
Median Filtering 
is Equivalent 
to Sorting

Jukka Suomela · Aalto University 
Saarbrücken · 11 March 2015

Median filter

a.k.a. sliding window median,  
moving median, running median,  
rolling median, median smoothing

…
input: n elements
window size: k
output: n−k+1 medians

Median filter
• In numerous scientific computing systems:

• R: “runmed”
• Mathematica: “MedianFilter”
• Matlab: “medfilt1”
• Octave: “medfilt1” (signal package)
• SciPy: “medfilt1” (scipy.signal module)

Median filter
• In numerous scientific computing systems:

• R, Mathematica, Matlab, Octave, SciPy …

• 2D version in image processing:
• Photoshop: “Median” filter
• Gimp: “Despeckle” filter

Prior work
• Trivial:

• compute each median separately
• O(nk)

• “Streaming approach”:
• maintain a sliding window
• O(n log k)

n: input size
k: window size

Prior work
• “Streaming approach”

• Sliding window data structure,  
supports operations:

• “find median”
• “remove oldest and add new element”

n: input size
k: window size

Prior work
• Sliding window data structures 

for B-bit integers:
• histogram with 2B buckets
• with linear scanning: O(n2B)
• with binary trees: O(nB)
• with van Emde Boas trees: O(n log B)

n: input size
k: window size

Prior work
• General sliding window data structures:

• maxheap-minheap pair: O(n log k)
• binary search trees: O(n log k)
• finger trees: O(n log k)
• doubly-linked lists: O(nk)
• sorted arrays: O(nk)

n: input size
k: window size

Prior work
• Maxheap-minheap pair

• Astola–Campbell (1989) 
Juhola et al. (1991)  
Härdle–Steiger (1995) …

• Fast in practice

• Fast in theory, O(n log k) comparisons

n: input size
k: window size

Lower bounds
• For comparison-based algorithms:  

O(n log k) is optimal
• Juhola et al. (1991)  

Krizanc et al. (2005) …

• Reduction from sorting

n: input size
k: window size

State of the art
• O(n log k) comparisons is optimal 

in the worst case

• But what about e.g. integer data,  
different input distributions…?

• cf. integer sorting, adaptive sorting…

n: input size
k: window size

State of the art
• And what about implementations…

• R: ≈ O(n log k)
• Mathematica: ≈ O(nk)
• Matlab: ≈ O(nk)
• Octave: ≈ O(nk)
• SciPy: ≈ O(nk)

n: input size
k: window size

}why?!
didn’t we do better 
already in 1980s?

Key idea
• Prior work:

• “median filtering is as hard as sorting”

• Could we prove a matching upper bound:
• “median filtering is as easy as sorting” ??

Key idea
• If we could show that:

• “median filtering is equivalent to sorting”

• Then we could apply everything that  
we know about sorting here!

• adaptive sorting → adaptive median filter
• integer sorting → integer median filter …

Key idea
• If we could show that:

• “median filtering is equivalent to sorting”

• Then we could apply everything that  
we know about sorting here!

• all scientific computing packages know  
how to sort efficiently

Sorting-based 
lower bound
• Piecewise sorting: sort n/k blocks of size k

• with comparison sort: O(n log k) optimal

sort sort sort
2 6934 857 1

5 8643 972 1

Sorting-based 
lower bound

2 6934 857 1

5 8643 972 1

++− − 7 52 ++− − 341 ++− − 869

57 552 341 1 431 86 6 99

median filter

pad with ±∞

Sorting-based 
median filter
• Piecewise sorting: sort n/k blocks of size k

• Prior work:
• median filter ≈ as hard as piecewise sorting

• This work:
• median filter ≈ as easy as piecewise sorting

n: input size
k: window size

Sorting-based 
median filter
• High-level idea:

• preprocessing = piecewise sorting
• median filtering now possible in linear time!

• Simple and efficient
• works very well also in practice

Sorting-based
median filter
• How does piecewise sorting help? 

We only know one median per block…

5 0 3 8 79 2 4 1 6

1 2 4 6 9 0 3 5 7 8

4 ? ? ? ? 5

input

output
sorted blocks

Sorting-based
median filter
• Basic idea: maintain sorted doubly-linked lists 

for each block

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Sliding window = two sorted linked lists

0 3 5 7 8

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

Sorting-based
median filter
• Sliding window = two sorted linked lists

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Sliding window = two sorted linked lists

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Sliding window = two sorted linked lists

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Sliding window = two sorted linked lists

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Sliding window = two sorted linked lists

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Maintain “median pointers” for each list 

(one of these is the median)

0 3 5 7 8

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

Sorting-based
median filter
• Maintain “median pointers” for each list 

(one of these is the median)

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Maintain “median pointers” for each list 

(one of these is the median)

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Maintain “median pointers” for each list 

(one of these is the median)

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Maintain “median pointers” for each list 

(one of these is the median)

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Maintain “median pointers” for each list 

(one of these is the median)

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Median pointers:

• straightforward in O(1) time per element
• cf. merge sort

• Sorted linked lists:
• how to insert & delete in O(1) time?

Sorting-based
median filter
• Deletions are easy if we know what to delete: 

start with a sorted list + pointers to it

0 3 5 7 8

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

Sorting-based
median filter
• Deletions are easy if we know what to delete: 

start with a sorted list + pointers to it

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Deletions are easy if we know what to delete: 

start with a sorted list + pointers to it

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Deletions are easy if we know what to delete: 

start with a sorted list + pointers to it

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Deletions are easy if we know what to delete: 

start with a sorted list + pointers to it

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Deletions are easy if we know what to delete: 

start with a sorted list + pointers to it

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Asymmetry:

• deletions from sorted linked lists easy
• insertions to sorted linked lists hard

• Reverse time!
• insertions become deletions, easy

Sorting-based
median filter
• Reverse time: insertions become deletions,

easy to do if we start with a sorted list

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Reverse time: insertions become deletions,

easy to do if we start with a sorted list

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Reverse time: insertions become deletions,

easy to do if we start with a sorted list

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Reverse time: insertions become deletions,

easy to do if we start with a sorted list

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Reverse time: insertions become deletions,

easy to do if we start with a sorted list

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Reverse time: insertions become deletions,

easy to do if we start with a sorted list

0 3 5 7 8

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

Sorting-based
median filter
• Reverse time

• How does this help?
• insertions become deletions, nice
• deletions become insertions, bad

• Solution: reverse time again

Sorting-based
median filter
• Reverse time again: 

insert = undo deletion

0 3 5 7 8

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

Sorting-based
median filter
• Reverse time again: 

insert = undo deletion

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Reverse time again: 

insert = undo deletion

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Reverse time again: 

insert = undo deletion

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Reverse time again: 

insert = undo deletion

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Reverse time again: 

insert = undo deletion

9 2 4 1 6

1 2 4 6 9

5 0 3 8 7

0 3 5 7 8

Sorting-based
median filter
• Shrinking list: start with a sorted list

• process one element = one deletion

• Growing list: start with a sorted list
• first delete each element in reverse order
• process one element = undo one deletion

Undo deletions from  
doubly-linked lists
• Knuth (2000): “dancing links”

• Delete: prev[next[i]] ← prev[i] 
 next[prev[i]] ← next[i]

• Undo: prev[next[i]] ← i 
 next[prev[i]] ← i

undo delete

Sorting-based
median filter
• Preprocessing: piecewise sorting

• Sliding window = sorted doubly-linked lists
• shrinking list: easy
• growing list: reverse time twice
• insert = undo deletion, 

easy with dancing links

Sorting-based
median filter
• Optimal algorithm for any kind of input data

• just use optimal sorting algorithm 
for this setting

• then O(n) time postprocessing suffices

• Matching lower bound

Sorting-based
median filter
• Easy to implement

• Very fast

def create_array(n):
 return [None] * n

def sort_block(alpha):
 pairs = [(alpha[i], i) for i in range(len(alpha))]
 return [i for v,i in sorted(pairs)]

class Block:
 def __init__(self, h, alpha):
 self.k = len(alpha)
 self.alpha = alpha
 self.pi = sort_block(alpha)
 self.prev = create_array(self.k + 1)
 self.next = create_array(self.k + 1)
 self.tail = self.k
 self.init_links()
 self.m = self.pi[h]
 self.s = h

 def init_links(self):
 p = self.tail
 for i in range(self.k):
 q = self.pi[i]
 self.next[p] = q
 self.prev[q] = p
 p = q
 self.next[p] = self.tail
 self.prev[self.tail] = p

 def unwind(self):
 for i in range(self.k-1, -1, -1):
 self.next[self.prev[i]] = self.next[i]
 self.prev[self.next[i]] = self.prev[i]
 self.m = self.tail
 self.s = 0

 def delete(self, i):
 self.next[self.prev[i]] = self.next[i]
 self.prev[self.next[i]] = self.prev[i]
 if self.is_small(i):
 self.s -= 1
 else:
 if self.m == i:
 self.m = self.next[self.m]
 if self.s > 0:
 self.m = self.prev[self.m]
 self.s -= 1

 def undelete(self, i):
 self.next[self.prev[i]] = i
 self.prev[self.next[i]] = i
 if self.is_small(i):
 self.m = self.prev[self.m]

 def advance(self):
 self.m = self.next[self.m]
 self.s += 1

 def at_end(self):
 return self.m == self.tail

 def peek(self):
 return float('Inf') if self.at_end() \ 
 else self.alpha[self.m]

 def get_pair(self, i):
 return (self.alpha[i], i)

 def is_small(self, i):
 return self.at_end() or \
 self.get_pair(i) < self.get_pair(self.m)

def sort_median(h, b, x):
 k = 2 * h + 1
 B = Block(h, x[0:k])
 y = []
 y.append(B.peek())
 for j in range(1, b):
 A = B
 B = Block(h, x[j*k:(j+1)*k])
 B.unwind()
 for i in range(k):
 A.delete(i)
 B.undelete(i)
 if A.s + B.s < h:
 if A.peek() <= B.peek():
 A.advance()
 else:
 B.advance()
 y.append(min(A.peek(), B.peek()))
 return y

complete Python implementation

100 101 102 103 104

half-window size h

10�2

10�1

100

101

102

103
ti
m
e
(s
ec
on

d
s)

bh = 105

Mathematica

SciPy

Matlab

R, Stuetzle

Octave

MoveMedian

SortMedian.py

TreeMedian

R, Turlach

HeapMedian

SortMedian

100 101 102 103 104 105 106 107 108

half-window size h

0

50

100

150

200

ti
m
e
(s
ec
o
n
d
s)

bh = 108, all generators

HeapMedian

SortMedian

Conclusions
• Median filtering ≈ piecewise sorting

• In theory and in practice

• arXiv:1406.1717

