
Lower bounds for
maximal matchings and
maximal independent sets
Jukka Suomela
Aalto University, Finland

1

arXiv:1901.02441

Joint work with

• Alkida Balliu · Aalto University

• Sebastian Brandt · ETH Zurich

• Juho Hirvonen · Aalto University

• Dennis Olivetti · Aalto University

• Mikaël Rabie · Aalto University and IRIF, University Paris Diderot

2

arXiv:1901.02441

Two classical graph problems

Maximal matching Maximal independent set

3

Trivial linear-time centralized, sequential algorithm:
add edges/nodes until stuck

Two classical graph problems

Maximal matching Maximal independent set

4

Can be verified locally: if it looks correct everywhere locally, it is
also feasible globally

Can these problems be solved locally?

Warmup: toy example
Bipartite graphs & port-numbering model

5

6

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

computer
network with
port numbering

bipartite,
2-colored
graph

Δ-regular
(here Δ = 3)

output:
maximal
matching

7

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 1

8

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

9

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

10

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 2

11

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

12

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

13

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 3

14

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

15

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

16

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

Finds a maximal matching in
O(Δ) communication rounds

Note: running time does
not depend on n

Bipartite maximal matching

• Maximal matching in very large 2-colored Δ-regular graphs

• Simple algorithm: O(Δ) rounds, independently of n

• Is this optimal?
• o(Δ) rounds?
• O(log Δ) rounds?
• 4 rounds??

17

Big picture
Bounded-degree graphs & LOCAL model

18

Distributed graph algorithms
for maximal matching
• Maximal matching in general graphs
• n = number of nodes
• Δ = maximum degree

• LOCAL model of distributed computing
• “time” = number of synchronous communication rounds

= how far do you need to see to choose your own part of solution
• nodes are labeled with unique identifiers from { 1, 2, …, poly(n) }
• O(n) = trivial, O(diameter) = trivial

• Strong model — lower bounds widely applicable

19

20

f(Δ)

g(n)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

21

o(log* n) impossible

O(log n) randomized

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

Linial (1987, 1992), Naor (1991)

Israeli & Itai (1986)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

22

polylog(n) deterministic

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

Linial (1987, 1992), Naor (1991)

Israeli & Itai (1986)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

23

O(Δ + log* n) deterministic

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

Linial (1987, 1992), Naor (1991)

Panconesi & Rizzi (2001)

Israeli & Itai (1986)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

24

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

Linial (1987, 1992), Naor (1991)

Kuhn et al.
(2004, 2016)

Panconesi & Rizzi (2001)

Israeli & Itai (1986)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

25

O(log Δ + polylog log n)

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log3�

log4�

log7�

log�

log log�

polylog�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

log3 n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

Linial (1987, 1992), Naor (1991)

Kuhn et al.
(2004, 2016)

Fischer (2017)

Panconesi & Rizzi (2001)

Barenboim et al.
(2012, 2016)

Israeli & Itai (1986)

Fischer (2017)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

26

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log3�

log4�

log7�

log�

log log�

polylog�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

log3 n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

Linial (1987, 1992), Naor (1991)

Kuhn et al.
(2004, 2016)

Fischer (2017)

Panconesi & Rizzi (2001)

Barenboim et al.
(2012, 2016)

Israeli & Itai (1986)

Fischer (2017)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

27

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log3�

log4�

log7�

log�

log log�

polylog�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

log3 n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

Linial (1987, 1992), Naor (1991)

Kuhn et al.
(2004, 2016)

Fischer (2017)

Panconesi & Rizzi (2001)

Barenboim et al.
(2012, 2016)

Israeli & Itai (1986)

Fischer (2017)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

O(log Δ + log* n) ???

28

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log3�

log4�

log7�

log�

log log�

polylog�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

log3 n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

Linial (1987, 1992), Naor (1991)

Kuhn et al.
(2004, 2016)

Fischer (2017)

Panconesi & Rizzi (2001)

Barenboim et al.
(2012, 2016)

Israeli & Itai (1986)

Fischer (2017)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

???

29

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log3�

log4�

log7�

log�

log log�

polylog�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

log3 n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log4 log n

s
log n

log log n Linial (1987, 1992), Naor (1991)

Kuhn et al.
(2004, 2016) New

Fischer (2017)

Panconesi & Rizzi (2001)

Barenboim et al.
(2012, 2016)

Israeli & Itai (1986)

Fischer (2017)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

30

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log3�

log4�

log7�

log�

log log�

polylog�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

log3 n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log4 log n

s
log n

log log n Linial (1987, 1992), Naor (1991)

Kuhn et al.
(2004, 2016) New

New

Fischer (2017)

Panconesi & Rizzi (2001)

Barenboim et al.
(2012, 2016)

Israeli & Itai (1986)

Fischer (2017)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

Main results

Maximal matching and maximal independent set
cannot be solved in

• o(Δ + log log n / log log log n) rounds
with randomized algorithms

• o(Δ + log n / log log n) rounds
with deterministic algorithms

31

Upper bound:

O(Δ + log* n)

32

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

This is
optimal!

Proof techniques
Speedup simulation

33

Speedup simulation technique

• Given:
• algorithm A0 solves problem P0 in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• But PT is nontrivial, so A0 cannot exist

34

Linial (1987, 1992):
coloring cycles
• Given:
• algorithm A0 solves 3-coloring in T = o(log* n) rounds

• We construct:
• algorithm A1 solves 23-coloring in T − 1 rounds
• algorithm A2 solves 223-coloring in T − 2 rounds
• algorithm A3 solves 2223

-coloring in T − 3 rounds
…
• algorithm AT solves o(n)-coloring in 0 rounds

• But o(n)-coloring is nontrivial, so A0 cannot exist

35

Brandt et al. (2016):
sinkless orientation
• Given:
• algorithm A0 solves sinkless orientation in T = o(log n) rounds

• We construct:
• algorithm A1 solves sinkless coloring in T − 1 rounds
• algorithm A2 solves sinkless orientation in T − 2 rounds
• algorithm A3 solves sinkless coloring in T − 3 rounds

…
• algorithm AT solves sinkless orientation in 0 rounds

• But sinkless orientation is nontrivial, so A0 cannot exist

36

Speedup simulation technique
for maximal matching
• Given:
• algorithm A0 solves problem P0 = maximal matching in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• But PT is nontrivial, so A0 cannot exist

37

What are
the right
problems
Pi here?

Speedup simulation technique
for maximal matching
• Given:
• algorithm A0 solves problem P0 = maximal matching in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• But PT is nontrivial, so A0 cannot exist

38

Let’s start
with P0 …

39

O

M

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

P
Representation for
maximal matchings

white nodes “active”

output one of these:
· 1 × M and (Δ−1) × O
· Δ × P

black nodes “passive”

accept one of these:
· 1 × M and (Δ−1) × {P, O}
· Δ × O

M = “matched”
P = “pointer to matched”
O = “other”

40

O

M

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

P
Representation for
maximal matchings

white nodes “active”

output one of these:
· 1 × M and (Δ−1) × O
· Δ × P

black nodes “passive”

accept one of these:
· 1 × M and (Δ−1) × {P, O}
· Δ × O

M = “matched”
P = “pointer to matched”
O = “other”

O

M
P

M

M

O

O

O

P

P

O

O

encodingmaximal matching

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

white algorithm

O

M

P

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

black algorithm

·

·

·

·

M

P

O
M
P

·
·

·
·

·

·

O

P

O
O

O

O
M

·
·

Figure 4: Encoding maximal matchings with ⌃ = {M,P,O}.

2. A problem specification is a pair ⇧ = (W, B), where W is the set of feasible labellings of the
edges incident to a white node, and B is the set of feasible labellings for the edges incident to
a black node.

Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.

7

O

M
P

M

M

O

O

O

P

P

O

O

encodingmaximal matching

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

white algorithm

O

M

P

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

black algorithm

·

·

·

·

M

P

O
M
P

·
·

·
·

·

·

O

P

O
O

O

O
M

·
·

Figure 4: Encoding maximal matchings with ⌃ = {M,P,O}.

2. A problem specification is a pair ⇧ = (W, B), where W is the set of feasible labellings of the
edges incident to a white node, and B is the set of feasible labellings for the edges incident to
a black node.

Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.

7

Parameterized problem family

41

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y  �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y  �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

O

M
P

M

M

O

O

O

P

P

O

O

encodingmaximal matching

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

white algorithm

O

M

P

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

black algorithm

·

·

·

·

M

P

O
M
P

·
·

·
·

·

·

O

P

O
O

O

O
M

·
·

Figure 4: Encoding maximal matchings with ⌃ = {M,P,O}.

2. A problem specification is a pair ⇧ = (W, B), where W is the set of feasible labellings of the
edges incident to a white node, and B is the set of feasible labellings for the edges incident to
a black node.

Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.

7

maximal matching

“weak” matching

Main lemma

• Given: A solves P(x, y) in T rounds

• We can construct: A’ solves P(x + 1, y + x) in T − 1 rounds

42

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y  �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y  �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

Putting things together

Maximal matching in o(Δ) rounds

→ “Δ1/2 matching” in o(Δ1/2) rounds

→ P(Δ1/2, 0) in o(Δ1/2) rounds

→ P(O(Δ1/2), o(Δ)) in 0 rounds

→ contradiction

43

What we really
care about

k-matching:
select at most

k edges per node

Apply speedup
simulation

o(Δ1/2) times

Putting things together

• Basic version:
• deterministic lower bound, port-numbering model

• Analyze what happens to local failure probability:
• randomized lower bound, port-numbering model

• With randomness you can construct unique identifiers w.h.p.:
• randomized lower bound, LOCAL model

• Fast deterministic → very fast randomized
• stronger deterministic lower bound, LOCAL model

44

Proof technique does
not work directly
with unique IDs

Main results

Maximal matching and maximal independent set
cannot be solved in

• o(Δ + log log n / log log log n) rounds
with randomized algorithms

• o(Δ + log n / log log n) rounds
with deterministic algorithms

45

Lower bound for MM
implies a lower bound

for MIS

Some open questions

• Δ << log log n:
• complexity of (Δ+1)-vertex coloring or (2Δ−1)-edge coloring?
• example: are these possible in O(log Δ + log* n) time?

• Δ >> log log n:
• complexity of maximal independent set?
• is it much harder than maximal matching in this region?
• example: is it possible in deterministic polylog(n) time?

46

Summary

• Linear-in-Δ lower bounds for maximal matchings and maximal
independent sets

• Old: can be solved in O(Δ + log* n) rounds

• New: cannot be solved in
• o(Δ + log log n / log log log n) rounds with randomized algorithms
• o(Δ + log n / log log n) rounds with deterministic algorithms

• Technique: speedup simulation

47

arXiv:1901.02441

u
v1U

v2

v3
D3

D2

D1

48

Speedup
simulation
Given: white algorithm A
that runs in T = 2 rounds

• v1 in A sees U and D1

Construct: black algorithm A’
that runs in T − 1 = 1 rounds

• u in A’ only sees U

A’: what is the set of possible
outputs of A for edge {u, v1}
over all possible inputs in D1?

