Local Algorithms:
Past, Present, Future

Jukka Suomela

Helsinki Institute for Information Technology HIIT
University of Helsinki

www. hiit.fi/jukka.suomela/

Hebrew University of Jerusalem, 23 November 2011

http://www.hiit.fi/jukka.suomela/
http://www.hiit.fi/jukka.suomela/

Background

Setting

e Graphs

Setting

e Graphs

o Algorithms for
graph problems

» Independent sets

Setting

e Graphs

o Algorithms for
graph problems

» Independent sets,
matchings

Setting

» Graphs

o Algorithms for
graph problems
» Independent sets,

matchings,
vertex covers

Setting

e Graphs

o Algorithms for
graph problems

» Independent sets,
matchings,
vertex covers,
dominating sets

Setting

» Graphs

o Algorithms for
graph problems

» Independent sets,
matchings,
vertex covers,
dominating sets,
edge dominating sets

Setting

e Graphs

o Algorithms for
graph problems

» Independent sets,
matchings,
vertex covers,
dominating sets,
edge dominating sets,
graph colourings

Setting

e Graphs

o Algorithms for
graph problems

» Independent sets,
matchings,
vertex covers,
dominating sets,
edge dominating sets,
graph colourings, ...

Local Algorithms

» Local neighbourhood:
nodes at distance r
« Here r = O(1),

independent of
number of nodes

 Shortest-path distance,
number of edges

Local Algorithms

» Local algorithm:
each node operates
based on its local
neighbourhood only

« Output is a function
of local neighbourhood

Local Algorithms

» Same neighbourhood,
same output

Local Algorithms

» Equivalently:

o Constant-time
distributed algorithm

e Time = number
of synchronous
communication
rounds

Advantages

 Fast and scalable distributed algorithm

By definition...

o Fault-tolerant and robust

« Changes in input (or network structure):
only local changes in output

« We can quickly recover from any failures

 But do these exist?

Bad News

 Long history of very strong negative results
o Linial (1992)
« Naor & Stockmeyer (1995)
« Czygrinow, Hanckowiak & Wawrzyniak (2008)
« Lenzen & Wattenhofer (2008)

 using, e.g., results that date back to Ramsey (1930)

Bad News

 Even if your graph is a cycle...

Bad News

 Even 1if your graph is a cycle...

« And even if you have
unique node identifiers...

Bad News

 Even 1if your graph is a cycle...

« And even if you have

unique node identifiers... @»@*
« And orientation... @

Bad News

 Even 1if your graph is a cycle...

« And even if you have

unique node identifiers... @»@*

 And orientation... @

e« Then no matter which %

local algorithm you use,
there is a “bad input”

©@

Bad News

» “Bad input”:

o Almost all nodes will
produce the same output

OCACD

« Graph colouring
not possible @
 You can find only trivial @ g‘D

independent sets, @

matchings, vertex covers,
dominating sets, ...

Bad News

» Example: A is a local algorithm with r = 2,
outputs from {1, 2, ..., k}

« Focus on oriented cycles

« A maps 5-tuples of
identifiers to local outputs

« A(15, 72, 5,12, 30) = ...

Bad News

« Example: A 1s a local algorithm withr =2
outputs from 11, 2, ..., k}

» Set of identifiers: I = {1, 2, ..., N} el@*@x

e LetX={a,b,c,d, e} C1,

a<b<c<dc<e ff:
‘Q-R"

e Define the colour C(X) of X:
C(X) = A(a, b, c, d, e)

Bad News

« Example: A 1s a local algorithm withr =2
outputs from 11, 2, ..., k}

» Set of identifiers: I = {1, 2, ..., N} el@*@x

e LetX={a,b,c,d, e} C1,

a<b<c<dc<e ff:
‘Q-R"

e Define the colour C(X) of X:
C(X) = A(a, b, c, d, e)

« We will colour all 5-subsets of I

Bad News

» Example: A is a local algorithm with r = 2,
outputs from {1, 2, ..., k}

» Set of identifiers: I = {1, 2, ...,
colouring C(X) of 5-subsets

e Ramsey: if N is large enough,
there exists a large
monochromatic subset M C I

o« All 5-subsets X C M have
the same colour C(X)

Bad News

» Example: A is a local algorithm with r = 2,
outputs from {1, 2, ..., k}

« Assume that M = {aq, b, c, d, e, f} e,@*@\
1s a monochromatic subset, @

a<b<c<d<e<f Cj

« C({a, b, c, d, e}) = @
C(b, c, d, e, f}) ‘

» A(a, b,c,d,e)=A(b, c,d,e,f)

Bad News

» Example: A is a local algorithm with r = 2,
outputs from {1, 2, ..., k}
“qQ

« We have found a “bad input”: 0,@*
nodes with identifiers ¢ and d
are adjacent and they produce @

the same output @

« We already proved that

A cannot produce
a valid graph colouring!

Bad News

» Example: A is a local algorithm with r = 2,
outputs from {1, 2, ..., k}
“qQ

« We can apply the same idea 0,@*
for any value of r @

« And we can “boost”
the argument and show @
that almost all nodes will
produce the same output

X

Bad News

e For
» any local algorithm A that finds an independent set,
e any constant € > 0, and

o sufficiently large n,

we can choose unique identifiers
in an n-cycle so that A outputs
an independent set with only en nodes

Bad News

e For
» any local algorithm A that finds a vertex cover,
e any constant € > 0, and

o sufficiently large n,

we can choose unique identifiers
in an n-cycle so that A outputs
a vertex cover with at least (1 — ¢)n nodes

Dealing with Bad News

« Three traditional escapes:
« Randomised algorithms
« Geometric information

e “Almost local” algorithms

Dealing with Bad News

« Three traditional escapes:
e Randomised algorithms
« Geometric information

e “Almost local” algorithms

1ithms

Randomised Algor

ins

e« Nodes can roll dice or toss co

34

Randomised Algorithms

« Nodes can roll dice or toss coins

« We cannot guarantee that we find
a good solution

« Worst case: all coin tosses equal, no new information

« But we can find a good solution
with high probability or in expectation

Randomised Algorithms

« Example: finding an independent set I

e Each node v picks
uniformly at random
X(v) =L, [, [, B, = B

Randomised Algorithms

« Example: finding an independent set I

e Each node v picks
uniformly at random
X() =L, [, [, B, = B

e Node v joins I if X(v) is
(strict) local maximum

Randomised Algorithms

« Example: finding an independent set I

e Each node v picks
uniformly at random
X() =L, [, [, B, = B

e Node v joins I if X(v) is
(strict) local maximum

e By construction,
I 1s an independent set

Randomised Algorithms

« Example: finding an independent set I

e Each node v picks
uniformly at random
X() =L, [, [, B, = B

e Node v joins I if X(v) is
(strict) local maximum

e Expected size of I
1s reasonably large

Randomised Algorithms

« Example: finding an independent set I

A local randomised
algorithm can find
a large independent set

« Approximation algorithm
(in expectation)

« However, we cannot find
maximum independent set or
maximal independent set

Dealing with Bad News

« Three traditional escapes:
« Randomised algorithms
« Geometric information

e “Almost local” algorithms

Geometric Graphs

» Assume that nodes are
points in the plane

e Assume “reasonable”
embedding

Geometric Graphs

o Assume that nodes are
points in the plane

e Assume “reasonable”
embedding

 Civilised graph

Geometric Graphs

o Assume that nodes are
points in the plane

e Assume “reasonable”
embedding

e Civilised graph:
edges not too long...

Geometric Graphs

o Assume that nodes are
points in the plane

e Assume “reasonable”
embedding

e Civilised graph:
edges not too long,
nodes not in too dense

Geometric Graphs

o Assume that nodes are
points in the plane

e Assume “reasonable”
embedding

o Civilised graph
 Unit disk graph

 Quasi unit disk graph...

Geometric Graphs

 Exploit coordinates

 a simple approach:
divide-and-conquer

e e.g., partition the plane
in rectangular tiles

k)

Geometric Graphs

 Exploit coordinates

e each tile defines
a constant-size
subproblem

« solve the subproblem
locally within each tile
(in parallel for all tiles)

Geometric Graphs

 Exploit coordinates

e each tile defines
a constant-size
subproblem

« solve the subproblem
locally within each tile

« merge the solutions
of the subproblems

k)

Geometric Graphs

 Graph colouring:

e f = 3-colouring of tiles m

o all edges are short

e there is no edge

that joins e.g.
a blue tile and
another blue tile

Geometric Graphs

 Graph colouring:
e f = 3-colouring of tiles

e g = k-colouring that
is valid inside each tile

e can be solved
by brute force

[T

o

LA

Geometric Graphs

 Graph colouring:

e f = 3-colouring of tiles W

e g = k-colouring that
is valid inside each tile

« Output: (f, g)
» Valid 3k-colouring!

Geometric Graphs

 Simple local

algorithms: m

« maximal matchings,
independent sets, ...

e approximation
algorithms for
vertex covers,

dominating sets,
colourings, ...

Dealing with Bad News

« Three traditional escapes:
« Randomised algorithms
« Geometric information

« “Almost local” algorithms

Almost Local Algorithms

« We cannot find non-trivial solutions
in a cycle in O(1) rounds

« But we can do it in O(log* n) rounds!
e log* n = iterated logarithm
e 0 < log* n < 7 for all real-world values of n

e Good enough?

Almost Local Algorithms

e Main tool: colour reduction
o Cole & Vishkin (1986)
» Goldberg, Plotkin & Shannon (1988)

» Bit manipulation trick:
e From k colours to O(log k) colours in one step
o Initially poly(n) colours: unique identifiers

o Tterate O(log* n) times until O(1) colours

Almost Local Algorithms

Initial colouring

Almost Local Algorithms

Key idea: inspect
the binary encodings
of old colours

110001000011
11110101000011

Almost Local Algorithms

Bit number 8 differs
110001000011
68
10001~ (8, 1)< .

T=11110101000011

Almost Local Algorithms

Bit number 8 differs

1110101000011

/
10000—=(8, 00~ 14601000011

/
10001-—(8,1)<11110101000011

Almost Local Algorithms

Bit number 11 differs

1010101000011
)<_

10111< (11,1
1110101000011

/
1 -
L “%(”‘\\\110001000011

/
10001-—(8,1)<11110101000011

S
rithm
Local Algo

St

Almo

1029
(1020

17 ;
1
25

) 6
1
22
O
17

g
rc

1

5 3

25

Almost Local Algorithms

A pea
A
o)\, 3
\ 23>(23
0
16—>(16_
17
17\)
1
25) '° Update colours...

Almost Local Algorithms

After one round

Almost Local Algorithms

After two rounds

Almost Local Algorithms

After three rounds

Almost Local Algorithms

» Graph colouring in O(log* n) rounds

 Paths or cycles, 3-colouring

e Generalisations:

» Trees, bounded-degree graphs, ...

« Graphs of maximum degree A:
(A+1)-colouring in O(A + log* n) rounds

Almost Local Algorithms

» Graph colouring in O(log* n) rounds

« Many applications:

« Maximal independent set:
first try to add nodes of colour o (in parallel),
then try to add nodes of colour 1 (in parallel), ...

« Maximal matching

» Greedy algorithm for dominating sets

Almost Local Algorithms

» Graph colouring in O(log* n) rounds
« Many applications

 Fast, but not strictly local

« And inherently depends on the existence of
small, unique, numerical identifiers

Past: Summary

 Bad news:

« Cannot break symmetry in cycles

« Three traditional escapes:
« Randomised algorithms
« Geometric information

« “Almost local” algorithms

Present

Dealing with Bad News

» You cannot break symmetry in cycles...

« Which problems do not require
symmetry breaking in cycles?

Tractable Problems

» Linear programs (LPs)

« Many resource-allocation

problems can be modelled
as LPs

o If the input is symmetric,
a trivial solution is
an optimal solution!

» Only non-symmetric
inputs are challenging...

Tractable Problems

» Linear programs (LPs)

« Approximation scheme for
packing and covering LPs

 Local algorithm

 Kuhn, Moscibroda &
Wattenhofer (2006)

Tractable Problems

e Vertex covers

 2-approximation is the best that we can find
with centralised polynomial-time algorithms

e Nobody knows how to find
1.9999-approximation efficiently

« Hence if we could find a 2-approximation
with local algorithms, it would be amazing!

Tractable Problems

e Vertex covers

 2-approximation does not
require symmetry breaking

 In a regular graph, trivial
solution (all nodes) is
2-approximation

» Again, only non-symmetric
inputs are challenging...

Tractable Problems

e Vertex covers

 2-approximation of vertex cover
in bounded-degree graphs

 Local algorithm

o Astrand & Suomela (2010)

Tractable Problems

e Vertex covers

 2-approximation of vertex cover
in bounded-degree graphs

 Local algorithm

A bit complicated...

 Let’s have a look at
a simpler local algorithm:
3-approximation of vertex cover

Vertex Cover

A simple local algorithm:
3-approximation of minimum vertex cover

O

Vertex Cover

Construct a virtual graph:
two copies of each node; edges across

O

~<—0

Vertex Cover

The virtual graph is 2-coloured:
all edges are from white to black

O

~<—0

Vertex Cover

The virtual graph is 2-coloured —
therefore we can find a maximal matching!

O

~<—0

Vertex Cover

White nodes send proposals to their
black neighbours

% A\

Vertex Cover

Black nodes accept one of the proposals

: 7
SN

Vertex Cover

White nodes send proposals to another
black neighbour if they were rejected

9.9

Vertex Cover

Again, black nodes accept one proposal —
unless they were already matched

9.9

Vertex Cover

Continue until all white nodes are matched —
or they are rejected by all black neighbours

9.9

Vertex Cover

End result: a maximal matching
in the virtual graph

O oe® o‘/>'

Vertex Cover

Take all original nodes that were matched —
3-approximation of minimum vertex cover!

9.9

Present: Summary

» You cannot break symmetry in cycles...

« But we can study problems
that do not require symmetry breaking!

» Linear programs: local approximation schemes
« Vertex covers: local 2-approximation algorithm

« Edge dominating sets: local approximation algorithm

Dealing with Bad News

e Let’s have a fresh look at the lower bounds!

« Exactly what was proved?

[.ower Bounds

 Only trivial solutions in cycles

o Assumption:
constant-size output

« Each node outputs
constant number of bits

e Innocuous?

Output Size

 Vertex cover, independent set,
dominating set, cut: 1 bit per node

» Matching, edge dominating set,
edge cover: 1 bit per edge

 In a cycle, this is O(1) bits per node

Output Size

 Graph colouring:

e O(1) colours should be enough in a cycle

« Hence O(1) bits per node is enough to
encode the solution

» Linear programs:

 For a near-optimal solution, we can use
Sfinite-precision rational numbers

Output Size

» Natural problems seem to have
constant-size output

» Hence the negative results apply
« Unique identifiers do not help in cycles
« We can only produce trivial solutions in cycles

« We can only solve problems that
do not require symmetry-breaking

Output Size

» Natural problems seem to have
constant-size output

» Hence the negative results apply

e Did we miss anything?

Scheduling Problems

» Local approximation algorithms

e Scheduling problems:
fractional graph colouring,
fractional domatic partition, ...

 First example of a local algorithm that
actually requires unique numerical identifiers

« Hasemann, Hirvonen, Rybicki & Suomela
(work in progress)

More New Directions

» Deterministic local algorithm

o cf. deterministic Turing machine — class P

« Randomised local algorithm

o cf. probabilistic Turing machine — class BPP, etc.

» Nondeterministic local algorithm

o cf. nondeterministic Turing machine — class NP

Decision Problems

» Back to very basics: decision problems

o Is this graph bipartite? Acyclic? Hamiltonian?
Eulerian? Connected? 3-colourable? Symmetric?

 Decision problems form the foundation
of classical complexity theory...

Decision Problems

 Decision problems in distributed setting:
 yes-instance: all nodes happy

e no-instance: at least one node raises alarm

» Few decision problems can be solved
with deterministic local algorithms

« But now we have a very natural extension...

Decision Problems

» Nondeterministic local algorithms

 Yes-instances have a compact certificate
that can be verified with a local algorithm

 “locally checkable proof™
» Cf. class NP:

 Yes-instances have a compact certificate
that can be verified in P

Locally Checkable Proots

« Key question: what is the size of the proof?

« How many bits per node are needed?

« For example, it is easy to show that a graph is
bipartite: just give a 2-colouring, 1 bit per node

« How do you prove that a graph is not bipartite?

Locally Checkable Proots

« Key question: what is the size of the proof?

« How many bits per node are needed?

« For example, it is easy to show that a graph is
bipartite: just give a 2-colouring, 1 bit per node

« How do you prove that a graph is not bipartite?
« Find an odd cycle, and prove that it exists

» O(log n) bits is enough, Q(log n) bits necessary

Locally Checkable Proots

 Natural hierarchy of proof complexities:
 2-colourable graphs: ©(1) bits per node
» Non-2-colourable graphs: ©(log n) bits per node
« Non-3-colourable graphs: poly(n) bits per node

e Goos & Suomela (2011)

Summary

 Local algorithms

» Strong lower bounds

« Nevertheless,
a lot of progress!

» Latest hot topics
e Scheduling problems

« Nondeterministic models

www.hiit.f1/jukka.suomela/

http://www.hiit.fi/jukka.suomela/
http://www.hiit.fi/jukka.suomela/

