
• input: problem specification
• output: asymptotically optimal algorithm 



Today: a success story

• Case study:
• computational design of

local distributed algorithms for
LCL problems on grid graphs

• Spoiler:
• undecidable – but with one bit of advice we can do it!
• not just in theory but also in practice



Setting

• Distributed graph algorithms

• Input graph = computer network
• node = computer, edge = communication link
• unknown topology

• Each node outputs its own part of solution
• e.g. graph colouring: node outputs its own colour



Setting

• Deterministic distributed algorithms,
LOCAL model of computing
• unique identifiers
• synchronous communication rounds
• time = number of rounds until all nodes stop
• unlimited message size,

unlimited local computation



Setting

• Deterministic distributed algorithms,
LOCAL model of computing

• Time = distance

• Algorithm with running time T:
mapping from radius-T
neighbourhoods to local outputs



LCL problems

• LCL = locally checkable labelling
• Naor–Stockmeyer (1995)

• Valid solution can be detected by checking 
O(1)-radius neighbourhood of each node
• maximal independent set, maximal matching,

vertex colouring, edge colouring …



LCL problems

• All LCL problems can be solved with
O(1)-round nondeterministic algorithms
• guess a solution, verify it in O(1) rounds

• Key question: how fast can we solve them 
with deterministic algorithms?
• cf. P vs. NP



Traditional settings

• Directed cycles
• Cole–Vishkin (1986), Linial (1992)…
• well understood

• General (bounded-degree) graphs
• lots of ongoing work…
• typical challenge:

expander-like constructions



Our setting today

• Oriented grids (2D)
• toroidal grid, n × n nodes, unique identifiers
• consistent orientations north/east/south/west

• Generalisation of directed cycles (1D)

• Closer to real-world systems than
expander-like worst-case constructions?



Warm-up examples

• Vertex colouring in 1D grids

• 2-colouring: global, Θ(n) rounds

• 3-colouring: local, Θ(log* n) rounds
• Cole–Vishkin (1986), Linial (1992)



Warm-up examples

• Vertex colouring in 2D grids

• 2-colouring: global, Θ(n) rounds

• 3-colouring: ???

• 4-colouring: ???

• 5-colouring: local, Θ(log* n) rounds



Warm-up examples

• Vertex colouring in 2D grids

• 2-colouring: global, Θ(n) rounds

• 3-colouring: global, Θ(n) rounds

• 4-colouring: local, Θ(log* n) rounds

• 5-colouring: local, Θ(log* n) rounds



Warm-up examples

• Vertex colouring in 4-regular graphs

• 2-colouring: global, Θ(n) rounds

• 3-colouring: global, Θ(n) rounds

• 4-colouring: intermediate, polylog rounds

• 5-colouring: local, Θ(log* n) rounds



Complexity of LCL problems

• 1D grids:
• everything is O(1), Θ(log* n), or Θ(n)
• decidable

• Bounded-degree graphs:
• intermediate complexities, polylog(n) …

(Brand et al. 2016)
• undecidable (Naor–Stockmeyer 1995)



Complexity of LCL problems

• 1D grids:
• everything is O(1), Θ(log* n), or Θ(n)
• decidable

• 2D grids:
• everything is O(1), Θ(log* n), or Θ(n)
• undecidable



Complexity of LCL problems

• 1D grids:
• everything is O(1), Θ(log* n), or Θ(n)
• decidable

• 2D grids:
• everything is O(1), Θ(log* n), or Θ(n)
• undecidable — but let us not despair!



Goal: algorithm synthesis

• Setting:
• input: specification of an LCL problem
• output: asymptotically optimal algorithm for 2D grids

• Does this make any sense?
• most interesting case: Θ(log* n) time
• how could one even represent an arbitrary

Θ(log* n)-round algorithm in a computer??
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Goal: algorithm synthesis

• Θ(log* n)-round algorithm in 2D grids:
• mapping from Θ(log* n) × Θ(log* n) neighbourhoods 

to local outputs
• nodes are labelled with 1, 2, …, poly(n)

• Infinite family of functions

• Awkward to handle with computers



Key insight: normalisation

• Setting: LCL problems, 2D grids

• Theorem: Any Θ(log* n)-time algorithm can 
be translated to a “normal form”
• we isolate a fixed Θ(log* n)-time component
• everything else is a finite function
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Key insight: normalisation

• For any problem P of complexity Θ(log* n),
there are constants k and r and function f
such that P can be solved as follows:
• input: 2D grid G with unique identifiers
• find a maximal independent set in Gk

• discard unique identifiers
• apply function f to each r × r neighbourhood



Some proof ideas

• Given: A solves P in time o(n) in n × n grids

• Solving P in time O(log* N) in N × N grids:
• pick suitable n = O(1), k = O(1)
• find MIS in Gk

• use MIS to find locally unique identifiers for
n × n neighbourhoods

• simulate A in n × n local neighbourhoods



Normalisation in practice

• Example: 4-colouring

• Sufficient to pick k = 3, r = 7

• Algorithm ≈ mapping {0, 1}7 × 7 → {1, 2, 3, 4}
• only finitely many candidates
• given a candidate, we can easily verify if it is good



What about undecidability?

• Trivial case: complexity O(1)

• Undecidable: given an LCL problem, is its 
complexity Θ(log* n) or Θ(n) in 2D grids?

• However, if we get just one bit of advice
(or make a lucky guess), we can find an 
asymptotically optimal algorithm!



Synthesis with advice

• Advice: complexity is Θ(log* n)
• try each pair (r, k)
• check if there is a valid mapping from binary r × r

matrices that represent local parts of maximal 
independent sets in Gk

• Advice: complexity is Θ(n)
• trivial brute force is optimal



It works in practice, too!

• Ongoing work: we have already 
synthesised asymptotically optimal 
algorithms for thousands of LCL problems
• “high-throughput algorithm design”
• can gain insights into the structure of large families

of parametrised problems
• synthesis unsuccessful: conjecture lower bound?



Some building blocks

• Enumerate all r × r neighbourhoods
that represent possible fragments of 
maximal independent sets in Gk

• Construct neighbourhood graphs
• algorithm ≈ labelling of neighbourhood graph

• Apply SAT solvers to find a labelling



Human beings still needed

• Computers can design e.g. very efficient 
algorithms for 4-colouring

• We still needed human beings to prove that 
there is no algorithm for 3-colouring
• new lower-bound techniques needed,

but more about this in some other talk!



Conclusions

• Nontrivial algorithms: Θ(log* n) complexity

• Any such algorithm can be split in two parts:
• “symmetry breaking”: find an MIS
• “computation”: nontrivial but finite

• Main open question: how far can we push 
this beyond oriented 2D grids?
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