Designing
Local Algorithms
with Algorithms




Joint work with...

Juho Hirvonen - Janne H. Korhonen
Tuomo Lempiainen - Christopher Purcell
Joel Rybicki - Patric Ostergard

Sebastian Brandt - Przemystaw Uznanski

Orr Fischer



Algorithm synthesis

« Computer science: what can be automated?

e Can we ?

» Can we outsource algorithm design
to computers?

. problem specification
. asymptotically optimal algorithm



Today: a success story

» Case study: _,ﬁ:ﬁ:
« computational design of -~
local distributed algorithms for :‘}L"}L’t‘}i
on t t ¢t
» Spoiler:

* undecidable — but with one bit of advice we can do it!



Setting

* Distributed graph algorithms

* node = computer, edge = communication link
* unknown topology

* Each node outputs its own part of solution
* e.g. graph colouring: node outputs its own colour



Setting

» Deterministic distributed algorithms,
model of computing
* unique identifiers
* synchronous communication rounds
. until all nodes stop

* unlimited message size,
unlimited local computation



Setting

» Deterministic distributed algorithms,
LOCAL model of computing

e Time = distance

 Algorithm with running time T
mapping from radius-T
neighbourhoods to local outputs



LCL problems

* Naor—Stockmeyer (1995)

» Valid solution can be detected by checking
O(1)-radius neighbourhood of each node

* maximal independent set, maximal matching,
vertex colouring, edge colouring ...



LCL problems

» All LCL problems can be solved with
O(1)-round algorithms

* guess a solution, verify it in O(1) rounds

» Key question: how fast can we solve them
with algorithms?

e cf. Pvs. NP



Traditional settings

* Cole-Vishkin (1986), Linial (1992)...
 well understood

* |ots of ongoing work...
» typical challenge:



Our setting today -
y (2D)

» toroidal grid, n x n nodes, unique identifiers
e consistent orientations north/east/south/west

' (1D)

 Closer to real-world systems than
expander-like worst-case constructions?



Warm-up examples e
» Vertex colouring in el

° global, rounds

° local, rounds

+ Cole-Vishkin (1986), Linial (1992)



 Vertex colouring in

Warm-up examples

R
e
YT
T

{

global, rounds
707

7777

local, rounds



Warm-up examples

* Vertex colouring in 2D grids

» 2-colouring: global, ©(n) rounds
» 3-colouring: global, ©(n) rounds
» 4-colouring: local, ©(log® n) rounds

» 5-colouring: local, ©(log* n) rounds



Warm-up examples

* Vertex colouring in 4-regular graphs

» 2-colouring: global, ©(n) rounds

» 3-colouring: global, ©(n) rounds

» 4-colouring: intermediate, polylog rounds

» 5-colouring: local, ©(log* n) rounds



Complexity of LCL problems

* 1D grids:

* everything is , , or

» Bounded-degree graphs:

* intermediate complexities,
(Brand et al. 2016)

(Naor—Stockmeyer 1995)



Complexity of LCL problems

* 1D grids:

* everything is , , or

» 2D grids:

* everything is , , or



Complexity of LCL problems

* 1D grids:

* everything is , , or

» 2D grids:

* everything is , , or



Goal: algorithm synthesis

» Setting:
. specification of an LCL problem
. asymptotically optimal algorithm for 2D grids

* most interesting case: time

* how could one even represent an arbitrary
O(log* n)-round algorithm in a computer??



(62) (33) (77) (67) (49) (26) (74)
(71) (79) (8)/(62)|48) (24) (58)
(31) (21)[15) (30) (60)|EA)T3)
(0)(8) (17) 8) (23) (47)) e8)
(87) (80)(25) (38) (20)/(64) (88)
(45) (61) (21)|51)/(6) (1) (¢9)
(58) (63) (63) (40) (16) (2) (39)

OO0 O
OOULOO
olel 10le
OO0O00
LOO0O00U



Goal: algorithm synthesis

* O(log* n)-round algorithm in 2D grids:

* mapping from O(log™ n) x ©(log* n) neighbourhoods
to local outputs

* nodes are labelled with 1, 2, ..., poly(n)

* Awkward to handle with computers



Key insight: normalisation

. LCL problems, 2D grids

. Any @(Iog n)-time algorlthm can
be translated toa’
* we isolate a fixed ©(log™ n)-time component
* everything else is a



OIOI0I0I01010

O(log* n) O(1)



Key insight: normalisation

* For of complexity O(log* n),
there are and function f
such that P can be solved as follows:

* input: 2D grid G with unique identifiers
e find a

 apply function fto each r x r neighbourhood



Some proof ideas

* Given: A solves P in time Ig grids
* Solving P in time Ig grids:

* pick suitable n = O(1), k= O(1)

e find MIS in G*

* use MIS to find for

n x n neighbourhoods
» simulate A in n x n local neighbourhoods



Normalisation in practice

« Example:
 Sufficient to pick ,
 Algorithm = mapping

 only finitely many candidates
* given a candidate, we can easily verify if it is good



What about undecidability?

. complexity
. given an LCL problem, is its
complexity or in 2D grids?

* However, if we get just
(or make a lucky guess), we can find an
asymptotically optimal algorithm!



Synthesis with advice

. complexity is
* try each pair (r, k)

» check if there is a valid mapping from binary r x r
matrices that represent local parts of maximal
independent sets in GX

. complexity is
» trivial brute force is optimal



It works In practice, too!

o we have already
synthesised asymptotically optimal
algorithms for of LCL problems

* “high-throughput algorithm design”

* can gain insights into the structure of large families
of

 synthesis unsuccessful: conjecture lower bound?



Some building blocks

that represent possible fragments of
maximal independent sets in G*

» Construct
» algorithm = labelling of neighbourhood graph

* Apply to find a labelling



Human beings still needed

» Computers can design e.g. very efficient
algorithms for 4-colouring

* We still needed human beings to prove that
there Is

needed,
but more about this in some other talk!



Conclusions

* Nontrivial algorithms: @(log™ n) complexity

* Any such algorithm can be split in two parts:

» "symmeftry breaking”: find an MIS
« “computation”: nontrivial but finite

* Main open question: how far can we push
this beyond oriented 2D grids?



OIOI0I0I01010

O(log* n) O(1)



