Local Algorithms: Past, Present, Future

Jukka Suomela

Helsinki Institute for Information Technology HIIT University of Helsinki

www.hiit.fi/jukka.suomela/

Hebrew University of Jerusalem, 23 November 2011

Background

• Graphs

- Graphs
- Algorithms for graph problems
 - Independent sets

- Graphs
- Algorithms for graph problems
 - Independent sets, matchings

- Graphs
- Algorithms for graph problems
 - Independent sets, matchings,

vertex covers

- Graphs
- Algorithms for graph problems
 - Independent sets, matchings, vertex covers, dominating sets

- Graphs
- Algorithms for graph problems
 - Independent sets, matchings, vertex covers, dominating sets, edge dominating sets

- Graphs
- Algorithms for graph problems
 - Independent sets, matchings, vertex covers, dominating sets, edge dominating sets, graph colourings

- Graphs
- Algorithms for graph problems
 - Independent sets, matchings, vertex covers, dominating sets, edge dominating sets, graph colourings, ...

- Local neighbourhood: nodes at distance *r*
 - Here r = O(1),
 independent of
 number of nodes
 - Shortest-path distance, number of edges

- Local algorithm:
 each node operates
 based on its local
 neighbourhood only
 - Output is a function of local neighbourhood

• Same neighbourhood, same output

Equivalently:

- Constant-time distributed algorithm
- Time = number of synchronous communication rounds

Advantages

- Fast and scalable distributed algorithm
 - By definition...
- Fault-tolerant and robust
 - Changes in input (or network structure): only *local changes in output*
 - We can quickly recover from any failures
- But do these exist?

Past

- Long history of very strong negative results
 - *Linial* (1992)
 - *Naor & Stockmeyer* (1995)
 - Czygrinow, Hańćkowiak & Wawrzyniak (2008)
 - Lenzen & Wattenhofer (2008)
 - using, e.g., results that date back to *Ramsey* (1930)

• Even if your graph is a cycle...

- Even if your graph is a cycle...
- And even if you have unique node identifiers...

- Even if your graph is a cycle...
- And even if you have unique node identifiers...
- And orientation...

- Even if your graph is a cycle...
- And even if you have unique node identifiers...
- And orientation...
- Then no matter which local algorithm you use, there is a "bad input"

• "Bad input":

- Almost all nodes will produce the same output
- Graph colouring not possible
- You can find only trivial independent sets, matchings, vertex covers, dominating sets, ...

- Example: A is a local algorithm with r = 2, outputs from $\{1, 2, ..., k\}$
 - Focus on oriented cycles
 - A maps 5-tuples of identifiers to local outputs
 - A(15, 72, 5, 12, 30) = ...

- Example: A is a local algorithm with r = 2, outputs from $\{1, 2, ..., k\}$
 - Set of identifiers: $I = \{1, 2, ..., N\}$
 - Let $X = \{a, b, c, d, e\} \subseteq I$, a < b < c < d < e
 - Define the *colour C(X)* of *X*: C(X) = A(a, b, c, d, e)

- Example: A is a local algorithm with r = 2, outputs from $\{1, 2, ..., k\}$
 - Set of identifiers: $I = \{1, 2, ..., N\}$
 - Let $X = \{a, b, c, d, e\} \subseteq I$, a < b < c < d < e
 - Define the colour C(X) of X: C(X) = A(a, b, c, d, e)
 - We will colour *all* 5-subsets of *I*

• Example: A is a local algorithm with r = 2, outputs from $\{1, 2, ..., k\}$

• Set of identifiers: $I = \{1, 2, ..., N\}$, colouring C(X) of 5-subsets

• *Ramsey*: if N is large enough, there exists a large monochromatic subset $M \subseteq I$

• All 5-subsets $X \subseteq M$ have the same colour C(X)

- Example: A is a local algorithm with r = 2, outputs from $\{1, 2, ..., k\}$
 - Assume that $M = \{a, b, c, d, e, f\}$ is a monochromatic subset, a < b < c < d < e < f
 - $C(\{a, b, c, d, e\}) = C(\{b, c, d, e, f\})$
 - A(a, b, c, d, e) = A(b, c, d, e, f)

- Example: A is a local algorithm with r = 2, outputs from $\{1, 2, ..., k\}$
 - We have found a "bad input": nodes with identifiers *c* and *d* are adjacent and they produce the same output
 - We already proved that
 A cannot produce
 a valid graph colouring!

- Example: A is a local algorithm with r = 2, outputs from $\{1, 2, ..., k\}$
 - We can apply the same idea for any value of *r*
 - And we can "boost"
 the argument and show
 that almost all nodes will
 produce the same output

- For
 - any local algorithm A that finds an independent set,
 - any constant $\varepsilon > 0$, and
 - sufficiently large *n*,

we can choose unique identifiers in an n-cycle so that A outputs an independent set with only εn nodes

- For
 - any local algorithm A that finds a vertex cover,
 - any constant $\varepsilon > 0$, and
 - sufficiently large *n*,

we can choose unique identifiers in an n-cycle so that A outputs a vertex cover with at least $(1 - \varepsilon)n$ nodes

Dealing with Bad News

- Three traditional escapes:
 - Randomised algorithms
 - Geometric information
 - "Almost local" algorithms

Dealing with Bad News

- Three traditional escapes:
 - Randomised algorithms
 - Geometric information
 - "Almost local" algorithms

Randomised Algorithms

• Nodes can *roll dice* or *toss coins*

Randomised Algorithms

- Nodes can *roll dice* or *toss coins*
- We cannot guarantee that we find a good solution
 - Worst case: all coin tosses equal, no new information
- But we can find a good solution with high probability or in expectation

Randomised Algorithms

- *Example*: finding an independent set *I*
 - Each node v picks uniformly at random $X(v) = \boxdot, \boxdot, \boxdot, \boxdot, \boxminus, \boxminus, \boxminus$

- *Example:* finding an independent set *I*
 - Each node v picks uniformly at random $X(v) = \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxminus, \boxminus$
 - Node v joins I if X(v) is (strict) *local maximum*

- *Example*: finding an independent set *I*
 - Each node v picks uniformly at random $X(v) = \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxminus, \boxminus$
 - Node v joins I if X(v) is (strict) local maximum
- By construction, *I* is an *independent set*

- *Example*: finding an independent set *I*
 - Each node v picks uniformly at random $X(v) = \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxminus, \boxminus$
 - Node v joins I if X(v) is (strict) local maximum
- Expected size of *I* is *reasonably large*

- *Example:* finding an independent set *I*
 - A local randomised algorithm can find a large independent set
 - Approximation algorithm (in expectation)
 - However, we cannot find maximum independent set or maximal independent set

Dealing with Bad News

- Three traditional escapes:
 - Randomised algorithms
 - Geometric information
 - "Almost local" algorithms

- Assume that nodes are points in the plane
- Assume "reasonable" embedding

- Assume that nodes are points in the plane
- Assume "reasonable" embedding
 - Civilised graph

- Assume that nodes are points in the plane
- Assume "reasonable" embedding
 - Civilised graph: edges not too long...

- Assume that nodes are points in the plane
- Assume "reasonable" embedding
 - Civilised graph:
 edges not too long,
 nodes not in too dense

- Assume that nodes are points in the plane
- Assume "reasonable" embedding
 - Civilised graph
 - Unit disk graph
 - Quasi unit disk graph...

- Exploit coordinates
 - a simple approach: divide-and-conquer
 - e.g., partition the plane in rectangular *tiles*

- Exploit coordinates
 - each tile defines a constant-size subproblem
 - solve the subproblem locally within each tile (in parallel for all tiles)

- Exploit coordinates
 - each tile defines a constant-size subproblem
 - solve the subproblem locally within each tile
 - *merge* the solutions of the subproblems

- Graph colouring:
 - f = 3-colouring of tiles
 - all edges are short
 - there is no edge that joins e.g. a blue tile and another blue tile

- Graph colouring:
 - f = 3-colouring of tiles
 - g = k-colouring that is valid *inside* each tile
 - can be solved by brute force

- Graph colouring:
 - f = 3-colouring of tiles
 - g = k-colouring that is valid *inside* each tile
 - Output: (*f*, *g*)
 - Valid 3*k*-colouring!

- Simple local algorithms:
 - *maximal* matchings, independent sets, ...
 - approximation algorithms for vertex covers, dominating sets, colourings, ...

Dealing with Bad News

- Three traditional escapes:
 - Randomised algorithms
 - Geometric information
 - "Almost local" algorithms

- We cannot find non-trivial solutions in a cycle in *O*(1) rounds
- But we can do it in $O(\log^* n)$ rounds!
 - $\log^* n$ = iterated logarithm
 - $0 \le \log^* n \le 7$ for all real-world values of n
 - Good enough?

- Main tool: colour reduction
 - Cole & Vishkin (1986)
 - Goldberg, Plotkin & Shannon (1988)
- Bit manipulation trick:
 - From k colours to $O(\log k)$ colours in one step
 - Initially poly(n) colours: unique identifiers
 - Iterate $O(\log^* n)$ times until O(1) colours

- Graph colouring in $O(\log^* n)$ rounds
 - Paths or cycles, 3-colouring
- Generalisations:
 - Trees, bounded-degree graphs, ...
 - Graphs of maximum degree Δ : $(\Delta+1)$ -colouring in $O(\Delta + \log^* n)$ rounds

- Graph colouring in $O(\log^* n)$ rounds
- Many applications:
 - Maximal independent set: first try to add nodes of colour 0 (in parallel), then try to add nodes of colour 1 (in parallel), ...
 - Maximal matching
 - Greedy algorithm for dominating sets

- Graph colouring in $O(\log^* n)$ rounds
- Many applications
- Fast, but not strictly local
 - And inherently depends on the existence of small, unique, numerical identifiers

Past: Summary

- Bad news:
 - Cannot break symmetry in cycles
- Three traditional escapes:
 - Randomised algorithms
 - Geometric information
 - "Almost local" algorithms

Present

Dealing with Bad News

- You cannot break symmetry in cycles...
- Which problems *do not require* symmetry breaking in cycles?

- Linear programs (LPs)
 - Many resource-allocation problems can be modelled as LPs
 - If the input is symmetric, a trivial solution is an optimal solution!
 - Only non-symmetric inputs are challenging...

- Linear programs (LPs)
 - Approximation scheme for packing and covering LPs
 - Local algorithm
 - Kuhn, Moscibroda & Wattenhofer (2006)

- Vertex covers
 - 2-approximation is the best that we can find with *centralised polynomial-time algorithms*
 - Nobody knows how to find
 1.9999-approximation efficiently
 - Hence if we could find a 2-approximation with *local algorithms*, it would be amazing!

Vertex covers

- 2-approximation does not require symmetry breaking
- In a regular graph, trivial solution (all nodes) is
 2-approximation
- Again, only non-symmetric inputs are challenging...

- Vertex covers
 - 2-approximation of vertex cover in bounded-degree graphs
 - Local algorithm
 - Åstrand & Suomela (2010)

Vertex covers

- 2-approximation of vertex cover in bounded-degree graphs
- Local algorithm
- A bit complicated...
- Let's have a look at a simpler local algorithm:
 3-approximation of vertex cover

A simple local algorithm: 3-approximation of minimum vertex cover

Construct a *virtual graph*: two copies of each node; edges across

The virtual graph is 2-coloured: all edges are from white to black

The virtual graph is 2-coloured – therefore we can find a *maximal matching*!

White nodes send *proposals* to their black neighbours

Black nodes *accept* one of the proposals

White nodes send *proposals* to another black neighbour if they were rejected

Again, black nodes *accept* one proposal – unless they were already matched

Continue until all white nodes are matched – or they are rejected by all black neighbours

End result: a *maximal matching* in the virtual graph

Take all original nodes that were matched – *3-approximation of minimum vertex cover*!

Present: Summary

- You cannot break symmetry in cycles...
- But we can study problems that *do not require* symmetry breaking!
 - Linear programs: local approximation schemes
 - Vertex covers: local 2-approximation algorithm
 - Edge dominating sets: local approximation algorithm

• ...

Future

Dealing with Bad News

- Let's have a fresh look at the lower bounds!
 - Exactly what was proved?

Lower Bounds

- Only trivial solutions in cycles
- Assumption: constant-size output
 - Each node outputs constant number of bits
- Innocuous?

- Vertex cover, independent set, dominating set, cut: 1 *bit per node*
- Matching, edge dominating set, edge cover: 1 *bit per edge*
 - In a cycle, this is O(1) bits per node

- Graph colouring:
 - O(1) colours should be enough in a cycle
 - Hence *O*(1) *bits per node* is enough to encode the solution
- Linear programs:
 - For a near-optimal solution, we can use finite-precision rational numbers

- Natural problems seem to have constant-size output
- Hence the negative results apply
 - Unique identifiers do not help in cycles
 - We can only produce trivial solutions in cycles
 - We can only solve problems that do not require symmetry-breaking

- Natural problems seem to have constant-size output
- Hence the negative results apply

Did we miss anything?

Scheduling Problems

- Local approximation algorithms
 - Scheduling problems: fractional graph colouring, fractional domatic partition, ...
 - First example of a local algorithm that actually requires unique numerical identifiers
 - Hasemann, Hirvonen, Rybicki & Suomela (work in progress)

More New Directions

- Deterministic local algorithm
 - cf. deterministic Turing machine class P
- Randomised local algorithm
 - cf. probabilistic Turing machine class BPP, etc.
- Nondeterministic local algorithm
 - cf. nondeterministic Turing machine class NP

Decision Problems

- Back to very basics: decision problems
 - Is this graph bipartite? Acyclic? Hamiltonian? Eulerian? Connected? 3-colourable? Symmetric?
 - Decision problems form the foundation of classical complexity theory...

Decision Problems

- Decision problems in distributed setting:
 - yes-instance: all nodes happy
 - no-instance: at least one node raises alarm
- Few decision problems can be solved with deterministic local algorithms
 - But now we have a very natural extension...

Decision Problems

- Nondeterministic local algorithms
 - Yes-instances have a compact certificate that can be verified with a local algorithm
 - "locally checkable proof"
- Cf. class NP:
 - Yes-instances have a compact certificate that can be verified in P

Locally Checkable Proofs

- Key question: what is the size of the proof?
 - How many bits per node are needed?
 - For example, it is easy to show that a graph is bipartite: just give a 2-colouring, 1 bit per node
 - How do you prove that a graph is not bipartite?

Locally Checkable Proofs

- Key question: what is the size of the proof?
 - How many bits per node are needed?
 - For example, it is easy to show that a graph is bipartite: just give a 2-colouring, 1 bit per node
 - How do you prove that a graph is not bipartite?
 - Find an odd cycle, and prove that it exists
 - $O(\log n)$ bits is enough, $\Omega(\log n)$ bits necessary

Locally Checkable Proofs

- Natural hierarchy of proof complexities:
 - 2-colourable graphs: $\Theta(1)$ bits per node
 - Non-2-colourable graphs: $\Theta(\log n)$ bits per node
 - Non-3-colourable graphs: poly(n) bits per node
 - Göös & Suomela (2011)

Summary

- Local algorithms
- Strong lower bounds
 - Nevertheless, a lot of progress!
- Latest hot topics
 - Scheduling problems
 - Nondeterministic models

www.hiit.fi/jukka.suomela/

