
Stable matchings from the perspective of
distributed algorithms

Jukka Suomela — HIIT, University of Helsinki, Finland

Joint work with Patrik Floréen,
Petteri Kaski, and Valentin Polishchuk

1 1

221 1

1

3

322

1

1 2

NO

YES

YES

YES

Carleton University, 19 April 2010

Part I:
Introduction

2 / 49

Stable matchings

1

121 1

221

1

1 2

3

32

Stable marriage problem

3 / 49

Input: bipartite graph G = (R ∪ B, E) . . .

• R = red nodes
• B = blue nodes

Stable marriage problem

4 / 49

Input: bipartite graph G = (R ∪ B, E) . . .

• R = red nodes
• B = blue nodes

Example 1:

• red node r: PhD student
• blue node b: PhD position
• edge {r, b}: student r has applied for position b
• who gets which position?

Stable marriage problem

5 / 49

Input: bipartite graph G = (R ∪ B, E) . . .

• R = red nodes
• B = blue nodes

Example 2:

• red node r: woman
• blue node b: man
• edge {r, b}: r and b know each other
• who will marry whom?

Stable marriage problem

6 / 49

Input: bipartite graph G = (R ∪ B, E) and preferences

• 1 = most preferred partner
• but anyone is better than no-one

1

121 1

221

1

1 2

3

32

Stable marriage problem

7 / 49

Output: a stable matching, i.e.,
a matching without unstable edges

1

121 1

221

1

1 2

3

32

Stable marriage problem

8 / 49

Matching: subset M ⊆ E of edges such that
each node adjacent to at most one edge in M

1

121 1

221

1

1 2

3

32

Stable marriage problem

9 / 49

Matching: subset M ⊆ E of edges such that
each node adjacent to at most one edge in M

1

121 1

221

1

1 2

3

32

Stable marriage problem

10 / 49

Matching: subset M ⊆ E of edges such that
each node adjacent to at most one edge in M

1

121 1

221

1

1 2

3

32

Stable marriage problem

11 / 49

Unstable edge: edge {r, b} /∈ M such that

• r prefers b to r’s current partner (if any)
• b prefers r to b’s current partner (if any)

1

121 1

221

1

1 2

3

32

Stable marriage problem

12 / 49

Unstable edge: edge {r, b} /∈ M such that

• r prefers b to r’s current partner (if any)
• b prefers r to b’s current partner (if any)

1

121 1

221

1

1 2

3

32

Stable marriage problem

13 / 49

Unstable edge: edge {r, b} /∈ M such that

• r prefers b to r’s current partner (if any)
• b prefers r to b’s current partner (if any)

1

121 1

221

1

1 2

3

32

Stable marriage problem

14 / 49

Stable matching: no unstable edges

1

121 1

221

1

1 2

3

32

Stable marriage problem

15 / 49

Stable matching: no unstable edges

Potential applications:

• Good solution in many assignment problems
(e.g., matching PhD students with positions)?

• Useful concept in analysing real-world
social networks (e.g., human relations)?

Stable marriage problem

16 / 49

Stable matching: no unstable edges

• Does it always exist?
• How to find one?

1

121 1

221

1

1 2

3

32

Part II:
Finding a stable matching

17 / 49

Gale–Shapley

1

121 1

221

1

1 2

3

32

Stable marriage problem

18 / 49

An adaptation of the Gale–Shapley algorithm (1962)

Begin with an empty matching

1

121 1

221

1

1 2

3

32

Stable marriage problem

19 / 49

Unmatched red nodes send proposals
to their most-preferred neighbours

1 1

221 1

1

3

322

1

1 2
?

?

? ?

Stable marriage problem

20 / 49

Blue nodes accept the best proposal

1 1

221 1

1

3

322

1

1 2

NO

YES

YES

YES

Stable marriage problem

21 / 49

Blue nodes accept the best proposal

Remove rejected edges and repeat. . .

3

1 1

221 1

1

1

2

3212

Stable marriage problem

22 / 49

Unmatched red nodes send proposals
to their most-preferred neighbours

221 1

1

3

1 1

1

2

3212
?

Stable marriage problem

23 / 49

Blue nodes accept the best proposal

It is ok to change mind if a better proposal is received!

221 1

1

3

1 2 1

1

2

321
× YES

Stable marriage problem

24 / 49

Blue nodes accept the best proposal

Remove rejected edges and repeat. . .

1

221 1

1

3

2

1

2

321 1

Stable marriage problem

25 / 49

Eventually each red node

• is matched, or
• has been rejected by all neighbours

1

221 1

1

3

2

1

2

321 1

Stable marriage problem

26 / 49

Let {r, b} /∈ M: (i) b ∈ B rejected r ∈ R
=⇒ b was matched to a more preferred neighbour
=⇒ {r, b} is not unstable

b

1 1

1

3

21

r

1

2

321 1

22

Stable marriage problem

27 / 49

Let {r, b} /∈ M: (ii) r ∈ R did not ask b ∈ B
=⇒ r is matched to a more preferred neighbour
=⇒ {r, b} is not unstable

b

1 1

1

3

21

r

1

2

321 1

22

Stable marriage problem

28 / 49

The Gale–Shapley algorithm finds a stable matching
– in particular, a stable matching always exists

Ok, that was published 48 years ago, more recent news?

1

121 1

221

1

1 2

3

32

Part III:
Stable matchings in a distributed setting

29 / 49

Stable matchings are unstable

1

121 1

221

1

1 2

3

32

Stable matchings in a distributed setting

30 / 49

Node = computer, edge = communication link

Efficient distributed algorithms for stable matchings?

1

121 1

221

1

1 2

3

32

Stable matchings in a distributed setting

31 / 49

The Gale–Shapley algorithm can be interpreted
as a distributed algorithm

• proposal, acceptance, rejection: messages

1 1

221 1

1

3

322

1

1 2

NO

YES

YES

YES

Stable matchings in a distributed setting

32 / 49

Many nice properties:

• small messages, deterministic
• unique identifiers not needed

1 1

221 1

1

3

322

1

1 2

NO

YES

YES

YES

Stable matchings in a distributed setting

33 / 49

But Gale–Shapley isn’t fast – it cannot be fast!

1

1 2

21

1 2

21

1 2 11

2 1

21

1 2

21

1 2

21

1 2 11

1 2

2

Stable matchings in a distributed setting

34 / 49

Solution depends on the input in distant parts of network
=⇒ worst-case running time Ω(diameter)

1

1 2

21

1 2

21

1 2 11

2 1

21

1 2

21

1 2

21

1 2 11

1 2

2

Stable matchings in a distributed setting

35 / 49

Stable matchings are unstable! Minor changes in input
may require major changes in output

1

1 2

21

1 2

21

1 2 11

2 1

21

1 2

21

1 2

21

1 2 11

1 2

2

Stable matchings in a distributed setting

36 / 49

Stable matchings are unstable! Minor changes in input
may require major changes in output

• This isn’t really what we would expect to happen,
e.g., in real-world large scale social networks

• Very distant parts of the network should not affect
my choices

• Are stable matchings the right problem to study?
Matchings that are more robust and more local?

Part IV:
Almost stable matchings

37 / 49

Truncating Gale–Shapley

1

121 1

221

1

1 2

3

32

Almost stable matchings

38 / 49

Our contribution: asking the right questions

• What if we allow a small fraction
of unstable edges?

• What happens if we run Gale–Shapley
for a small number of rounds?

Others have asked similar questions, too. . .

Almost stable matchings

39 / 49

What if we allow a small fraction of unstable edges?

• Biró et al. (2008): finding a maximum matching
with few unstable edges is hard

• Finding any matching with few unstable edges?

Running Gale–Shapley for a small number of rounds?

• Quinn (1985): experimental work suggests
that we get few unstable edges

• Any theoretical guarantees?

Almost stable matchings

40 / 49

Definition: A matching M is ε-stable
if there are at most ε|M| unstable edges

Main result: There is a distributed algorithm that
finds an ε-stable matching in O(∆2/ε) rounds

Algorithm: Just run the distributed version of
Gale–Shapley for that many steps!

∆ = maximum degree of G

Almost stable matchings

41 / 49

During the Gale–Shapley algorithm:

{r, b} ∈ E is an unstable edge
=⇒ r unmatched and r has not yet proposed b

3

1 1

221 1

1

1

2

3212

Almost stable matchings

42 / 49

Key idea: define total potential
= number of unmatched red nodes with proposals left
= how much red nodes could “gain”

if we did not truncate Gale–Shapley

3

21 1

221 1

1

1

2

321

Almost stable matchings

43 / 49

Key idea: define total potential
= number of unmatched red nodes with proposals left

Initially high

1

2

3

32121 1

221

1

1

Almost stable matchings

44 / 49

Key idea: define total potential
= number of unmatched red nodes with proposals left

Zero if we run the full Gale–Shapley

1

221 1

1

3

2

1

2

321 1

Almost stable matchings

45 / 49

• Potential is non-increasing: if a red node loses
its partner, another red node gains a partner

• Assume that potential is α after round k > 1
=⇒ α nodes received ‘no’ or ‘break’ in round k
=⇒ at least α edges removed in round k
=⇒ at least (k− 1)α edges removed

in rounds 2, 3, . . . , k

• At most O(∆|M|) edges removed in total
=⇒ potential O(∆|M|/k) after round k
=⇒ O(∆2|M|/k) unstable edges

Almost stable matchings

46 / 49

Generalises to weighted matchings

Applications (in bipartite, bounded-degree graphs):

• Local (2 + ε)-approximation algorithm
for maximum-weight matching

• Centralised randomised algorithm for
estimating the size of a stable matching

(All stable matchings have the same size!)

Almost stable matchings

47 / 49

But I think the most interesting observation is this:

• Almost stable matchings are a local problem
(at least in bounded-degree graphs)

• There is a simple local algorithm that finds
a robust , almost stable matching M

• The matching M can be easily maintained
in a dynamic network, constructed by using
an efficient self-stabilising algorithm, etc.

Almost stable matchings

48 / 49

Research question: are almost stable matchings
the right concept when we try to understand and analyse
real-world social networks, matching markets, etc.?

3

1 1

221 1

1

1

2

3212

Summary

49 / 49

Stable matching:

• global problem, any solution is unrobust

Almost stable matching:

• local problem, robust solutions exist

No new algorithms needed, just a new analysis
of the Gale–Shapley algorithm from 1962

http://www.cs.helsinki.fi/ jukka.suomela/

