Designing Local Algorithms with Algorithms

Jukka Suomela • Aalto University

Joint work with...

Juho Hirvonen • Janne H. Korhonen
Tuomo Lempiäinen - Christopher Purcell Joel Rybicki - Patric Östergård (Aalto)

Sebastian Brandt - Przemysław Uznański (ETH Zurich)
Orr Fischer (Tel Aviv)

Algorithm synthesis

- Computer science: what can be automated?
- Can we automate our own work?
- Can we outsource algorithm design to computers?
- input: problem specification
- output: asymptotically optimal algorithm

Today: a success story

- Case study:
- computational design of local distributed algorithms for LCL problems on grid graphs

- Spoiler:
- undecidable - but with one bit of advice we can do it!
- not just in theory but also in practice

Setting

- Distributed graph algorithms
- Input graph = computer network
- node = computer, edge = communication link
- unknown topology
- Each node outputs its own part of solution
- e.g. graph colouring: node outputs its own colour

Setting

- Deterministic distributed algorithms, LOCAL model of computing
- unique identifiers
- synchronous communication rounds
- time = number of rounds until all nodes stop
- unlimited message size, unlimited local computation

Setting

- Deterministic distributed algorithms, LOCAL model of computing
- Time = distance
- Algorithm with running time T : mapping from radius-T neighbourhoods to local outputs

LCL problems

- LCL = locally checkable labelling
- Naor-Stockmeyer (1995)
- Valid solution can be detected by checking O (1)-radius neighbourhood of each node
- maximal independent set, maximal matching, vertex colouring, edge colouring ...

LCL problems

- All LCL problems can be solved with O(1)-round nondeterministic algorithms
- guess a solution, verify it in $O(1)$ rounds
- Key question: how fast can we solve them with deterministic algorithms?
- cf. P vs. NP

Traditional settings

- Directed cycles
- Cole-Vishkin (1986), Linial (1992)...
- well understood

- General (bounded-degree) graphs
- lots of ongoing work...
- typical challenge:
expander-like constructions

Our setting today

- Oriented grids (2D)

- toroidal grid, $n \times n$ nodes, unique identifiers
- consistent orientations north/east/south/west
- Generalisation of directed cycles (1D)
- Closer to real-world systems than expander-like worst-case constructions?

Warm-up examples

- Vertex colouring in 1D grids

- 2-colouring: global, $\Theta(n)$ rounds
- 3-colouring: local, $\Theta\left(\right.$ log $\left.^{*} n\right)$ rounds
- Cole-Vishkin (1986), Linial (1992)

Warm-up examples

- Vertex colouring in 2D grids
- 2-colouring: global, $\Theta(n)$ rounds
- 3-colouring: ???
- 4-colouring: ???
- 5-colouring: local, ©(log* n) rounds

Warm-up examples

- Vertex colouring in 2D grids
- 2-colouring: global, $\Theta(n)$ rounds
- 3-colouring: global, $\Theta(n)$ rounds
- 4-colouring: local, ©(log* n) rounds
- 5-colouring: local, ©(log* n) rounds

Warm-up examples

- Vertex colouring in 4-regular graphs
- 2 -colouring: global, $\Theta(n)$ rounds
- 3 -colouring: global, $\Theta(n)$ rounds
- 4-colouring: intermediate, polylog rounds
- 5-colouring: local, $\Theta\left(\log ^{*} n\right)$ rounds

Complexity of LCL problems

-1D grids:

- everything is $O(1), \Theta\left(\log ^{*} n\right)$, or $\Theta(n)$
- decidable
- Bounded-degree graphs:
- intermediate complexities, polylog(n) ... (Brand et al. 2016)
- undecidable (Naor-Stockmeyer 1995)

Complexity of LCL problems

- 1D grids:
- everything is $O(1), \Theta\left(\log ^{*} n\right)$, or $\Theta(n)$
- decidable
- 2D grids:
- everything is $O(1), \Theta\left(\log ^{*} n\right)$, or $\Theta(n)$
- undecidable

Complexity of LCL problems

- 1D grids:
- everything is $O(1), \Theta\left(\log ^{*} n\right)$, or $\Theta(n)$
- decidable
- 2D grids:
- everything is $O(1), \Theta\left(\log ^{*} n\right)$, or $\Theta(n)$
- undecidable - but let us not despair!

Goal: algorithm synthesis

- Setting:
- iinput: specification of an LCL problem
- output: asymptotically optimal algorithm for 2D grids
- Does this make any sense?
- most interesting case: Θ (log* n) time
- how could one even represent an arbitrary $\Theta\left(\log ^{*} n\right)$-round algorithm in a computer??

(92) (33) 77 (57) (49) (26) (74)	
(71) (79) 8) (62)(48) (24) 55	
(31) (21) 15 (30) 60) 63	
(0) (5) 17 (95) (23) (47) 98	
(87) (80) 25 (38) 20 (64) 88	$\bigcirc 0$
(45) (61) (11) 51 (69) 1 (99)	1000
(58) 53) 63) (40) 16 (2) 39	
O(log* n)	

Goal: algorithm synthesis

- $\Theta\left(\log ^{*} n\right)$-round algorithm in 2D grids:
- mapping from $\Theta\left(\log ^{*} n\right) \times \Theta\left(\log ^{*} n\right)$ neighbourhoods to local outputs
- nodes are labelled with $1,2, \ldots, \operatorname{poly}(n)$
- Infinite family of functions
- Awkward to handle with computers

Key insight: normalisation

- Setting: LCL problems, 2D grids
- Theorem: Any $\Theta\left(\log ^{*} n\right)$-time algorithm can be translated to a "normal form"
- we isolate a fixed $\Theta\left(\log ^{*} n\right)$-time component
- everything else is a finite function

(92) (33) 77 (57) (49) 26 (74)	(0) 0 0 1 0 0 0	
(71) (79) 8) 62 (48) (24) 55	(01)000 00	
(31) (21) 15 (30) 60 3 3	(0) 1 10 001	
(0) (5) 17 (95) (23) 47) 98	(1)000 000	
(87) (80) 25 (38) 2048	(0) 0 100 10	
(45) (61) (91) 51 (69) 1 (99	(0) 1) (0) 1) 0 (0)	$\bigcirc \bigcirc$
(58) 53) 63) 40 (16) 2 (39	(0) 0 (1)000 0	
O(log* n)	O(1)	

Key insight: normalisation

- For any problem P of complexity $\Theta\left(\log ^{*} n\right)$, there are constants k and r and function f such that P can be solved as follows:
- input: 2D grid G with unique identifiers
- find a maximal independent set in G^{k}
- discard unique identifiers
- apply function f to each $r \times r$ neighbourhood

Some proof ideas

- Given: A solves P in time o(n) in $n \times n$ grids
- Solving P in time $O\left(\log ^{*} N\right)$ in $N \times N$ grids:
- pick suitable $n=O(1), k=O(1)$
- find MIS in G^{k}
- use MIS to find locally unique identifiers for $n \times n$ neighbourhoods
- simulate A in $n \times n$ local neighbourhoods

Normalisation in practice

- Example: 4-colouriing
- Sufficient to pick $k=3, r=7$
- Algorithm \approx mapping $\{0,1\}^{7 \times 7} \rightarrow\{1,2,3,4\}$
- only finitely many candidates
- given a candidate, we can easily verify if it is good

What about undecidability?

- Trivial case: complexity O(1)
- Undecidable: given an LCL problem, is its complexity $\Theta\left(\log ^{*} n\right)$ or $\Theta(n)$ in 2D grids?
- However, if we get just one bit of advice (or make a lucky guess), we can find an asymptotically optimal algorithm!

Synthesis with advice

- Advice: complexity is Θ (log* n)
- try each pair (r, k)
- check if there is a valid mapping from binary $r \times r$ matrices that represent local parts of maximal independent sets in G^{k}
- Advice: complexity is $\Theta(n)$
- trivial brute force is optimal

It works in practice, too!

- Ongoing work: we have already synthesised asymptotically optimal algorithms for thousands of LCL problems
- "high-throughput algorithm design"
- can gain insights into the structure of large families of parametrised problems
- synthesis unsuccessful: conjecture lower bound?

Some building blocks

- Enumerate all $r \times r$ neighbourhoods that represent possible fragments of maximal independent sets in G^{k}
- Construct neighbourhood graphs
- algorithm \approx labelling of neighbourhood graph
- Apply SAT solvers to find a labelling

Human beings still needed

- Computers can design e.g. very efficient algorithms for 4-colouring
- We still needed human beings to prove that there is no algorithm for 3-colouring
- new lower-bound techniques needed, but more about this in some other talk!

Conclusions

- Nontrivial algorithms: ©(log* n) complexity
- Any such algorithm can be split in two parts:
- "symmetry breaking": find an MIS
- "computation": nontrivial but finite
- Main open question: how far can we push this beyond oriented 2D grids?

(92) (33) 77 (57) (49) 26 (74)	(0) 0 0 1 0 0 0	
(71) (79) 8) 62 (48) (24) 55	(01)000 00	
(31) (21) 15 (30) 60 3 3	(0) 1 10 001	
(0) (5) 17 (95) (23) 47) 98	(1)000 000	
(87) (80) 25 (38) 2048	(0) 0 100 10	
(45) (61) (91) 51 (69) 1 (99	(0) 1) (0) 1) 0 (0)	$\bigcirc \bigcirc$
(58) 53) 63) 40 (16) 2 (39	(0) 0 (1)000 0	
O(log* n)	O(1)	

