Local approximation algorithms for vertex cover

Jukka Suomela — HIIT, University of Helsinki, Finland Joint work with Matti Åstrand, Patrik Floréen, Valentin Polishchuk, Joel Rybicki, and Jara Uitto

Paderborn, 20 October 2009

□ Part I: Introduction

Vertex cover problem in a distributed setting

Vertex cover

Given a graph G = (V, E), find a smallest $C \subseteq V$ that covers every edge of G

 i.e., each edge e ∈ E incident to at least one node in C

Classical NP-hard optimisation problem

Node = computer

Edge = communication link

Each node must decide whether it is in the cover C

Graph is unknown, all nodes run the same algorithm

Initially: Each node knows its own degree and the maximum degree Δ

Port numbering: each node has chosen an ordering on its incident edges

Communication primitives:

- "send message *m* to port *i*"
- "let m be the message received from port i"

Synchronous communication round: Each node

1. performs local computation

Synchronous communication round: Each node

- 1. performs local computation
- 2. sends a message to each neighbour

Synchronous communication round: Each node

- 1. performs local computation
- 2. sends a message to each neighbour (message propagation...)

Synchronous communication round: Each node

- 1. performs local computation
- 2. sends a message to each neighbour
- 3. receives a message from each neighbour

Finally: Each node performs local computation and announces its output: whether it is in the cover *C*

Running time = number of communication rounds

Focus:

- deterministic algorithm
- strictly *local algorithm*, running time independent of n = |V|(but may depend on maximum degree Δ)
- the best possible approximation ratio

Prior work

Kuhn et al. (2006):

• $(2+\epsilon)$ -approximation in $O(\log \Delta/\epsilon^4)$ rounds

Czygrinow et al. (2008), Lenzen & Wattenhofer (2008):

• $(2 - \epsilon)$ -approximation requires $\Omega(\log^* n)$ rounds, even if $\Delta = 2$

What about 2-approximation?

Is it possible in $f(\Delta)$ rounds, for some f?

Contribution

Deterministic 2-approximation algorithm for vertex cover

• Running time $O(\Delta)$ synchronous rounds

Surprise: node identifiers not needed

- Negative result for (2ϵ) -approximation holds even if there are *unique node identifiers*
- Our algorithm can be used in anonymous networks

□ Part II: Background

Maximal matchings and edge packings

Background: maximal matching

In a centralised setting, 2-approximation is easy: find a *maximal matching*, take all matched nodes

But matching requires $\Omega(\log^* n)$ rounds and unique identifiers

symmetry breaking!

Background: maximal edge packing

Edge packing = nonnegative edge weights, for each $v \in V$, total weight on incident edges ≤ 1

Maximal, if no weight can be increased

■ Background: maximal edge packing

Weighted edge packing = nonnegative edge weights, for each $v \in V$, total weight on incident edges $\leq w_v$

Maximal, if no weight can be increased

■ Background: maximal edge packing

Maximal matching \implies maximal edge packing (matched: weight 1, unmatched: weight 0)

■ Background: maximal edge packing

Maximal matching requires symmetry breaking

Maximal edge packing does not

Background: maximal edge packing

Node *saturated* if total weight on incident edges = 1

Saturated nodes in a maximal edge packing = 2-approximation of vertex cover (proof: LP duality)

Background: maximal edge packing

Node *saturated* if total weight on incident edges = 1

Saturated nodes in a maximal edge packing = 2-approximation of vertex cover

* * *

So we only need to design a distributed algorithm that finds a maximal edge packing

Warm-up: how to find a (non-trivial) edge packing?

A simple approach: a node of degree d offers 1/d of its residual capacity to each incident edge

Residual capacity = 1 — total weight of incident edges = how much we could increase the weights of incident edges

Each edge *accepts* the minimum of the two offers (cf. Khuller et al. 1994, Papadimitriou and Yannakakis 1993)

Looks good, some progress is guaranteed, and we might even saturate some nodes

But this is not a maximal edge packing yet

Residual capacities are now unwieldy fractions, even though our starting point was unweighted!

Unweighted instance ⇒ *weighted subproblems*

Pessimist's take:

- Solving this will be as hard as finding maximal edge packings in weighted graphs
- Let's try something else

Optimist's take:

- If we solve this, we can also find maximal edge packings in weighted graphs
- Let's do it!

☐ Part III: Pessimist's algorithm

Finding maximal edge packings in unweighted graphs

Construct a 2-coloured bipartite double cover

Each original node simulates two nodes of the cover

Find a maximal matching in the 2-coloured graph Easy in $O(\Delta)$ rounds

Give $\frac{1}{2}$ units of weight to each edge in matching

Many possibilities...

Many possibilities...

Many possibilities...

Always: weight $\frac{1}{2}$ paths and cycles and weight 1 edges Valid edge packing

Not necessarily maximal – but all unsaturated edges adjacent to two weight $\frac{1}{2}$ edges

In any graph:

Unsaturated edges adjacent to two weight $\frac{1}{2}$ edges

 $\Delta = 3$

In any graph:

Unsaturated edges adjacent to two weight $\frac{1}{2}$ edges

Delete saturated edges

$$\Delta = 3 \rightarrow \Delta = 2$$

Each node has lost at least one neighbour

Residual capacity of each node is exactly $\frac{1}{2}$

$$\Delta = 3 \rightarrow \Delta = 2$$

Repeat

Delete saturated edges

$$|\Delta=2 \rightarrow \Delta=1|$$

Each node has lost at least one neighbour

Residual capacity of each node is exactly $\frac{1}{4}$

$$\Delta = 2 \rightarrow \Delta = 1$$

Repeat...

Repeat...

Maximum degree decreases on each iteration

Everything saturated in Δ iterations

Maximal edge packing in $(\Delta + 1)^2$ rounds

⇒ 2-approximation of vertex cover

Maximal edge packing in $(\Delta + 1)^2$ rounds \implies 2-approximation of vertex cover

But it seems that this cannot be generalised to approximate minimum-weight vertex cover

A different approach needed

Part IV:Optimist's algorithm

Finding maximal edge packings in weighted graphs

Recall the simple algorithm: a node of degree d offers 1/d of its residual capacity to each incident edge Each edge accepts the minimum of the two offers

Starting point has non-uniform capacities, ok if subproblems have non-uniform capacities! Let's study this approach more carefully...

Key observation: For each node

 at least one incident edge becomes saturated (= cannot increase edge weight), or . . .

Key observation: for each node

- 1. at least one incident edge becomes saturated, or
- 2. at least one incident edge got two different offers

Key observation: for each node

- 1. at least one incident edge becomes saturated, or
- 2. at least one incident edge got two different offers

We can interpret the offers as "colours"

Progress is guaranteed: edges become saturated or multi-coloured

After Δ iterations: each edge saturated or multi-coloured

At this point, colours are huge integers

$$1, 2, \ldots, (W(\Delta!)^{\Delta})^{\Delta}$$

but Cole–Vishkin (1986) techniques can be used to reduce the number of colours to $\Delta+1$ very fast

Then we can use the colours to saturate all edges

(W = maximum weight)

In summary, maximal edge packing in $O(\Delta + \log^* W)$ rounds, where $W = \max$ imum weight

That is, $O(\Delta)$ rounds in unweighted graphs!

• pessimist's algorithm was $O(\Delta^2)$

Based on a natural "greedy but safe" strategy

pessimist's algorithm was more ad hoc?

Generalisations: set cover problem, ...

Summary

- Two distributed 2-approximation algorithms for the vertex cover problem
- Running times: $O(\Delta^2)$ and $O(\Delta)$ rounds, deterministic, can be self-stabilised
- Strictly local algorithms running time independent of number of nodes
- Be optimistic: more general problems are sometimes easier to tackle

http://www.cs.helsinki.fi/jukka.suomela/