
Using Computers to 
Design Distributed 
Algorithms
Jukka Suomela
Aalto University, Finland



Computer 
science:

“what can be 
automated?”



Next level:
“can we automate 

our own work?”



Key players in algorithmics

Algorithm

Computational 
problem

Model of 
computing

“how to find a feasible solution
for any given input?”

“what are feasible solutions
for any given input?”



Key players in algorithmics

Algorithm

Computational 
problem

Model of 
computing

e.g. merge sort

e.g. sorting

e.g. RAM machines



Key players in algorithmics

Algorithm

Computational 
problem

Model of 
computing

e.g. Cole–Vishkin

e.g. list 3-coloring

e.g. distributed graph algorithms

recall Lecture 1…



How to design algorithms?

Algorithm?

Computational 
problem

Model of 
computing



How to design algorithms?
• Some systematic principles:

• algorithm design paradigms
• reductions …

• But largely just “think hard”, 
years of experience, clever 
insights, good luck?

Algorithm?

Computational 
problem

Model of 
computing



How to design algorithms?
• Some systematic principles:

• algorithm design paradigms
• reductions …

• But largely just “think hard”, 
years of experience, clever 
insights, good luck?

• Could we automate it?
Algorithm?

Computational 
problem

Model of 
computing



Ultimate meta-algorithm??

Algorithm 1

Problem 1

Model 1

Algorithm

Model of 
computing

Computational 
problem

“algorithm 
synthesis”

my laptop



Ultimate meta-algorithm??

Algorithm 2

Problem 2

Model 2

Algorithm

Model of 
computing

Computational 
problem

“algorithm 
synthesis”

my laptop



Too good
to be true?



Does this make any sense?

• Is “algorithm synthesis” a well-defined 
computational problem?

• What are the right representations?
• how to represent computational problems or models 

of computing as input data?
• how to represent algorithms as output?



Computability?

• Recall the classical meta-computational 
question: the halting problem
• input: “algorithm” (encoded as a Turing machine)
• output: does it ever halt?

• Undecidable problem — there is no
“meta-algorithm” that solves it



Computability?

• We are already in trouble if we would
like to verify a given algorithm

• Isn’t it much harder to synthesize
an algorithm than to verify a given
algorithm?



Computational complexity?

• Even if we could synthesize algorithms
in principle, does it work in practice?

• Does anyone have enough
computational resources to do it?



Overcoming
some challenges:
specialization and
semi-automation



Fix the model of computing 

Algorithm 1

Problem 1

Model of 
computing

Algorithm

Model of 
computing

Computational 
problem

“algorithm 
synthesis”

my laptopX



Fix the model of computing 

Algorithm 2

Problem 2

Model of 
computing

Algorithm

Model of 
computing

Computational 
problem

“algorithm 
synthesis”

my laptopX



Good news

• For some models of distributed 
computing, algorithm synthesis is possible!
• both in theory and in practice!
• there are computer-designed distributed algorithms 

that outperform the best human-designed algorithms!



More good news

• Human beings are not yet obsolete!
• many success stories of computer–human 

collaboration
• “computer-aided” algorithm design instead of

“fully automatic” algorithm design



Case study 1:
robust counters



Case study: robust counters

• Multiple devices connected to each other

• Common clock pulse coming to all devices

• Devices have to count pulses
• in agreement: if one device thinks this is pulse 

number x, then all devices agree
• in a fault-tolerant manner (more about this soon)



Case study: robust counters

• Running example:
• 4 devices
• all devices can directly communicate with each other
• task: count pulses modulo 2

device 1: 0 1 0 1 0 1 …
device 2: 0 1 0 1 0 1 …
device 3: 0 1 0 1 0 1 …
device 4: 0 1 0 1 0 1 …



Case study: robust counters

• Nodes labeled with 1, 2, 3, 4

• At each clock pulse, each node can also 
receive a message from every other node

device 1: 0 1 0 1 0 1 …
device 2: 0 1 0 1 0 1 …
device 3: 0 1 0 1 0 1 …
device 4: 0 1 0 1 0 1 …

1 2

3 4



Case study: robust counters

• Very easy to solve if there are no failures 
and all nodes start in the same state

• How would you do it?

device 1: 0 1 0 1 0 1 …
device 2: 0 1 0 1 0 1 …
device 3: 0 1 0 1 0 1 …
device 4: 0 1 0 1 0 1 …



Case study: robust counters

• What if we wanted to tolerate
Byzantine failures?

• Still easy to solve — how?

device 1: 0 1 0 1 0 1 …
device 2: ??? ??? ??? ??? ??? ??? …
device 3: 0 1 0 1 0 1 …
device 4: 0 1 0 1 0 1 … recall Lecture 4…



Case study: robust counters

• What if we wanted to design
a self-stabilizing algorithm?

• Still easy to solve — how?

device 1: garbage 1 0 1 0 1 …
device 2: garbage 1 0 1 0 1 …
device 3: garbage 1 0 1 0 1 …
device 4: garbage 1 0 1 0 1 … recall Lecture 9…



Case study: robust counters

• Can we get both self-stabilization and 
Byzantine fault tolerance simultaneously?

• Very difficult to solve — try it!

device 1: garbage 1 0 1 0 1 …
device 2: garbage ??? ??? ??? ??? ??? …
device 3: garbage 1 0 1 0 1 …
device 4: garbage 1 0 1 0 1 …



Case study: robust counters

• Goal: reach correct behavior
• self-stabilization: starting from any configuration
• Byzantine fault tolerance: even if one node is 

misbehaving

• We want to ask computers to find a good 
algorithm for this problem!



How to represent algorithms?

• Human-readable pseudocode?
• can computers understand it at all?

• Machine-readable programing language, 
e.g. Python, Java, C++, x86 assembly?
• very easy to write a short program that nobody

can analyze, not human beings, not computers



How to represent algorithms?

• Let’s try to keep things very simple

• Computer = finite state machine

• Communication = each node simply tells 
everyone else its current state

• Algorithm = lookup table



How to represent algorithms?

• Example: 4 nodes, 3 states per node

• Algorithm = lookup table that
tells what is the new state for
each combination of states
• 34 = 81 rows
• easy to represent with computers

old state new state
0, 0, 0, 0 1, 1, 1, 1

0, 0, 0, 1 1, 1, 1, 1

… …

0, 1, 1, 1 2, 0, 0, 0

0, 1, 1, 2 0, 0, 0, 1

… …

2, 2, 2, 2 1, 1, 1, 1



How to represent executions?

• Algorithm = lookup table

• Possible state transitions:
• example: node 4 misbehaves
• possible: 0,0,1,* → 1,1,1,*
• possible: 0,0,1,* → 0,2,0,*
• possible: 0,0,1,* → 1,2,0,*   (!!)

old state new state

0, 0, 0, 0 1, 1, 1, 1

0, 0, 0, 1 1, 1, 1, 1

… …

0, 0, 1, 0 1, 1, 1, 1

0, 0, 1, 1 0, 2, 0, 1

0, 0, 1, 2 1, 1, 1, 1

… …

2, 2, 2, 2 1, 1, 1, 1



Given an algorithm,
we can construct a
directed graph
that represents all
possible state
transitions

Directed path =
possible execution



Graph representations

• Seemingly hard, open-ended questions:
• is this algorithm correct?
• does it recover quickly from all failures?

• Simple, well-defined questions:
• do all paths in this graph lead

to nodes “*000” and “*111”?
• are all such paths short?



Graph representations

• Algorithm verification was replaced
with a simple graph problem

• Candidate algorithm
→ lookup table
→ graph of all executions
→ reachability problem
→ is this algorithm good



Graph representations

• We now know how to test with computers
if an algorithm candidate is good

• How to use computers
to find a good algorithm?

• In principle easy: we could
check all candidates



Graph representations

• Algorithm = lookup table with 81 entries

• Each entry has 81 possible values

• Just test 8181 ≈ 10154 candidates?



Logical representations

• Again just a matter of representations
• lookup table ≈ Boolean variables x1, x2, …
• this lookup table is good ≈ formula f(x1, x2, …) is true

• Apply modern SAT solvers
to find values x1, x2, … such
that f(x1, x2, …) is true



Graph representations

• Algorithm verification was replaced
with a simple graph problem

• Algorithm synthesis was
replaced with a Boolean
satisfiability problem
• NP-hard, but often (?) solvable

in practice



High-throughput algorithmics

We can ask computers:

“Is there an algorithm
for n nodes that uses
only s states per node
and always stabilizes
in at most t steps?”

t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 …
n = 4 — — s ≥ 4 s ≥ 4 s ≥ 3 s ≥ 3 …

n = 5 — s ≥ 3 s ≥ 3 s ≥ 3 s ≥ 3 s ≥ 3 …

n = 6 s ≥ 3 s ≥ 3 s ≥ 3 s ≥ 2 s ≥ 2 s ≥ 2 …

n = 7 s ≥ 3 s ≥ 3 s ≥ 3 s ≥ 2 s ≥ 2 s ≥ 2 …

n = 8 s ≥ 3 s ≥ 2 s ≥ 2 s ≥ 2 s ≥ 2 s ≥ 2 …

n = 9 s ≥ 3 s ≥ 2 s ≥ 2 s ≥ 2 s ≥ 2 s ≥ 2 …



Example:

4 nodes

1 faulty node

3 states per node

always stabilizes
in at most 7 steps



Efficient computer-
designed solution
for the base case

+
human-designed
recursive step

=
efficient solution

for the general case



Case study 2:
large cuts



Large cuts

• Goal: find a large cut

• Setting:
• 1-round randomized algorithms
• 1 bit of randomness per node
• d-regular graphs, no short cycles



Large cuts

• Again we can represent algorithms as 
lookup tables:
• input: random bits of myself and my neighbors
• output: black or white

• For each lookup table we can calculate
probability that a given edge is a cut 
edge



Large cuts

• Computer:
• find optimal algorithm for d = 2, 3, 4, …

• Human:
• look at the structure of optimal algorithms
• generalize the idea



Large cuts

• Algorithm:
• Pick a random cut

• Change sides if at least !" !
# neighbours on the 

same side

• How well does this work for d = 2?



Case study 3:
local problems

on cycles



LCLs on cycles

• Computer network = directed n-cycle
• nodes labelled with O(log n)-bit identifiers
• each round: each node exchanges (arbitrarily large) 

messages with its neighbors and updates its state
• each node has to output its own part of the solution
• time = number of rounds until all nodes stop



LCLs on cycles

• LCL problems:
• solution is globally good if it

looks good in all local neighborhoods
• examples: vertex coloring, edge coloring,

maximal independent set, maximal matching…
• cf. class NP: solution easy to verify,

not necessarily easy to find



LCLs on cycles

• 2-colouring: inherently global
• Θ(n) rounds
• solution does not always exist

• 3-colouring: local
• Θ(log* n) rounds
• solution always exists

recall Lecture 1…



LCLs on cycles

• Given an algorithm, it may be very
difficult to verify
• easy to encode e.g. halting problem
• running time can be any function of n

• However, given an LCL problem, it is very 
easy to synthesize optimal algorithms!



LCLs on cycles

• LCL problem ≈ set of feasible local 
neighborhoods in the solution

• Can be encoded as a graph:
• node = neighborhood
• edge = “compatible”

neighborhoods
• walk ≈ sliding window

23

12 21

32

31 13

3-coloring



LCLs on cycles

23

12 21

32

31 13

3-coloring

01

00

10

maximal
independent set

12 21

2-coloring

01

00

10

independent set



LCLs on cycles

Neighborhood v is “flexible” if for all
sufficiently large k there is
a walk v → v of length k

• equivalent: there are
walks of coprime lengths

• “12” is flexible here, k ≥ 2
23

12 21

32

31 13

3-coloring



LCLs on cycles

23

12 21

32

31 13

3-coloring

01

00

10

maximal
independent set

12 21

2-coloring

01

00

10

independent set

flexible states:
Θ(log* n)

self-loops:
O(1)

otherwise:
Θ(n)



LCLs on cycles

• Given any LCL problem on
cycles, we can mechanically:
• represent it as a graph
• analyze the structure of the graph
• construct an optimal algorithm for the problem!

• Algorithm synthesis easy with the right 
representation of the problem!

23

12 21

32

31 13

3-coloring



Conclusions



Recap of techniques

• Case study 1: robust counters
• computer solves the base case, use as a black box

• Case study 2: large cuts
• computers solves small cases, generalize the idea

• Case study 3: LCL problems on cycles
• algorithm synthesis can be fully automated!



Take-home messages

• You are allowed to use computers to do 
theoretical computer science!

• Sometimes algorithm design can be turned 
into mechanical work that is well-suited for 
computers



Take-home messages

• We need the right representations for:
• computational problems (inputs)
• algorithms (outputs)

• Computers are very good at solving 
combinatorial puzzles
• graph problems, satisfiability of logical formulas…



Something to think about…

• Do you see possible applications of 
computational algorithm design outside 
distributed computing?

• Would it be possible to use computers
to automatically prove lower bounds?


