UJ Local approximation algorithms
for vertex cover

Jukka Suomela — HIIT, University of Helsinki, Finland

Joint work with Matti Astrand, Patrik Floréen,
Valentin Polishchuk, Joel Rybicki, and Jara Uitto

|

Paderborn, 20 October 2009

O] Partl:
Introduction

Vertex cover problem in a distributed setting

oS

2/56

J Vertex cover

Given a graph G = (V, E), find a smallest
C C V that covers every edge of G

e i.e., each edge e € E incident to
at least one node in C

Classical NP-hard optimisation problem

s

3/56

[J Vertex cover in a distributed setting

Node = computer
Edge = communication link

Each node must decide whether it is in the cover C

4/56

[J Vertex cover in a distributed setting

Graph is unknown, all nodes run the same algorithm

Initially: Each node knows its own degree
and the maximum degree A

5/56

[J Vertex cover in a distributed setting

Port numbering: each node has chosen
an ordering on its incident edges

6/56

[J Vertex cover in a distributed setting

Communication primitives:

e “send message m to port "
e “let m be the message received from port i”

7/56

[J Vertex cover in a distributed setting

Synchronous communication round: Each node

1. performs local computation

8/56

[J Vertex cover in a distributed setting

Synchronous communication round: Each node

1. performs local computation
2. sends a message to each neighbour

9/56

[J Vertex cover in a distributed setting

Synchronous communication round: Each node

1. performs local computation

2. sends a message to each neighbour
(message propagation...)

10/56

[J Vertex cover in a distributed setting

Synchronous communication round: Each node

1. performs local computation
2. sends a message to each neighbour
3. receives a message from each neighbour

Ot~

11/56

[J Vertex cover in a distributed setting

Finally: Each node performs local computation
and announces its output: whether it is in the cover C

Running time = number of communication rounds

12/56

[J Vertex cover in a distributed setting

Focus:
e deterministic algorithm

e strictly /ocal algorithm,
running time independent of n = |V/|
(but may depend on maximum degree A)

e the best possible approximation ratio

13/56

L] Prior work

Kuhn et al. (2006):
e (2 + ¢)-approximation in O(log A/€e*) rounds
Czygrinow et al. (2008), Lenzen & Wattenhofer (2008):

e (2 — €)-approximation requires
Q(log" n) rounds, even if A = 2

What about 2-approximation?

Is it possible in f(A) rounds, for some f?

14/56

(1 Contribution

Deterministic 2-approximation algorithm for vertex cover

e Running time O(A) synchronous rounds

Surprise: node identifiers not needed

e Negative result for (2 — €)-approximation holds
even if there are unique node identifiers

e Our algorithm can be used in
anonymous networks

15/56

O Part ll:
Background

Maximal matchings and edge packings

oS

16/56

(1 Background: maximal matching

In a centralised setting,
2-approximation is easy:
find a maximal matching,

take all matched nodes

But matching requires
Q(log™ n) rounds

and unique identifiers

e symmetry breaking! E 6

17/56

[Background: maximal edge packing

Edge packing = nonnegative edge weights,
for each v € V, total weight on incident edges < 1

Maximal, if no weight can be increased

18/56

[Background: maximal edge packing

Weighted edge packing = nonnegative edge weights,
for each v € V, total weight on incident edges < w,

Maximal, if no weight can be increased

19/56

[Background: maximal edge packing

Maximal matching — maximal edge packing

(matched: weight 1, unmatched: weight 0)

20/56

[Background: maximal edge packing

Maximal matching requires symmetry breaking

Maximal edge packing does not

21/56

[Background: maximal edge packing

Node saturated if total weight on incident edges = 1

Saturated nodes in a maximal edge packing =
2-approximation of vertex cover (proof: LP duality)

22/56

[Background: maximal edge packing

Node saturated if total weight on incident edges = 1

Saturated nodes in a maximal edge packing =
2-approximation of vertex cover

X 3k ok

So we only need to design a distributed algorithm
that finds a maximal edge packing

Warm-up: how to find a (non-trivial) edge packing?

23/56

[J Finding an edge packing

A simple approach: a node of degree d offers
1/d of its residual capacity to each incident edge

Residual capacity = 1 — total weight of incident edges
= how much we could increase the weights of incident edges

1
1

N|—
N[—=
Q=
W=
W=
(=
SRS

24/56

[J Finding an edge packing

Each edge accepts the minimum of the two offers

(cf. Khuller et al. 1994, Papadimitriou and Yannakakis 1993)

1 1 1 1
2 3 1 i
1
1 1 1

3 1

25/56

[J Finding an edge packing

Looks good, some progress is guaranteed,
and we might even saturate some nodes

But this is not a maximal edge packing yet

1 1 1 1
2 3 4 1
1
1 1 \d4

3 4

26/56

[J Finding an edge packing

Residual capacities are now unwieldy fractions,
even though our starting point was unweighted!

Unweighted instance =— weighted subproblems

1
12 0

N|—
D=
H1Q

lon
NS

27/56

[J Finding an edge packing

Pessimist’s take:

e Solving this will be as hard as finding
maximal edge packings in weighted graphs

e Let’s try something else

Optimist’s take:

e If we solve this, we can also find
maximal edge packings in weighted graphs

o Let’'s doit!

28/56

0 Part lll:
Pessimist’s algorithm

Finding maximal edge packings
in unweighted graphs

s

29/56

[J Finding an edge packing

Construct a 2-coloured bipartite double cover

Each original node simulates two nodes of the cover

\]/
X

30/56

[J Finding an edge packing

Find a maximal matching in the 2-coloured graph
Easy in O(A) rounds

31/56

[J Finding an edge packing

Give % units of weight to each edge in matching

32/56

[J Finding an edge packing

Many possibilities. . .

33/56

[J Finding an edge packing

Many possibilities. . .

34/56

[J Finding an edge packing

Many possibilities. . .

35/56

[J Finding an edge packing

Always: weight % paths and cycles and weight 1 edges

Valid edge packing

36/56

[J Finding a maximal edge packing

Not necessarily maximal — but all unsaturated edges
adjacent to two weight % edges

37/56

[J Finding a maximal edge packing

In any graph:

Unsaturated edges
adjacent to two
weight ; edges

38/56

[J Finding a maximal edge packing

In any graph:

Unsaturated edges
adjacent to two
weight ; edges

Delete
saturated edges

A=3 = A=2]

% o} o o}
Y o} o o 4
o O { 0
o © O 0

O
O
O
O

39/56

[J Finding a maximal edge packing

Each node has lost
at least one neighbour

Residual capacity
of each node is
exactly 1

A=3 > A=2 ~—o

40/56

[J Finding a maximal edge packing

Repeat

41/56

[J Finding a maximal edge packing

Delete saturated edges

A=2—> A=1] O

42/56

[J Finding a maximal edge packing

Each node has lost
at least one neighbour

Residual capacity
of each node is o—0
exactly §

A=2 > A=1]

43/56

[J Finding a maximal edge packing

Repeat...

44/56

[J Finding a maximal edge packing

Repeat...

Maximum degree decreases
on each iteration

Everything saturated in
A iterations

45/56

[J Finding a maximal edge packing

Maximal edge packing in (A -+ 1) rounds

— 2-approximation of vertex cover

g
|

46/56

[J Finding a maximal edge packing

Maximal edge packing in (A -+ 1) rounds

— 2-approximation of vertex cover

X ok ok

But it seems that this cannot be generalised
to approximate minimum-weight vertex cover

A different approach needed

47/56

O Part IV:
Optimist’s algorithm

Finding maximal edge packings
in weighted graphs

s

48/56

[J Finding an edge packing

Recall the simple algorithm: a node of degree d offers
1/d of its residual capacity to each incident edge

Each edge accepts the minimum of the two offers

==
[L

N|—
N[—=
Q=
W=
W=
(=

W=

ENE
=

==

N[—
N[—

49/56

[J Finding an edge packing

Starting point has non-uniform capacities,
ok if subproblems have non-uniform capacities!

Let’s study this approach more carefully. ..

1
12 0

N|—
D=
H1Q

lon
NS

50/56

[J Finding an edge packing

Key observation: For each node

1. at least one incident edge becomes saturated
(= cannot increase edge weight), or ...

1
12 0

N|—
D=
H1Q

lon
NS

51/56

[J Finding an edge packing

Key observation: for each node

1. at least one incident edge becomes saturated, or

2. at least one incident edge got two different offers

1
1

N[—=
N
W=
W=
NN
=
Y U

52/56

[J Finding an edge packing

Key observation: for each node
1. at least one incident edge becomes saturated, or

2. at least one incident edge got two different offers

We can interpret the offers as “colours”

Progress is guaranteed:
edges become saturated or multi-coloured

53/56

[J Finding an edge packing

After A iterations: each edge saturated or multi-coloured
At this point, colours are huge integers
A\ A
1,2,..., (W(A!))

but Cole—Vishkin (1986) techniques can be used
to reduce the number of colours to A + 1 very fast

Then we can use the colours to saturate all edges

(W = maximum weight)
54/56

[J Finding an edge packing

In summary, maximal edge packing in O(A + log™ W)
rounds, where W = maximum weight

That is, O(A) rounds in unweighted graphs!
e pessimist’s algorithm was O(A?)
Based on a natural “greedy but safe” strategy

e pessimist’s algorithm was more ad hoc?

Generalisations: set cover problem, ...
55/56

[J Summary

e Two distributed 2-approximation algorithms
for the vertex cover problem

e Running times: O(A?) and O(A) rounds,
deterministic, can be self-stabilised

e Strictly local algorithms — running time
independent of number of nodes

e Be optimistic: more general problems are
sometimes easier to tackle
http://www.cs.helsinki.fi/jukka.suomela/
56/56

