Median Filtering is Equivalent to Sorting

Jukka Suomela • Aalto University
Saarbrücken • 11 March 2015

Median filter

input: n elements
window size: k
output: $n-k+1$ medians
a.k.a. sliding window median, moving median, running median, rolling median, median smoothing

Median filter

- In numerous scientific computing systems:
- R: "runmed"
- Mathematica: "MedianFilter"
- Matlab: "medfilt1"
- Octave: "medfilt1" (signal package)
- SciPy: "medfilt1" (scipy.signal module)

Median filter

- In numerous scientific computing systems:
- R, Mathematica, Matlab, Octave, SciPy ...
- 2D version in image processing:
- Photoshop: "Median" filter
- Gimp: "Despeckle" filter

n : input size
k: window size

Prior work

- Trivial:
- compute each median separately
- O(nk)
- "Streaming approach":
- maintain a sliding window
- O($n \log k)$

n : input size
 k : window size

Prior work

- "Streaming approach"
- Sliding window data structure, supports operations:
- "find median"
- "remove oldest and add new element"

n : input size
 k : window size

Prior work

- Sliding window data structures for B-bit integers:
- histogram with 2^{B} buckets
- with linear scanning: $O\left(n 2^{B}\right)$
- with binary trees: $O(n B)$
- with van Emde Boas trees: $O(n \log B)$

n : input size
k : window size

Prior work

- General sliding window data structures:
- maxheap-minheap pair: $O(n \log k)$
- binary search trees: $O(n \log k)$
- finger trees: $O(n \log k)$
- doubly-linked lists: O(nk)
- sorted arrays: O(nk)

n : input size
 k: window size

Prior work

- Maxheap-minheap pair
- Astola-Campbell (1989)

Juhola et al. (1991) Härdle-Steiger (1995) ...

- Fast in practice
- Fast in theory, $O(n \log k)$ comparisons

n : input size
 k: window size

Lower bounds

- For comparison-based algorithms: $O(n \log k)$ is optimal
- Juhola et al. (1991) Krizanc et al. (2005) ...
- Reduction from sorting

n : input size
 k : window size

State of the art

- $O(n \log k)$ comparisons is optimal in the worst case
- But what about e.g. integer data, different input distributions...?
- cf. integer sorting, adaptive sorting...

n : input size
k : window size

State of the art

- And what about implementations...
- $R: \approx O(n \log k)$
- Mathematica: $\approx O(n k)$
- Matlab: $\approx O(n k)$
- Octave: $\approx O(n k)$
- SciPy: $\approx O(n k)$
why?!
didn't we do better already in 1980s?

Key idea

- Prior work:
- "median filtering is as hard as sorting"
- Could we prove a matching upper bound:
- "median filtering is as easy as sorting" ??

Key idea

- If we could show that:
- "median filtering is equivalent to sorting"
- Then we could apply everything that we know about sorting here!
- adaptive sorting \rightarrow adaptive median filter
- integer sorting \rightarrow integer median filter ...

Key idea

- If we could show that:
- "median filtering is equivalent to sorting"
- Then we could apply everything that we know about sorting here!
- all scientific computing packages know how to sort efficiently

Sorting-based lower bound

- Piecewise sorting: sort $\boldsymbol{n} / \boldsymbol{k}$ blocks of size \boldsymbol{k}
- with comparison sort: $O(n \log k)$ optimal

Sorting-based lower bound

Sorting-based median filter
 n : input size
 k: window size

- Piecewise sorting: sort $\boldsymbol{n} / \boldsymbol{k}$ blocks of size k
- Prior work:
- median filter \approx as hard as piecewise sorting
- This work:
- median filter \approx as easy as piecewise sorting

Sorting-based median filter

- High-level idea:
- preprocessing = piecewise sorting
- median filtering now possible in linear time!
- Simple and efficient
- works very well also in practice

Sorting-based median filter

- How does piecewise sorting help? We only know one median per block...

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 9 & 2 & 4 & 1 & 6 & 5 & 0 & 3 \\
\hline
\end{array}
$$

Sorting-based median filter

- Basic idea: maintain sorted doubly-linked lists for each block

Sorting-based median filter

- Sliding window = two sorted linked lists

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 9 & 2 & 4 & 1 & 6 & & 5 & 0 & 3 & 8 \\
\hline
\end{array}
\end{aligned}
$$

Sorting-based median filter

- Sliding window = two sorted linked lists

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 9 & \mathbf{2} & \mathbf{4} & \mathbf{1} & \mathbf{6} & \mathbf{5} & 0 & 3 & 8 & 7 \\
\hline
\end{array}
\end{aligned}
$$

Sorting-based median filter

- Sliding window = two sorted linked lists

$$
\begin{array}{rl}
\hline 9 & 2 \\
\hline \mathbf{4} & \mathbf{1} \\
\mathbf{6} & \mathbf{5} \\
\mathbf{0} & 3 \\
\hline & 8 \\
\hline
\end{array}
$$

Sorting-based median filter

- Sliding window = two sorted linked lists

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|ll|l|l|l|l|}
\hline 9 & 2 & 4 & \mathbf{1} & 6 & \mathbf{5} & \mathbf{0} & \mathbf{3} & 8 & 7 \\
\hline
\end{array}
\end{aligned}
$$

Sorting-based median filter

- Sliding window = two sorted linked lists

$$
\begin{array}{|l|l|l|l|ll|l|l|l|}
\hline 9 & 2 & 4 & 1 & 6 & 5 & 0 & 3 & 8 \\
\hline
\end{array}
$$

Sorting-based median filter

- Sliding window = two sorted linked lists

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 9 & 2 & 4 & 1 & 6 & \mathbf{3} & 8 & \mathbf{7} \\
\hline
\end{array} \\
& Q[1][2] 699 \quad 0-0 \cdot 3-5 \cdot 7-8 \cdot 0
\end{aligned}
$$

Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 9 & 2 & 4 & \mathbf{1} & \mathbf{6} & & 5 & 0 & 3 & 8 \\
\hline
\end{array}
$$

Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l}
9 & 2 & 4 & 1 & 6 & \mathbf{5} & 0 & 3 & 8 & 7
\end{array}
\end{aligned}
$$

Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)

Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)

$$
\begin{aligned}
& \begin{array}{l|l|lll|l|l|l}
9 & 2 & 4 & 1 & 6 & 5 & 0 & 3 \\
\hline
\end{array}
\end{aligned}
$$

Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)

Sorting-based median filter

- Maintain "median pointers" for each list (one of these is the median)

Sorting-based median filter

- Median pointers:
- straightforward in O(1) time per element
- cf. merge sort
- Sorted linked lists:
- how to insert \& delete in O(1) time?

Sorting-based median filter

- Deletions are easy if we know what to delete: start with a sorted list + pointers to it

Sorting-based median filter

- Deletions are easy if we know what to delete: start with a sorted list + pointers to it

Sorting-based median filter

- Deletions are easy if we know what to delete: start with a sorted list + pointers to it

Sorting-based median filter

- Deletions are easy if we know what to delete: start with a sorted list + pointers to it

Sorting-based median filter

- Deletions are easy if we know what to delete: start with a sorted list + pointers to it

Sorting-based median filter

- Deletions are easy if we know what to delete: start with a sorted list + pointers to it

Sorting-based median filter

- Asymmetry:
- deletions from sorted linked lists easy
- insertions to sorted linked lists hard
- Reverse time!
- insertions become deletions, easy

Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list

Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list

Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list

Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list

Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list

Sorting-based median filter

- Reverse time: insertions become deletions, easy to do if we start with a sorted list

Sorting-based median filter

- Reverse time
- How does this help?
- insertions become deletions, nice
- deletions become insertions, bad
- Solution: reverse time again

Sorting-based median filter

- Reverse time again: insert = undo deletion

Sorting-based median filter

- Reverse time again: insert = undo deletion

Sorting-based median filter

- Reverse time again: insert = undo deletion

Sorting-based median filter

- Reverse time again: insert = undo deletion

Sorting-based median filter

- Reverse time again: insert = undo deletion

Sorting-based median filter

- Reverse time again: insert = undo deletion

Sorting-based median filter

- Shrinking list: start with a sorted list
- process one element = one deletion
- Growing list: start with a sorted list
- first delete each element in reverse order
- process one element = undo one deletion

Undo deletions from doubly-linked lists

- Knuth (2000): "dancing links"
- Delete: $\operatorname{prev}[\operatorname{next}[i]] \leftarrow \operatorname{prev}[i]$ next[prev[i]] $\sim \operatorname{next[i]}$
 undo \uparrow delete
- Undo: $\operatorname{prev}[\operatorname{next}[i]] \leftarrow i$ next $[\operatorname{prev}[i]] \leftarrow i$

Sorting-based median filter

- Preprocessing: piecewise sorting
- Sliding window = sorted doubly-linked lists
- shrinking list: easy
- growing list: reverse time twice
- insert = undo deletion, easy with dancing links

Sorting-based median filter

- Optimal algorithm for any kind of input data
- just use optimal sorting algorithm for this setting
- then $O(n)$ time postprocessing suffices
- Matching lower bound

Sorting-based median filter

- Easy to implement
- Very fast
def create_array(n):
return [None] * n
def sort_block(alpha):
pairs $=$ [(alpha[i], i) for i in range(len(alpha))]
return [i for v,i in sorted(pairs)]
class Block:
def __init__(self, h, alpha):
self.k = len(alpha)
self.alpha = alpha
self.pi = sort_block(alpha)
self.prev = create_array (self.k + 1)
self.next $=$ create_array (self.k + 1)
self.tail = self.k
self.init_links()
self.m = self.pi[h]
self.s = h
def init_links(self):
p = self.tail
for i in range(self.k):
$q=\operatorname{self.pi[i]}$
self.next[p] = q
self.prev[q] = p
$p=q$
self.next[p] = self.tail
self.prev[self.tail] = p
def unwind(self):
for i in range(self.k-1, -1, -1):
self.next[self.prev[i]] = self.next[i]
self.prev[self.next[i]] = self.prev[i]
self.m = self.tail
self.s $=0$
def delete(self, i)
self.next[self.prev[i]] = self.next[i]
self.prev[self.next[i]] = self.prev[i]
if self.is_small(i):
self.s -= 1
else:
if self.m == i.
self.m $=$ self.next[self.m]
if self.s > 0:
self.m = self.prev[self.m]
self.s -= 1
def undelete(self, i):
self.next[self.prev[i]] $=\mathbf{i}$
self.prev[self.next[i]] =
if self.is_small(i):
self.m $=$ self.prev[self.m]
def advance(self):
self.m = self.next[self.m] self.s += 1
def at_end(self):
return self.m == self.tail
def peek(self):
return float('Inf') if self.at_end() \
else self.alpha[self.m]
def get_pair(self, i):
return (self.alpha[i], i)
def is_small(self, i):
return self.at_end() or \}
self.get_pair(i) < self.get_pair(self.m)
def sort_median(h, b, x):
$k=2 \star h+1$
$B=B l o c k(h, x[0: k])$
$y=[]$
y.append (B.peek ())
for j in range(1, b):
$A=B$
$B=B \operatorname{lock}(h, x[j * k:(j+1) \star k])$
B. unwind()
for i in range(k):
A.delete(i)
B. undelete (i)
if A.S + B.S < h:
if A.peek() <= B. peek():
A.advance ()
else:
B.advance()
y.append (min(A.peek(), B.peek()))
return y

Conclusions

- Median filtering \approx piecewise sorting
- In theory and in practice
- arXiv:1406.1717

