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Two classical graph problems

Maximal matching Maximal independent set

3

Trivial linear-time centralized, sequential algorithm:
add edges/nodes until stuck



Two classical graph problems

Maximal matching Maximal independent set

4

Can be verified locally: if it looks correct everywhere locally, it is 
also feasible globally

Can these problems be solved locally?



Warmup: toy example
Bipartite graphs & port-numbering model
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Note: running time does
not depend on n



Bipartite maximal matching

• Maximal matching in very large 2-colored Δ-regular graphs

• Simple algorithm: O(Δ) rounds, independently of n

• Is this optimal?
• o(Δ) rounds?
• O(log Δ) rounds?
• 4 rounds??

17



Big picture
Bounded-degree graphs & LOCAL model
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Distributed graph algorithms
for maximal matching
• Maximal matching in general graphs
• n = number of nodes
• Δ = maximum degree

• LOCAL model of distributed computing
• “time” = number of synchronous communication rounds

= how far do you need to see to choose your own part of solution
• nodes are labeled with unique identifiers from { 1, 2, …, poly(n) }
• O(n) = trivial, O(diameter) = trivial

• Strong model — lower bounds widely applicable

19



20

f(Δ)

g(n)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))
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Main results

Maximal matching and maximal independent set
cannot be solved in

• o(Δ + log log n / log log log n) rounds
with randomized algorithms

• o(Δ + log n / log log n) rounds
with deterministic algorithms
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Upper bound:

O(Δ + log* n)
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Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

This is 
optimal!



Proof techniques
Speedup simulation
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Speedup simulation technique

• Given:
• algorithm A0 solves problem P0 in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• But PT is nontrivial, so A0 cannot exist
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Linial (1987, 1992):
coloring cycles
• Given:
• algorithm A0 solves 3-coloring in T = o(log* n) rounds

• We construct:
• algorithm A1 solves 23-coloring in T − 1 rounds
• algorithm A2 solves 223-coloring in T − 2 rounds
• algorithm A3 solves 2223

-coloring in T − 3 rounds
…
• algorithm AT solves o(n)-coloring in 0 rounds

• But o(n)-coloring is nontrivial, so A0 cannot exist
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Brandt et al. (2016):
sinkless orientation
• Given:
• algorithm A0 solves sinkless orientation in T = o(log n) rounds

• We construct:
• algorithm A1 solves sinkless coloring in T − 1 rounds
• algorithm A2 solves sinkless orientation in T − 2 rounds
• algorithm A3 solves sinkless coloring in T − 3 rounds

…
• algorithm AT solves sinkless orientation in 0 rounds

• But sinkless orientation is nontrivial, so A0 cannot exist
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Speedup simulation technique
for maximal matching
• Given:
• algorithm A0 solves problem P0 = maximal matching in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• But PT is nontrivial, so A0 cannot exist
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What are 
the right 
problems 
Pi here?



Speedup simulation technique
for maximal matching
• Given:
• algorithm A0 solves problem P0 = maximal matching in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• But PT is nontrivial, so A0 cannot exist

38

Let’s start 
with P0 …
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Figure 4: Encoding maximal matchings with ⌃ = {M,P,O}.

2. A problem specification is a pair ⇧ = (W, B), where W is the set of feasible labellings of the
edges incident to a white node, and B is the set of feasible labellings for the edges incident to
a black node.

Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

 
indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

 
.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

 
. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.
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Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

 
indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

 
.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

 
. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.
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White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y  �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.
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2. A problem specification is a pair ⇧ = (W, B), where W is the set of feasible labellings of the
edges incident to a white node, and B is the set of feasible labellings for the edges incident to
a black node.

Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

 
indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

 
.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

 
. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.
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Main lemma

• Given: A solves P(x, y) in T rounds

• We can construct: A’ solves P(x + 1, y + x) in T − 1 rounds

42

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
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0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y  �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8



Putting things together

Maximal matching in o(Δ) rounds

→ “Δ1/2 matching” in o(Δ1/2) rounds

→ P(Δ1/2, 0) in o(Δ1/2) rounds

→ P(O(Δ1/2), o(Δ)) in 0 rounds

→ contradiction
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What we really 
care about

k-matching: 
select at most

k edges per node

Apply speedup 
simulation

o(Δ1/2) times



Putting things together

• Basic version:
• deterministic lower bound, port-numbering model

• Analyze what happens to local failure probability:
• randomized lower bound, port-numbering model

• With randomness you can construct unique identifiers w.h.p.:
• randomized lower bound, LOCAL model

• Fast deterministic → very fast randomized
• stronger deterministic lower bound, LOCAL model
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Proof technique does 
not work directly 
with unique IDs



Main results

Maximal matching and maximal independent set
cannot be solved in

• o(Δ + log log n / log log log n) rounds
with randomized algorithms

• o(Δ + log n / log log n) rounds
with deterministic algorithms

45

Lower bound for MM 
implies a lower bound 

for MIS



Some open questions

• Δ << log log n:
• complexity of (Δ+1)-vertex coloring or (2Δ−1)-edge coloring?
• example: are these possible in O(log Δ + log* n) time?

• Δ >> log log n:
• complexity of maximal independent set?
• is it much harder than maximal matching in this region?
• example: is it possible in deterministic polylog(n) time?

46



Summary

• Linear-in-Δ lower bounds for maximal matchings and maximal 
independent sets

• Old: can be solved in O(Δ + log* n) rounds

• New: cannot be solved in
• o(Δ + log log n / log log log n) rounds with randomized algorithms
• o(Δ + log n / log log n) rounds with deterministic algorithms

• Technique: speedup simulation
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u
v1U

v2

v3
D3

D2

D1
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Speedup 
simulation
Given: white algorithm A
that runs in T = 2 rounds

• v1 in A sees U and D1

Construct: black algorithm A’
that runs in T − 1 = 1 rounds

• u in A’ only sees U

A’: what is the set of possible 
outputs of A for edge {u, v1} 
over all possible inputs in D1?


